Introduction to
 Collapsible Pushdown Automata and
 Higher-Order Recursion Schemes

Paweł Parys

University of Warsaw

Higher-order pushdown automata [Maslov 1974] - definition

A 1-stack is an ordinary stack. A 2-stack (resp. (n+1)-stack) is a stack of 1 -stacks (resp. n-stack).

Higher-order pushdown automata [Maslov 1974] - definition

A 1-stack is an ordinary stack. A 2-stack (resp. (n+1)-stack) is a stack of 1 -stacks (resp. n-stack).

Operations on 2-stacks: s_{i} are 1 -stacks. Top of stack is on right.

$$
\begin{array}{llll}
\operatorname{push}_{2}: & {\left[s_{1} \ldots s_{i-1} s_{i}\right]} & \rightarrow & {\left[s_{1} \ldots s_{i-1} s_{i} s_{i}\right]} \\
\operatorname{pop}_{2}: & : & {\left[s_{1} \ldots s_{i-1} s_{i}\right]} & \rightarrow \\
\left.s_{i} \ldots s_{i-1}\right]
\end{array}
$$

Higher-order pushdown automata [Maslov 1974] - definition

A 1-stack is an ordinary stack. A 2-stack (resp. (n+1)-stack) is a stack of 1 -stacks (resp. n-stack).

Operations on 2-stacks: s_{i} are 1-stacks. Top of stack is on right.

$$
\begin{array}{llll}
\text { push }_{2}: & {\left[s_{1} \ldots s_{i-1} s_{i}\right]} & \rightarrow & {\left[s_{1} \ldots s_{i-1} s_{i} s_{i}\right]} \\
\text { pop }_{2}: & {\left[s_{1} \ldots s_{i-1} s_{i}\right]} & \rightarrow & {\left[s_{1} \ldots i_{i-1}\right]} \\
\text { push }_{1} x: & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1} a_{j}\right]\right]} & \rightarrow & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1} a_{j} x\right]\right]} \\
\text { pop }_{1}: & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1} a_{j}\right]\right]} & \rightarrow & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1}\right]\right.}
\end{array}
$$

Higher-order pushdown automata [Maslov 1974] - definition

A 1-stack is an ordinary stack. A 2-stack (resp. (n+1)-stack) is a stack of 1 -stacks (resp. n-stack).

Operations on 2-stacks: s_{i} are 1-stacks. Top of stack is on right.

| push $_{2}:$ | $\left[s_{1} \ldots s_{i-1} s_{i}\right]$ | \rightarrow | $\left[s_{1} \ldots s_{i-1} s_{i} s_{i}\right]$ |
| :--- | :--- | :--- | :--- | :--- |
| pop $_{2}:$ | $\left[s_{1} \ldots s_{i-1} s_{i}\right]$ | \rightarrow | $\left[s_{1} \ldots s_{i-1}\right]$ |
| push $_{1} x:$ | $\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1} a_{j}\right]\right]$ | \rightarrow | $\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1} a_{j} x\right]\right]$ |
| pop $_{1}:$ | $\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1} a_{j}\right]\right]$ | \rightarrow | $\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1}\right]\right]$ |

An order-n PDA has an order-n stack, and has push ${ }_{i}$ and $p o p_{i}$ for each $1 \leq i \leq n$.

The next operation depends on the topmost stack symbol, the state, and the next letter on the input.

Higher-order pushdown automata - example

Language: $\left\{b^{2^{k}}: k \in \mathbb{N}\right\}$

- order 2
- 3 stack symbols: \perp, x, \#
$\underset{\sim}{\left(, q_{1}\right)} \xrightarrow{\varepsilon}\left(q_{1}\right.$, push $\left._{1}(x)\right)$
any stack symbol

Higher-order pushdown automata - example

Language: $\left\{\mathrm{b}^{2^{k}}: \mathrm{k} \in \mathbb{N}\right\}$

- order 2
- 3 stack symbols: \perp, x, \#
$\underset{\sim}{\left(, q_{1}\right)} \xrightarrow{\varepsilon}\left(q_{1}\right.$, push $\left._{1}(x)\right)$
any stack symbol

Higher-order pushdown automata - example

Language: $\left\{\mathrm{b}^{2^{k}}: \mathrm{k} \in \mathbb{N}\right\}$

- order 2
- 3 stack symbols: \perp, x, \#
$\underset{\sim}{\left(, q_{1}\right)} \xrightarrow{\varepsilon}\left(q_{1}\right.$, push $\left._{1}(x)\right)$
any stack symbol

