Fully Automated Shape Analysis Based on Forest Automat

Parosh A. Abdulla Peter Habermehl Lukáš Holík Bengt Jonsson Ondřej Lengál Cong Quy Trinh Adam Rogalewicz Jiří Šimáček Tomáš Vojnar

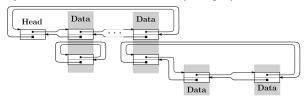
> Brno University of Technology, Czech Republic LIAFA, Université Paris Diderot, France Uppsala University, Sweden

> > August 22, 2016 IMS/NUS, Singapore

Shape Analysis

Shape analysis:

- reasoning about programs with dynamic linked data structures
- notoriously difficult: infinite sets of complex graphs

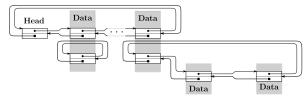


- memory safety: invalid dereferences, double free, memory leakage
- error line reachability (assertions), shape invariance (testers), ...

Shape Analysis

Shape analysis:

- reasoning about programs with dynamic linked data structures
- notoriously difficult: infinite sets of complex graphs



- memory safety: invalid dereferences, double free, memory leakage
- error line reachability (assertions), shape invariance (testers), ...

Existing solutions:

- often specialized (lists)
- require human help (loop invariants, inductive predicates)
- low scalability
- → still quite far from a general push-button solution

Inspiration

- Separation Logic
 - local reasoning: well scalable
 - g fixed abstraction

Inspiration

- Separation Logic
 - local reasoning: well scalable
 - g fixed abstraction
- Abstract Regular Tree Model Checking (ARTMC)
 - (TA): flexible and refinable abstraction
 - monolithic encoding of the heap: limited scalability

Forest Automata

- Combine
 - flexibility of ARTMC

Forest Automata

- Combine
 - flexibility of ARTMC
 with
 - scalability of SL

Forest Automata

- Combine
 - flexibility of ARTMC

with

scalability of SL

by

splitting heaps into tree components

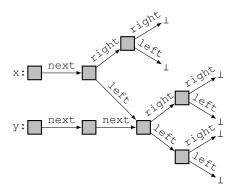
Forest Automata

- Combine
 - # flexibility of ARTMC with
 - scalability of SL

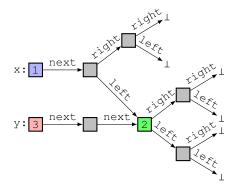
by

- splitting heaps into tree components and
 - using tree automata to represent sets of tree components of heaps

■ Forest decomposition of a heap



- Forest decomposition of a heap
- nodes referenced:
- by variables, ormultiple times
- ► Identify cut-points ← nodes referenced: multiple times

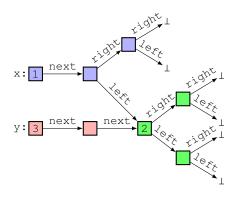


■ Forest decomposition of a heap

Identify cut-points «

- nodes referenced:

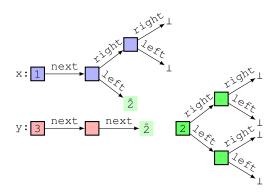
 by variables, or
 multiple times
- Split the heap into tree components



- Forest decomposition of a heap
- nodes referenced:

 by variables, or
 multiple times
- Split the heap into tree components
- References are explicit

Identify cut-points «



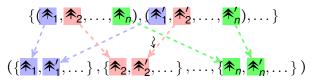
■ a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_n'), \dots\}$
 - the same number of cut-points and the general structure of the heaps required

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n), \dots\}$
 - the same number of cut-points and the general structure of the heaps required
- Cartesian representation of forests in \mathcal{H} :

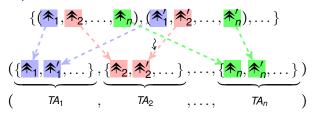
$$\{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_n'), \dots\}$$

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n), \dots\}$
 - the same number of cut-points and the general structure of the heaps required
- Cartesian representation of forests in \mathcal{H} :



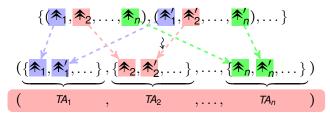
• We assume working with rectangular sets, i.e., for a set C, $(, -), (-,) \in C \Rightarrow (,) \in C$.

