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Higher-order pushdown automata [Maslov 1974] - definition

A 1-stack is an ordinary stack. A 2-stack (resp. (n+1)-stack) 
is a stack of 1-stacks (resp. n-stack).
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Higher-order pushdown automata [Maslov 1974] - definition

A 1-stack is an ordinary stack. A 2-stack (resp. (n+1)-stack) 
is a stack of 1-stacks (resp. n-stack).

Operations on 2-stacks: s
i
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An order-n PDA has an order-n stack, and 
has push

i
 and pop

i
 for each 1 ≤ i ≤ n.

The next operation depends on the topmost stack symbol, the state, 
and the next letter on the input.
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 : k∈ℕ}

● order 2 
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Higher-order pushdown automata

“Traditional” view: 
● a nondeterministic HOPDA recognizing a language of words,

as on previous slides

“Modern” view:
● a deterministic HOPDA generating a single tree (node-labeled,

ranked, ordered, usually infinite) 

One can also consider configuration graphs of HOPDA – not in this talk.
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Tree-generating HOPDA - definition 
From every pair of stack symbol & state
there is either:
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● one transition reading a letter of rank k,

resulting in k (ordered) pairs of
state & operation.
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Higher-order recursion schemes

pushdown automata generalization higher-order
pushdown automata

context-free grammars generalization higher-order
recursion schemes
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Higher-order recursion schemes - definition

Nonterminals may take arguments, that can be then used 
on the right side of productions.
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Higher-order recursion schemes - definition

Nonterminals may take arguments, that can be then used 
on the right side of productions.

Every nonterminal (every argument) has assigned some type.

Types:
 ::= o | →

● o – type of a tree
● o→o – type of a function that takes a tree, and produces a tree
● o→(o→o)→o – type of a function that takes a tree and a function

    of type o→o, and produces a tree
    

abbreviation of o→((o→o)→o)
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Higher-order recursion schemes - definition

Nonterminals may take arguments, that can be then used 
on the right side of productions.

Every nonterminal (every argument) has assigned some type.

Types:
 ::= o | →

Order:          
ord(o) = 0
ord(1→...→k→o) = 1+max(ord(1), …, ord(k))

● ord(o) = 0,
● ord(o→o) = ord(o→o→o) = 1,
● ord(o→(o→o)→o) = 2 
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Higher-order recursion schemes – example

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o
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Higher-order recursion schemes – example (of order 2)

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o

 
order 0 order 2 order 2

Order of a HORS = maximal order of (a type of) its nonterminal
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Higher-order recursion schemes – example (of order 2)

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

It is required that:
1) types are respected
    e.g. D of type (o→o)→o→o is applied to f of type o→o,

     A of type (o→o)→o is applied to D f of type o→o, etc.
2) right side of every rule is of type o
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S → A b → a (A (D b)) (b c)
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Higher-order recursion schemes

● Previous slides: a deterministic HORS generating a single tree.
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● Previous slides: a deterministic HORS generating a single tree.
● One can also consider a nondeterministic HORS, recognizing

a language of finite trees.
● If every letter is of rank 1, except a single letter of rank 0,

then these trees, consisting of a single branch, can be seen as 
words → the HORS recognizes a set of words.
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Higher-order recursion schemes

● Previous slides: a deterministic HORS generating a single tree.
● One can also consider a nondeterministic HORS, recognizing

a language of finite trees.
● If every letter is of rank 1, except a single letter of rank 0,

then these trees, consisting of a single branch, can be seen as 
words → the HORS recognizes a set of words.

Example:
Alphabet: a of rank 2, b of rank 1, c of rank 0
Nonterminals: So (starting), A(o→o)→o, D(o→o)→o→o

Rules: S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

Recognized language: {b2k
 : k∈ℕ}

A f → A (D f)
A f → f c

end of word marker
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HOPDA vs HORS

higher-order
pushdown automata

higher-order
recursion schemes

Are these two formalisms equivalent?