Higher-order pushdown automata - example

Language: $\left\{b^{2^{k}}: k \in \mathbb{N}\right\}$

- order 2
- 3 stack symbols: \perp, x, \#
any stack symbol

Higher-order pushdown automata - example

Language: $\left\{\mathrm{b}^{2^{k}}: \mathrm{k} \in \mathbb{N}\right\}$

- order 2
- 3 stack symbols: \perp, x, \#
$\left(_, q_{1}\right) \xrightarrow{\varepsilon}\left(q_{1}\right.$, push $\left._{1}(x)\right)$
$\left(, q_{1}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{2}\right.$, push $\left._{1}(\#)\right)$
$\left(\#, q_{2}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{3}\right.$, push $\left._{2}\right)$
$\left(\#, \mathrm{q}_{3}\right) \xrightarrow{\boldsymbol{\varepsilon}}\left(\mathrm{q}_{4}, \mathrm{pop}_{1}\right)$

Higher-order pushdown automata - example

Language: $\left\{\mathrm{b}^{2^{k}}: \mathrm{k} \in \mathbb{N}\right\}$

- order 2
- 3 stack symbols: $\perp, \mathrm{x}, \#$
$\left(, q_{1}\right) \xrightarrow{\varepsilon}\left(q_{1}\right.$, push $\left._{1}(x)\right)$
$\left(, q_{1}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{2}\right.$, push $\left._{1}(\#)\right)$
$\left(\#, q_{2}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{3}\right.$, push $\left._{2}\right)$
$\left(\#, q_{3}\right) \xrightarrow{\varepsilon}\left(q_{4}, p o p_{1}\right)$
$\left(\mathrm{x}, \mathrm{q}_{4}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{5}, \mathrm{pop}_{1}\right)$
$\left(, q_{5}\right) \xrightarrow{\varepsilon}\left(q_{4}\right.$, push $\left._{2}\right)$

Higher-order pushdown automata - example

Language: $\left\{\mathrm{b}^{2^{k}}: \mathrm{k} \in \mathbb{N}\right\}$

- order 2
- 3 stack symbols: \perp, x, \#
$\left(_, q_{1}\right) \xrightarrow{\varepsilon}\left(q_{1}\right.$, push $\left._{1}(x)\right)$
$\left(, q_{1}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{2}\right.$, push $\left._{1}(\#)\right)$
$\left(\#, q_{2}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{3}\right.$, push $\left._{2}\right)$
$\left(\#, q_{3}\right) \xrightarrow{\boldsymbol{\varepsilon}}\left(\mathrm{q}_{4}, \mathrm{pop}_{1}\right)$
$\left(\mathrm{x}, \mathrm{q}_{4}\right) \xrightarrow{\boldsymbol{\varepsilon}}\left(\mathrm{q}_{5}, \mathrm{pop}_{1}\right)$
$\left(, \mathrm{q}_{5}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{4}\right.$, push $\left._{2}\right)$

Higher-order pushdown automata - example

Language: $\left\{\mathrm{b}^{2^{k}}: \mathrm{k} \in \mathbb{N}\right\}$

- order 2
- 3 stack symbols: \perp, x, \#
$\left(_, q_{1}\right) \xrightarrow{\varepsilon}\left(q_{1}\right.$, push $\left._{1}(x)\right)$
$\left(, q_{1}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{2}\right.$, push $\left._{1}(\#)\right)$
$\left(\#, q_{2}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{3}\right.$, push $\left._{2}\right)$
$\left(\#, q_{3}\right) \xrightarrow{\boldsymbol{\varepsilon}}\left(\mathrm{q}_{4}, \mathrm{pop}_{1}\right)$
$\left(\mathrm{x}, \mathrm{q}_{4}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{5}, \mathrm{pop}_{1}\right)$
$\left(, \mathrm{q}_{5}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{4}\right.$, push $\left._{2}\right)$

Higher-order pushdown automata - example

Language: $\left\{\mathrm{b}^{2^{k}}: \mathrm{k} \in \mathbb{N}\right\}$

- order 2
- 3 stack symbols: \perp, x, \#

$$
\begin{aligned}
& \left(, q_{1}\right) \xrightarrow{\varepsilon}\left(q_{1}, \text { push }_{1}(x)\right) \\
& \left(,, q_{1}\right) \xrightarrow{\varepsilon}\left(q_{2}, \text { push }_{1}(\#)\right) \\
& \left(\#, q_{2}\right) \xrightarrow{\varepsilon}\left(q_{3}, \text { push }_{2}\right) \\
& \left(\#, q_{3}\right) \xrightarrow{\varepsilon}\left(q_{4}, \text { pop }_{1}\right) \\
& \left(x, q_{4}\right) \xrightarrow{\varepsilon}\left(q_{5}, \text { pop }_{1}\right) \\
& \left(, q_{5}\right) \xrightarrow{\varepsilon}\left(q_{4}, \text { push }_{2}\right) \\
& \left(\perp, q_{4}\right) \xrightarrow{b}\left(q_{4}, \text { pop }_{2}\right)
\end{aligned}
$$