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n), \dots\}$
 - the same number of cut-points and the general structure of the heaps required
- Cartesian representation of forests in \mathcal{H} :



• We assume working with rectangular sets, i.e., for a set C, $(, -), (-,) \in C \Rightarrow (,) \in C$.

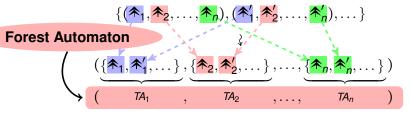
- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\wedge}_1, \stackrel{\bigstar}{\wedge}_2, \dots, \stackrel{\bigstar}{\wedge}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_n'), \dots\}$
 - the same number of cut-points and the general structure of the heaps required
- Cartesian representation of forests in \mathcal{H} :



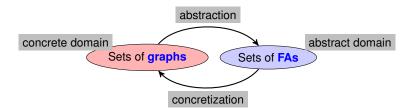
• We assume working with rectangular sets, i.e., for a set *C*,

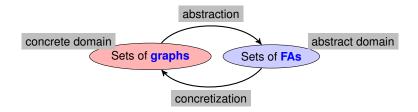
$$(, -), (-,) \in C \Rightarrow (, ,) \in C.$$

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_n'), \dots\}$
 - the same number of cut-points and the general structure of the heaps required
- Cartesian representation of forests in \mathcal{H} :



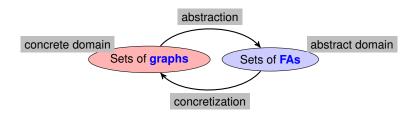
• We assume working with rectangular sets, i.e., for a set C, $(, -), (-,) \in C \Rightarrow (,) \in C$.





Statements

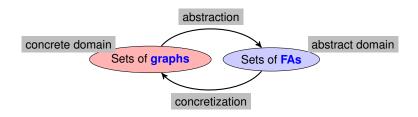
- x := new T()
- delete(x)
- x := null
- x := y
- x := y.next
- x.next := y
- \blacksquare if/while (x == y)



Statements

Abstract Transformers

- x := new T()
- delete(x)
- x := null
- x := y
- x := y.next
- x.next := y
- \blacksquare if/while (x == y)

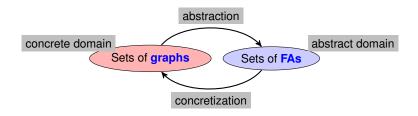


Statements

Abstract Transformers

 $(TA_1,\ldots,TA_n) \sim (TA_1,\ldots,TA_n,TA_{n+1})$

- x := new T() ←
- delete(x)
- x := null
- x := ∨
- x := y.next
- x.next := y
- if/while (x == y)

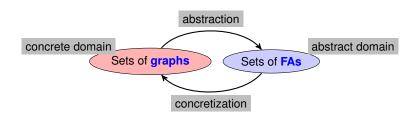


Statements

Abstract Transformers

$$\begin{array}{c} \blacksquare \ \, \times \ \, := \ \, \text{new T} \, () \\ \blacksquare \ \, \text{delete} \, (x) \\ \blacksquare \ \, \times \ \, := \ \, \text{null} \\ \blacksquare \, \times \ \, := \ \, \text{null} \\ \blacksquare \, \times \ \, := \ \, y \\ \blacksquare \, \times \ \, := \ \, y \\ \end{array}$$

- x := y.next
- x.next := y
- \blacksquare if/while (x == y)

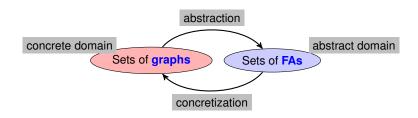


Statements

Abstract Transformers

```
The state of the
```

 \blacksquare if/while (x == y)