⇔
?
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HOPDA vs HORS

higher-order
pushdown automata

higher-order
recursion schemes

Are these two formalisms equivalent?

⇔
?

Not exactly!

14



  

HOPDA vs HORS

higher-order
pushdown automata

 safe higher-order
recursion schemes

Are these two formalisms equivalent?

⇔

higher-order
recursion schemes

collapsible
pushdown automata ⇔

Theorem [Knapik, Niwiński, Urzyczyn 2002 & earlier results]
For every n, HOPDA of order n and safe HORSes of order n 
generate the same trees (recognize the same word languages);
[Caucal 2002] these are trees from the Caucal hierarchy, defined by iterating 
MSO interpretations and unfolding of graphs into trees.

Theorem [Hague, Murawski, Ong, Serre 2008]
For every n, collapsible HOPDA of order n and HORSes of order n 
generate the same trees (recognize the same word languages).

a restriction 
of HORSes

an extension of HOPDA

15



  

What is safety?

Restriction on terms appearing on right sides of rules:

● unrestricted terms:
M ::= a | x | A | M N

● safe terms: 
M ::= a | x | A | M N1 … Nk

   only if ord(M N1 … Nk)≤ord(Ni) for all i

In other words: if we apply an argument of some order k,
then we have to apply also all arguments of order ≥k
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M ::= a | x | A | M N

● safe terms: 
M ::= a | x | A | M N1 … Nk

   only if ord(M N1 … Nk)≤ord(Ni) for all i

In other words: if we apply an argument of some order k,
then we have to apply also all arguments of order ≥k

Let's check for our example HORS:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

ord(D f) = 1 ≤ 1 = ord(f)  → OK
All other subterms are of order 0 → OK

✓safe
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What is safety?

Restriction on terms appearing on right sides of rules:

● unrestricted terms:
M ::= a | x | A | M N

● safe terms: 
M ::= a | x | A | M N1 … Nk

   only if ord(M N1 … Nk)≤ord(Ni) for all i

In other words: if we apply an argument of some order k,
then we have to apply also all arguments of order ≥k

Example: Unsafe HORS (generating ”Urzyczyn's tree” U):
Types: ao→o→o, bo→o, co→o, do, eo, So, F(o→o)→o→o→o 
Rules:  S         → F b d e

  F f x y → a (F (F f x) y (c y)) (a (f y) x)

ord(F f x) = 1 > 0 = ord(x)
(F expects two order-0 arguments; we have applied one (x), but not the other) 

✘ unsafe

17

(and not equivalent 
to any safe HORS)



  

Why safety helps?

Theorem [Knapik, Niwiński, Urzyczyn 2002; Blum, Ong 2007]

Substitution (hence -reduction) in safe -calculus can be
implemented without renaming bound variables.

18

Bad example: when you substitute (x.y x) [a x x / y], it is neccessary 
    to change the first two x to some other variable name



  

Collapsible pushdown automata

● Every stack symbol has an identifier.
● push1x pushes symbol x with a fresh identifier.
● pushk for k≥2 copy symbols with their identifiers.
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Collapsible pushdown automata

How collapse can be useful? – Urzyczyn's language U
 (≈ branches in the Urzyczyn's tree)

alphabet: [, ], 
U contains words of the form:

[ [ ] [ [ ] [ [ ] ] 

● segment A forms a prefix of a well-bracketed word 
that ends in [ not matched in the entire word

● segment B forms a well-bracketed word
● the number of stars in C equals the number of brackets in A

A B C

20
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Collapsible pushdown automata

How collapse can be useful? – Urzyczyn's language U
 (≈ branches in the Urzyczyn's tree)

➔ one stack symbol
➔ first-order stack counts the number of currently open brackets
➔ a copy is done after each bracket

Words in U:
A) a prefix of a well-bracketed word 
B) a well-bracketed word
C) as many stars as brackets in part A
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➔ a copy is done after each bracket
➔ on the first star make the collapse
➔ count the number of stacks