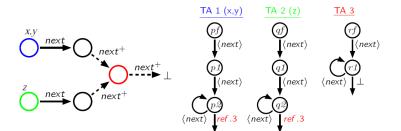


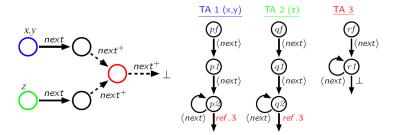
Statements

Abstract Transformers

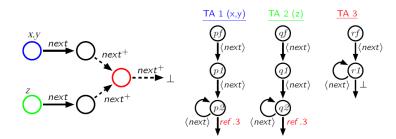
■ x := new T()
$$\leftarrow$$
 $(TA_1, ..., TA_n) \sim (TA_1, ..., TA_n, TA_{n+1})$
■ x := null $(TA_1, ..., TA_n) \sim (TA_1, ..., TA_{i-1}, TA_{i+1}, ..., TA_n)$
■ x := y \leftarrow modify transitions
■ x.next := y \leftarrow check symbols on transitions

■ if/while $(x == y) \leftarrow$

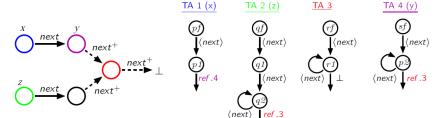


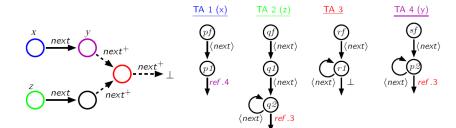


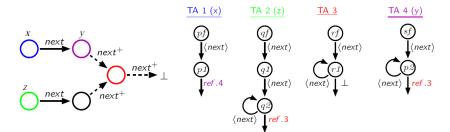
■ y:=x.next



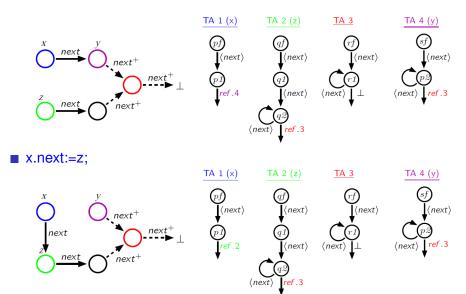
■ y:=x.next

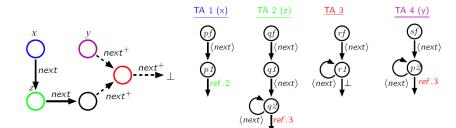


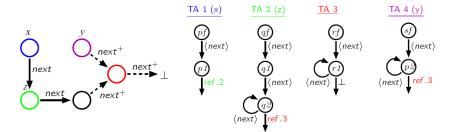




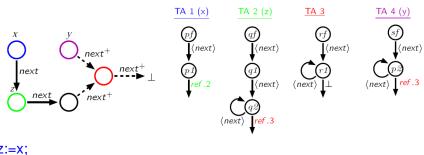
x.next:=z;

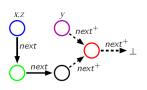


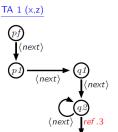


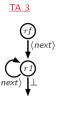


■ Z:=X;









■ Abstraction on forest automata $(TA_1, ..., TA_n)$

- Abstraction on forest automata $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$

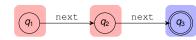
- Abstraction on forest automata $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

- Abstraction on forest automata $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

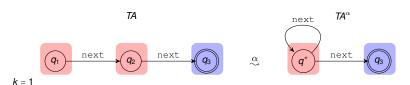
TΑ

- Abstraction on forest automata $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

TΑ



- Abstraction on forest automata $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\rightsquigarrow (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k



Nondeterministic Tree Automata

- For efficiency reasons, we never determinize TAs.
- All operations done on NTAs, including:
 - inclusion checking: based on antichains and simulations,
 - discarding macro-states during an implicit subset construction,
 - size reduction: based on simulation equivalences.
 - · collapsing simulation-equivalent states.