Collapsible pushdown automata

How collapse can be useful? – Urzyczyn's language U
 (≈ branches in the Urzyczyn's tree)

Words in U:
A) a prefix of a well-bracketed word 
B) a well-bracketed word
C) as many stars as brackets in part A

22

Remark: 
A nondeterministic order-2 PDA without collapse can recognize U,
as it can guess when is the beginning of the “B” part.
But not a deterministic HOPDA without collapse, of any order!
(This means that the Urzyczyn's tree cannot be generated by a HOPDA)



  

Expressivity questions

Tree(n)= trees generated by HORSes (CPDA) of order n
SafeTree(n) = trees generated by safe HORSes (HOPDA) of order n

Tree(0) Tree(1) Tree(2) Tree(3)

SafeTree(0) SafeTree(1) SafeTree(2) SafeTree(3) ⊆  ⊆  ⊆  ⊆ ⊆

 ⊆  ⊆  ⊆  ⊆

 ⊆  ⊆  ⊆ ...

...

Lang(n) = word languages recogn. by HORSes (CPDA) of order n
SafeLang(n) = word lang. rec. by safe HORSes (HOPDA) of order n

Lang(0) Lang(1) Lang(2) Lang(3)

SafeLang(0) SafeLang(1) SafeLang(2) SafeLang(3) ⊆  ⊆  ⊆  ⊆ ⊆

 ⊆  ⊆  ⊆  ⊆

 ⊆  ⊆  ⊆ ...

...
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Expressivity questions

Tree(0) Tree(1) Tree(2) Tree(3)
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Are these hierarchies strict?

Theorem [Engelfriet 1991]
For every n, SafeLang(n) ≠ SafeLang(n+1),
and thus also SafeTree(n) ≠ SafeTree(n+1).
Separating language: correct sequences of operations of order-(n+1) HOPDA

   (including the topmost stack symbol after every step).
Proof: “Simple trick” using the fact that reachability for order-n HOPDA is in 
(n-1)-EXPTIME, while reachability for order-(n+1) HOPDA is n-EXPTIME-hard.
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Expressivity questions

Are these hierarchies strict?

Theorem [Engelfriet 1991]
For every n, SafeLang(n) ≠ SafeLang(n+1),
and thus also SafeTree(n) ≠ SafeTree(n+1).
Separating language: correct sequences of operations of order-(n+1) HOPDA

   (including the topmost stack symbol after every step).
Proof: “Simple trick” using the fact that reachability for order-n HOPDA is in 
(n-1)-EXPTIME, while reachability for order-(n+1) HOPDA is n-EXPTIME-hard.

The same proof works for CPDA. 
Thus Tree(n) ≠ Tree(n+1) & Lang(n) ≠ Lang(n+1).

Tree(0) Tree(1) Tree(2) Tree(3)
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Expressivity questions

Are these hierarchies strict?

Another separator:
Tn = tree with branches akbexpn(k)c, where expn(k)=22

We have SafeTree(n+1) ∋ Tn ∉ Tree(n).

2...
k

n

Tree(0) Tree(1) Tree(2) Tree(3)

SafeTree(0) SafeTree(1) SafeTree(2) SafeTree(3) ⊆  ⊆  ⊆  ⊆ =

 ⊆  ⊆  ⊆  ⊆

 =  ⊆  ⊆ ...

...

Lang(1)

SafeLang(0) SafeLang(1) SafeLang(2) SafeLang(3) ⊆  ⊆  ⊆  ⊆ =

 ⊆  ⊆  ⊆  ⊆

 =  =  ⊆ ...

...Lang(0) Lang(2) Lang(3)

pumping lemma [Kartzow, P. 2012]
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Expressivity questions

Are these hierarchies strict?

Another separator:
Tn = tree with branches akbexpn(k)c, where expn(k)=22

We have SafeTree(n+1) ∋ Tn ∉ Tree(n).