Summary

The so-far-presented:

Summary

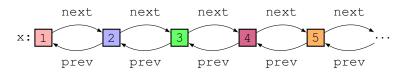
The so-far-presented:

works well for singly linked lists (SLLs), circular lists, trees,
 SLLs with head/tail pointers, trees with root pointers, ...

Summary

The so-far-presented:

- works well for singly linked lists (SLLs), circular lists, trees, SLLs with head/tail pointers, trees with root pointers, ...
- fails for more complex data structures
 - ► unbounded number of cut-points ~> heaps with different numbers of cut-points need to be treated separately



- doubly linked lists (DLLs),
- trees with parent pointers,
- skip lists

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs

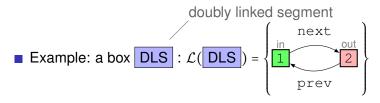
- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points

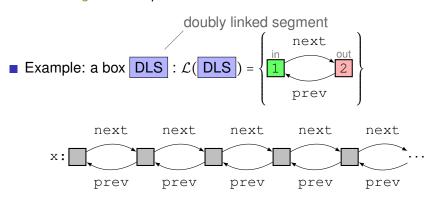
doubly linked segment

■ Example: a box DLS

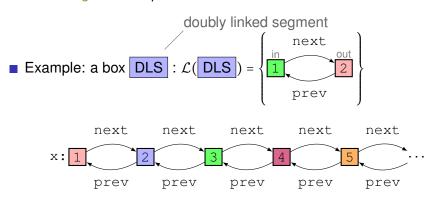
- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points



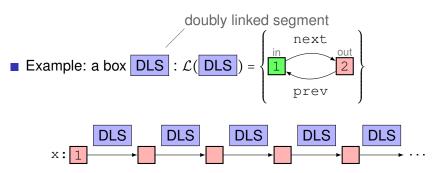
- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points



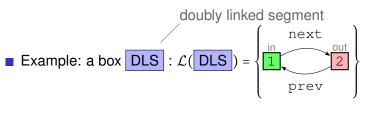
- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points

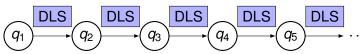


- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points

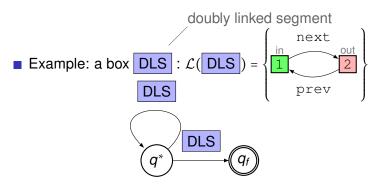


- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points





- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points



The Challenge

How to find the "right" boxes?

The Challenge

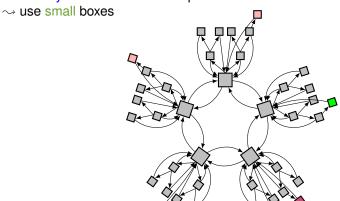
How to find the "right" boxes?

- database of boxes
- automatic discovery

compromise between

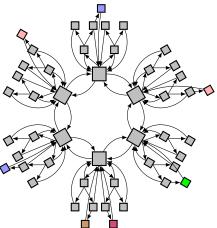
- compromise between

- compromise between
 - reusability: use on different heaps of the same kind



- compromise between
 - reusability: use on different heaps of the same kind

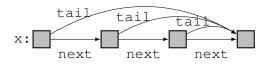
→ use small boxes



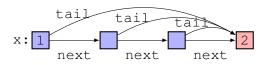
- compromise between

- compromise between
 - reusability: use on different heaps of the same kind
 - → use small boxes
 - ability to hide cut-points
 - → do not use too small boxes

- compromise between
 - reusability: use on different heaps of the same kind
 - \sim use small boxes
 - ability to hide cut-points
 - → do not use too small boxes

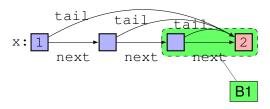


- compromise between
 - reusability: use on different heaps of the same kind
 - → use small boxes
 - ability to hide cut-points
 - → do not use too small boxes

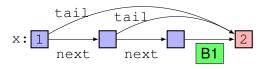


- compromise between

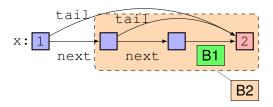
 - ability to hide cut-points
 - → do not use too small boxes



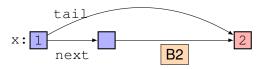
- compromise between
 - reusability: use on different heaps of the same kind
 - → use small boxes
 - ability to hide cut-points
 - → do not use too small boxes



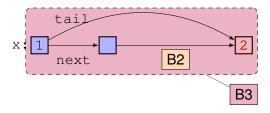
- compromise between
 - reusability: use on different heaps of the same kind
 - → use small boxes
 - ability to hide cut-points
 - → do not use too small boxes



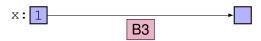
- compromise between
 - reusability: use on different heaps of the same kind
 - → use small boxes
 - ability to hide cut-points
 - → do not use too small boxes



- compromise between
 - reusability: use on different heaps of the same kind
 - → use small boxes
 - ability to hide cut-points
 - → do not use too small boxes

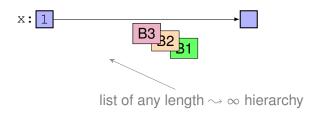


- compromise between
 - reusability: use on different heaps of the same kind
 - \sim use small boxes
 - ability to hide cut-points
 - → do not use too small boxes

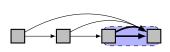


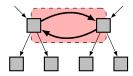
- compromise between

 - ability to hide cut-points
 - → do not use too small boxes

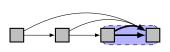


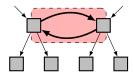
1 Smallest subgraphs meaningful to be folded:





Smallest subgraphs meaningful to be folded:

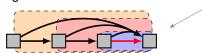




2 Handle interface

Smallest subgraphs meaningful to be folded:

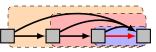
- 2 Handle interface
 - compose intersecting knots



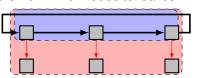
prevent ∞ nesting

Smallest subgraphs meaningful to be folded:

- 2 Handle interface
 - compose intersecting knots



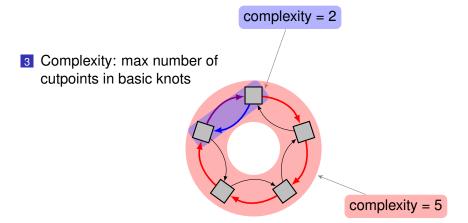
enclose paths from inner nodes to leaves

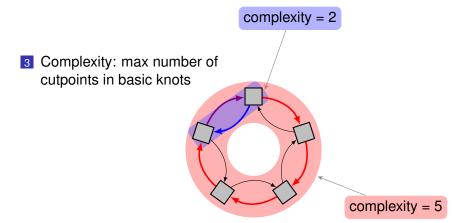


prevent ∞ interface nodes

prevent ∞ nesting

Complexity: max number of cutpoints in basic knots





find basic knots with 1,2,... cut-points

Widening Revisited

learning and folding of boxes in the abstraction loop

Widening Revisited

learning and folding of boxes in the abstraction loop

The Goal

Fold boxes that will, after abstraction, appear on cycles of automata.

⇒ hide unboundedly many cut-points

Widening Revisited

learning and folding of boxes in the abstraction loop

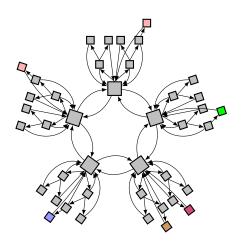
The Goal

Fold boxes that will, after abstraction, appear on cycles of automata.