For languages we do not know: 
                SafeLang(n+1) ∋ {bexpn(k) : k∈ℕ} ∉ Lang(n).

2...
k

n

Tree(0) Tree(1) Tree(2) Tree(3)

SafeTree(0) SafeTree(1) SafeTree(2) SafeTree(3) ⊆  ⊆  ⊆  ⊆ =

 ⊆  ⊆  ⊆  ⊆

 =  ⊆  ⊆ ...

...

Lang(1)

SafeLang(0) SafeLang(1) SafeLang(2) SafeLang(3) ⊆  ⊆  ⊆  ⊆ =

 ⊆  ⊆  ⊆  ⊆

 =  =  ⊆ ...

...Lang(0) Lang(2) Lang(3)

pumping lemma [Kartzow, P. 2012]

?

Open problem: a pumping lemma 
for nondeterministic HORSes. 25



  

Expressivity questions

Is safety really a restriction?

Tree(0) Tree(1) Tree(2) Tree(3)

SafeTree(0) SafeTree(1) SafeTree(2) SafeTree(3) ⊆  ⊆  ⊆  ⊆ =

 ⊆  ⊆  ⊆  ⊆

 =  ⊆  ⊆ ...

...

Lang(1)

SafeLang(0) SafeLang(1) SafeLang(2) SafeLang(3) ⊆  ⊆  ⊆  ⊆ =

 ⊆  ⊆  ⊆  ⊆

 =  =  ⊆ ...

...Lang(0) Lang(2) Lang(3)

26



  

Expressivity questions

Is safety really a restriction?

For trees – yes.
Example: Urzyczyn's tree U 
                Tree(2) ∋ U ∉ SafeTree(n) for every n   [P. 2012]

For word languages – open problem (e.g. SafeLang(3) ≠ Lang(3))

Tree(0) Tree(1) Tree(2) Tree(3)

SafeTree(0) SafeTree(1) SafeTree(2) SafeTree(3) ⊆  ⊆  ⊆  ⊆ =

 ⊆  ⊆  ⊆  ⊆

 =  ⊆  ⊆ ...

...

Lang(1)

SafeLang(0) SafeLang(1) SafeLang(2) SafeLang(3) ⊆  ⊆  ⊆  ⊆ =

 ⊆  ⊆  ⊆  ⊆

 =  =  ⊆ ...

...Lang(0) Lang(2) Lang(3)

?
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Expressivity questions

Are these languages context-sensitive?

Lang(1)
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Expressivity questions

Are these languages context-sensitive?

CSens = context-sensitive languages (type-1 in the Chomsky hierarchy)

SafeLang(n) ⊆ CSens, for every n     [Inaba, Maneth 2008]
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SafeLang(n) ⊆ CSens, for every n     [Inaba, Maneth 2008]

Lang(3) ⊆ CSens                                [Kobayashi, Inaba, Tsukada 2014]
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This inclusion is “almost obvious”:
● Recall that CSens = languages recognized by a nondeterministic 

Turing machine in linear space.
● Consider the following algorithm: starting from the initial 

nonterminal, follow nondeterministically rules of the HORS, 
trying to derive the input word. 

● It works well if all intermediate terms are smaller than the 
derived word (= input word).

● The “only difficulty”: describe/eliminate nonterminals that are
“not productive”, i.e., that do not increase the size of the derived
word. 
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Algorithmic questions

Problem: MSO model-checking
Input: MSO formula , HORS S
Output: does  hold in the tree generated by S? 
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Algorithmic questions

Problem: MSO model-checking
Input: MSO formula , HORS S
Output: does  hold in the tree generated by S? 