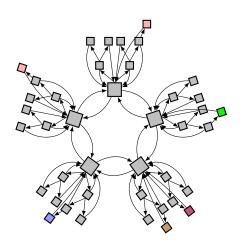
 \Rightarrow hide unboundedly many cut-points

- 1 Algorithm: Abstraction Loop
- 2 Unfold solo boxes
- 3 repeat
- 4 Abstract
- 5 Fold
- 6 until fixpoint

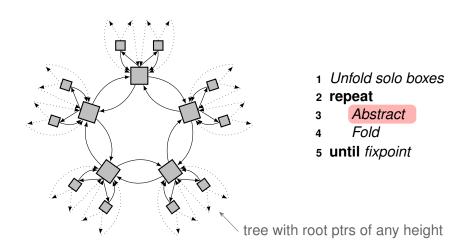
not on a cycle

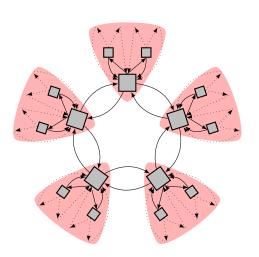


- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint

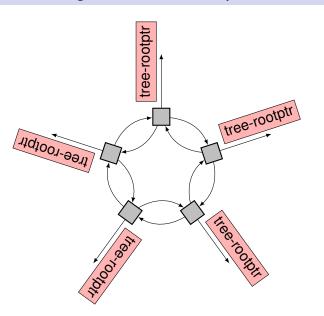


- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint

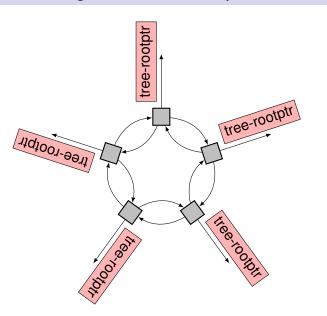




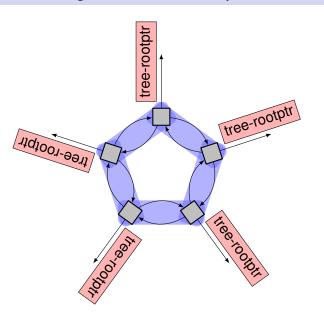
- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint



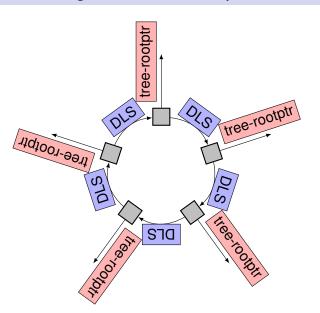
- Unfold solo boxes
- 2 repeat
- 3 Abstract
- Fold
- 5 until fixpoint



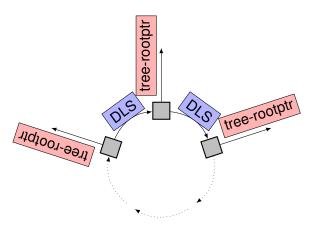
- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint



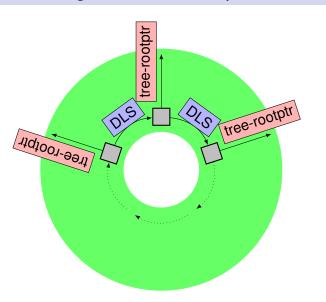
- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint



- Unfold solo boxes
- 2 repeat
- з Abstract
- Fold
- 5 until fixpoint



- Unfold solo boxes
- 2 repeat
- 3 Abstract
- . Fold
- 5 until fixpoint



- Unfold solo boxes
- 2 repeat
- 3 Abstract
- Fold
- 5 until fixpoint

circular-DLL-of -trees-rootptr

- 1 Unfold solo boxes
- 2 repeat
- 3 Abstract
- Fold
- 5 until fixpoint

■ implemented in the **Forester** tool

- implemented in the Forester tool
- comparison with Predator (a state-of-the-art tool for lists)
 - many medals from HeapManip. and MemorySafety of SV-COMP

- implemented in the Forester tool
- comparison with Predator (a state-of-the-art tool for lists)
 - many medals from HeapManip. and MemorySafety of SV-COMP

Table: Results of the experiments [s]

Example	FA	Predator	Example	FA	Predator
SLL (delete)	0.04	0.04	DLL (reverse)	0.06	0.03
SLL (bubblesort)	0.04	0.03	DLL (insert)	0.07	0.05
SLL (mergesort)	0.15	0.10	DLL (insertsort ₁)	0.40	0.11
SLL (insertsort)	0.05	0.04	DLL (insertsort ₂)	0.12	0.05
SLL (reverse)	0.03	0.03	DLL of CDLLs	1.25	0.22
SLL+head	0.05	0.03	DLL+subdata	0.09	Т
SLL of 0/1 SLLs	0.03	0.11	CDLL	0.03	0.03
SLL _{Linux}	0.03	0.03	tree	0.14	Err
SLL of CSLLs	0.73	0.12	tree+parents	0.21	Т
SLL of 2CDLLs _{Linux}	0.17	0.25	tree+stack	0.08	Err
skip list ₂	0.42	Т	tree (DSW) Deutsch- Schorr-Waite	0.40	Err
skip list ₃	9.14	T	tree of CSLLs	0.42	Err

timeout

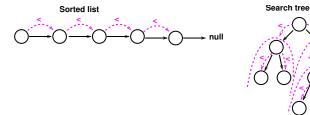
false positive

Extension to data

Extension to data

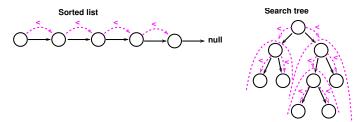
Tracking Relations over Data Values

Verify data-related properties such as sortedness.

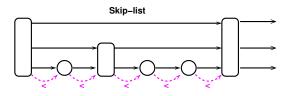


Tracking Relations over Data Values

Verify data-related properties such as sortedness.



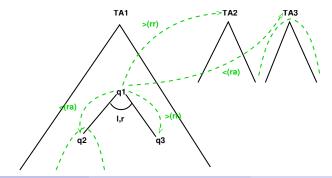
Verify data-dependent memory safety/shape invariance.



Forest Automata with Data Constraints

- TA rules extended with constraints
 - local: between states of a single rule,
 - global: between a state and a whole TA
- comparing:
 - two nodes: root-root (rr),
 - a node and all nodes of a tree: root-all (ra).

$$q1 \xrightarrow{l,r} (q2,q3) : \{0>_{ra} 1,0<_{rr} 2\} \text{ vs } G = \{q1>_{rr} TA2,q1<_{ra} TA3\}$$



Support for ordering relations implemented in an extension of Forester.

0.06		
0.06		
80.0		
0.07		
0.13		
0.10		
0.14		
0.38		
0.16		
0.39		
0.43		

Example	time [s]
BST insert	6.87
BST delete	114.00
BST left rotate	7.35
BST right rotate	6.25
SL ₂ insert	9.65
SL ₂ delete	10.14
SL ₃ insert	56.99
SL ₃ delete	57.35

Conclusion

Shape analysis with forest automata:

fully automated, very flexible

Conclusion

Shape analysis with forest automata:

- fully automated, very flexible
- the Forester tool
 - http://www.fit.vutbr.cz/research/groups/verifit/tools/forester

Conclusion

Shape analysis with forest automata:

- fully automated, very flexible
- the Forester tool
 - http://www.fit.vutbr.cz/research/groups/verifit/tools/forester
- successfully verified:
 - (singly/doubly linked (circular)) lists (of (...) lists)
 - trees (with additional pointers)
 - skip lists
 - tracking ordering relations
- not covered here:
 - support for pointer arithmetic
 - needed for lists used e.g. in the Linux kernel

Future Work

- CEGAR loop
 - red-black trees, . . .
 - already some preliminary results for lists
- concurrent data structures
 - lockless skip lists, . . .
- recursive boxes
 - B+ trees, . . .
- support for incomplete code