Theorem: MSO model-checking is decidable.
[Knapik, Niwiński, Urzyczyn 2002] – safe schemes only
[Knapik, Niwiński, Urzyczyn, Walukiewicz 2005] – order-2 only
[Ong 2006] – via game semantics
[Hague, Murawski, Ong, Serre 2008] – via collapsible pushdown automata
[Broadbent, Ong 2009] – global model-checking
[Kobayashi, Ong 2009] – via a type system
[Broadbent, Carayol, Ong, Serre 2010] – MSO reflection
[Salvati, Walukiewicz 2011] – via Krivine machine
[Carayol, Serre 2012] – MSO selection
[Salvati, Walukiewicz 2015] – model for Y-calculus
...
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Algorithmic questions

Problem: MSO model-checking
Input: MSO formula , HORS S
Output: does  hold in the tree generated by S? 

Theorem: MSO model-checking is decidable.

Complexity: 
● nonelementary when ∈MSO
● n-EXPTIME-complete when  is given as a -calculus formula 

or a parity automaton, and the scheme is of order n
● (n-1)-EXPTIME-complete for reachability properties 

(is “a” present in the tree)
● polynomial when n, , and maximal arity of a nonterminal fixed
● despite high complexity, solvable in practice (see next talk)
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Algorithmic questions

Theorem: MSO model-checking is decidable.

Idea of a proof
Input: alternating parity automaton A, HORS S
Question: does A accept the tree generated by S?

We refine simple types into intersection types of the form:

 o   is refined to   qQ (a state)
→   is refined to   {(1,m1),...,(k,mk)}→   where i refines ,  refines ,

   mi is a priority

q1 q2

the smallest priority 
on these paths is m1

the smallest priority 
on this path is m2

q

31
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Algorithmic questions

MSO reflection
Input: MSO formula (x), HORS S
Output: HORS S' generating the same tree as S, where

  the nodes x in which (x) holds are marked.

Theorem: MSO model-checking is decidable.

[Knapik, Niwiński, Urzyczyn 2002] – safe schemes only
[Knapik, Niwiński, Urzyczyn, Walukiewicz 2005] – order-2 only
[Ong 2006] – via game semantics
[Hague, Murawski, Ong, Serre 2008] – via collapsible pushdown automata
[Broadbent, Ong 2009] – global model-checking
[Kobayashi, Ong 2009] – via a type system
[Broadbent, Carayol, Ong, Serre 2010] – MSO reflection
[Salvati, Walukiewicz 2011] – via Krivine machine
[Carayol, Serre 2012] – MSO selection
[Salvati, Walukiewicz 2015] – model for Y-calculus
...
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What is a model?

Input: MSO formula , HORS S
Output: a finite set D for every sort 

  
   

Do

Do→o Do→o→o

D(o→o)→o
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Input: MSO formula , HORS S
Output: a finite set D for every sort ,

  a value [M]D for every term M sort  

   

[M] depends on valuation 
of free variables of M

Do

Do→o Do→o→o

D(o→o)→o

M'

[M]

M M''

[M'']

N

[N]

[MN]

MN
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model  reflection 

(we enrich the scheme so that every 
term “knows” its value in the model)
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model  reflection 
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(we enrich the scheme so that every 
term “knows” its value in the model)
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What is a model?

Input: MSO formula , HORS S
Output: a finite set D for every sort ,

  a value [M]D for every term M sort  

  has to be compositional: [MN] determined by [M] and [N]. 

[M] depends on valuation 
of free variables of M

model  reflection 
transfer theorem

Basing on  one can construct ' such that ' holds in a closed 
term M of sort o iff  holds in the tree generated from M. 

term M
tree generated
from M

' 
(special case: M = starting nonterminal)

term M

34



  

Beyond MSO?

Problem: WMSO+U model-checking
Input: WMSO+U formula , HORS S
Output: does  hold in the tree generated by S? 

Ongoing work: WMSO+U model-checking is decidable.

MSO+U = Weak MSO (set quantifiers range over finite sets only)
                 + new quantifier U

where: UX. means that  holds for some arbitrarily large finite sets X
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Let L be a set of words. Its downward closure L contains all words
that can be obtained from words in L by removing some letters.
E.g. L={abc}, L={e,a,b,c,ab,bc,ac,abc} 
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Let L be a set of words. Its downward closure L contains all words
that can be obtained from words in L by removing some letters.
E.g. L={abc}, L={e,a,b,c,ab,bc,ac,abc} 

Higman's lemma: the downward closure of any set L is 
  a regular language.

 
Quest: Given a scheme S recognizing L, compute L.
● Trivial but useless: Compute a scheme S' recognizing L.
● Real quest: Compute an NFA A recognizing L.

Theorem [Zetzsche 2015, Hague, Kochems, Ong 2016, 
                    Clemente, P., Salvati, Walukiewicz 2016]
Given a scheme S recognizing L, one can compute an NFA A 
recognizing L.
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Theorem
Given a scheme S recognizing L, one can compute an NFA A 
recognizing L.

Some ideas:
● For every regular language K we check whether L=K.
● Easy to test whether LK, i.e. LK=.
● L (so K as well) is necessarily a finite union of languages of the form

Si=A0a1A1a2…Ak-1akAk. It remains to check whether SiL for all i.
● By transforming the scheme, this reduces to the diagonal problem: 

Input: a scheme S recognizing La1a2...ak (with different letters)
Question: does L=a1a2...ak ?
(in other words: is it the case that for every n we have in L words with 
more than n appearances of every letter?)

This is the actual problem to be solved. 

Downward closure

*

* * *
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The diagonal problem

* * *
* * *Input: a scheme S recognizing La1a2...ak (with different letters)

Question: does L=a1a2...ak ?

How to solve it?
step 1a scheme S of order n with 

a word written on a branch
a scheme S of order n-1 with 
this word written in leaves 
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The diagonal problem

* * *
* * *

S    → A e
A x → a (A (b x))
A x → x

S → ∧ A e
A → ∧ a (∧ A b))
A → ●

(rank 1: a, b; rank 0: e) (rank 2: ∧; rank 0: a, b, e, ●)

a
a

Example:

a
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b
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a
b

e∧
∧
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a
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∧
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a
b

∧
∧
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Example:

Idea: 1) Observe that an argument of type o can be used at most once.
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Idea: 1) Observe that an argument of type o can be used at most once.
    2) All arguments of type o are dropped (⇒ order decreases).
    3) Every subterm M N with N of type o can be replaced
         a) either by ∧ M N (when the argument is used in M),
         b) or by M (when the argument is ignored in M).
    4) Additional work is required to choose correctly a) or b).  
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Input: a scheme S recognizing La1a2...ak (with different letters)
Question: does L=a1a2...ak ?

How to solve it?

The diagonal problem

* * *
* * *

step 1a scheme S of order n with 
a word written on a branch

a scheme S of order n-1 with 
this word written in leaves 

a scheme S of order n-1 with
a similar word written on a branch

step 2
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* * *

step 1a scheme S of order n with 
a word written on a branch

a scheme S of order n-1 with 
this word written in leaves 

a scheme S of order n-1 with
a similar word written on a branch

step 2
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∧
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Idea:
1) Choose (nondeterministically) only one branch.
2) For every removed subtree with a, write a new a just above.

Example:
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2) For every removed subtree with a, write a new a just above.
3) The number of a's decreases at most logarithmically,
     if the branch is chosen correctly (always go to the subtree with more a's).
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Input: a scheme S recognizing La1a2...ak (with different letters)
Question: does L=a1a2...ak ?

How to solve it?

The diagonal problem

* * *
* * *

step 1 a scheme S of order n-1 with 
this word written in leaves 

a scheme S of order n-1 with
a similar “word” written on || branches

step 2

∧
a a

●●
∧

∧
a a

∧
a a

∧

∧

∧

∧
a a

●●
∧

 a 
a a

∧
a a

 a
 ●

 a

Idea:
1) Choose (nondeterministically) only one branch.
2) For every removed subtree with a, write a new a just above.
3) The number of a's decreases at most logarithmically,
     if the branch is chosen correctly (always go to the subtree with more a's).

We have to this for every letter ⇒ || branches

Example:

a scheme S of order n with 
a word written on a branch

40



Input: a scheme S recognizing La1a2...ak (with different letters)
Question: does L=a1a2...ak ?

How to solve it?

The diagonal problem

* * *
* * *

step 1a scheme S of order n with
a “word” written on || branches

a scheme S of order n-1 with 
this “word” written in leaves 

a scheme S of order n-1 with
a similar “word” written on || branches

step 2

∧
a a

●●
∧

∧
a a

∧
a a

∧

∧

∧

∧
a a

●●
∧

 a 
a a

∧
a a

 a
 ●

 a

Idea:
1) Choose (nondeterministically) only one branch.
2) For every removed subtree with a, write a new a just above.
3) The number of a's decreases at most logarithmically,
     if the branch is chosen correctly (always go to the subtree with more a's).

We have to this for every letter ⇒ || branches

Example:

40



Input: a scheme S recognizing La1a2...ak (with different letters)
Question: does L=a1a2...ak ?

How to solve it?

The diagonal problem

* * *
* * *

step 1a scheme S of order n with
a “word” written on || branches

a scheme S of order n-1 with 
this “word” written in leaves 

a scheme S of order n-1 with
a similar “word” written on || branches

step 2

Repeat these steps until the order drops down to 0,
and solve the diagonal problem for a regular language.
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Theorem
Given a scheme S recognizing L, one can compute an NFA A 
recognizing L.

Motivation?
0. It gives a simple abstraction of the language recognized by a scheme.
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Given a scheme S recognizing L, one can compute an NFA A 
recognizing L.

Motivation?
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    But we can check this approximately, by checking whether
    L=A*, L1=L2, etc.
2. The problem “is there a piecewise testable language (i.e., boolean
    combination of downward closed languages) containing L1 and not 
    intersecting with L2” reduces to the diagonal problem [Czerwiński, 

    Martens, van Rooijen, Zeitoun 2015]. This gives a more refined approxima-
    tion for disjointness of L1 and L2 than the test L1L2=.
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Given a scheme S recognizing L, one can compute an NFA A 
recognizing L.

Motivation?
0. It gives a simple abstraction of the language recognized by a scheme.
1. It is undecidable whether L=A*, L1=L2, etc.
    But we can check this approximately, by checking whether
    L=A*, L1=L2, etc.
2. The problem “is there a piecewise testable language (i.e., boolean
    combination of downward closed languages) containing L1 and not 
    intersecting with L2” reduces to the diagonal problem [Czerwiński, 

    Martens, van Rooijen, Zeitoun 2015]. This gives a more refined approxima-
    tion for disjointness of L1 and L2 than the test L1L2=.
3. Consider a system with one leader and some (unspecified) number
    of contributors, that communicate via common register (read or write,
    without any locks). The reachability problem in such system reduces
    to computation of the downward closure [La Torre, Muscholl, 
    Walukiewicz 2015]. (Yesterday's talk – downward closure no longer needed)
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● The diagonal problem  probably (n-1)-EXPTIME for schemes of

order n (ongoing work)
● Computation of downward closure  open problem

We need to bound the maximal size of the downward closure
(a pumping lemma is needed).

● Lower bound: checking whether L1=L2 or L1L2 is 
co-n-NEXPTIME-hard [Zetzsche 2016]
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Theorem
Given a scheme S recognizing L, one can compute an NFA A 
recognizing L.

Complexity?
● The diagonal problem  probably (n-1)-EXPTIME for schemes of

order n (ongoing work)
● Computation of downward closure  open problem

We need to bound the maximal size of the downward closure
(a pumping lemma is needed).

● Lower bound: checking whether L1=L2 or L1L2 is 
co-n-NEXPTIME-hard [Zetzsche 2016]

Another open problem: computation of downward closure for schemes
recognizing languages of trees.
(By Kruskal's tree theorem the downward closure of any language of trees 
is a regular language.) 

Downward closure
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Thank you!
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