Input: b

Higher-order pushdown automata - example

Language: $\left\{\mathrm{b}^{2^{k}}: \mathrm{k} \in \mathbb{N}\right\}$

- order 2
- 3 stack symbols: \perp, x, \#

$$
\begin{aligned}
& \left(, q_{1}\right) \xrightarrow{\varepsilon}\left(q_{1}, \text { push }_{1}(x)\right) \\
& \left(,, q_{1}\right) \xrightarrow{\varepsilon}\left(q_{2}, \text { push }_{1}(\#)\right) \\
& \left(\#, q_{2}\right) \xrightarrow{\varepsilon}\left(q_{3}, \text { push }_{2}\right) \\
& \left(\#, q_{3}\right) \xrightarrow{\varepsilon}\left(q_{4}, \text { pop }_{1}\right) \\
& \left(x, q_{4}\right) \xrightarrow{\varepsilon}\left(q_{5}, \text { pop }_{1}\right) \\
& \left(, q_{5}\right) \xrightarrow{\varepsilon}\left(q_{4}, \text { push }_{2}\right) \\
& \left(\perp, q_{4}\right) \xrightarrow{b}\left(q_{4}, \text { pop }_{2}\right)
\end{aligned}
$$

Input: b b

Higher-order pushdown automata - example

Language: $\left\{\mathrm{b}^{2^{k}}: \mathrm{k} \in \mathbb{N}\right\}$

- order 2
- 3 stack symbols: \perp, x, \#

$\left(_, q_{1}\right) \xrightarrow{\varepsilon}\left(q_{1}\right.$, push $\left._{1}(x)\right)$
$\left(L_{1}, q_{1}\right) \xrightarrow{\varepsilon}\left(q_{2}\right.$, push $\left._{1}(\#)\right)$
$\left(\#, q_{2}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{3}\right.$, push $\left._{2}\right)$
$\left(\#, q_{3}\right) \xrightarrow{\boldsymbol{\varepsilon}}\left(\mathrm{q}_{4}, \mathrm{pop}_{1}\right)$
$\left(\mathrm{x}, \mathrm{q}_{4}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{5}, \mathrm{pop}_{1}\right)$
$\left(, q_{5}\right) \xrightarrow{\varepsilon}\left(q_{4}\right.$, push $\left._{2}\right)$
$\left(\perp, q_{4}\right) \xrightarrow{b}\left(\mathrm{q}_{4}, \mathrm{pop}_{2}\right)$
$\left(\#, \mathrm{q}_{4}\right) \xrightarrow{\boldsymbol{\varepsilon}}\left(\mathrm{q}_{\mathrm{acc}}, \mathrm{id}\right)$

Higher-order pushdown automata

"Traditional" view:

- a nondeterministic HOPDA recognizing a language of words, as on previous slides
"Modern" view:
- a deterministic HOPDA generating a single tree (node-labeled, ranked, ordered, usually infinite)

One can also consider configuration graphs of HOPDA - not in this talk.

Higher-order pushdown automata - example

nondeterminism - what to do next?

- order 2
- 3 stack symbols: \perp, x, \#

$$
\begin{array}{l|c|}
\hline & \mathrm{x} \\
\hline & \mathrm{x} \\
\hline & \mathrm{x} \\
\hline \mathrm{q}_{1} & \perp \\
\hline
\end{array}
$$

Higher-order pushdown automata - example

letter a of rank 2

- order 2
- 3 stack symbols: \perp, x, \#

$$
\begin{array}{c|c|}
\hline & \mathrm{x} \\
\hline & \mathrm{x} \\
\hline & \mathrm{x} \\
\hline \mathrm{q}_{1} & \perp \\
\hline
\end{array}
$$

$$
\left(\#, q_{2}\right) \xrightarrow{\boldsymbol{q}}\left(q_{3}, \text { push }_{2}\right)
$$

$$
\left(\#, q_{3}\right) \xrightarrow{\varepsilon}\left(q_{4}, \text { pop }_{1}\right)
$$

$$
\left(\mathrm{x}, \mathrm{q}_{4}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{5}, \mathrm{pop}_{1}\right)
$$

$$
\left(, q_{5}\right) \xrightarrow{\varepsilon}\left(q_{4}, \text { push }_{2}\right)
$$

$$
\left(\perp, q_{4}\right) \xrightarrow{b}\left(q_{4}, p o p_{2}\right)
$$

$$
\left(\#, \mathrm{q}_{4}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{\mathrm{acc}}, \mathrm{id}\right)
$$

Higher-order pushdown automata - example

- order 2
- 3 stack symbols: \perp, x, \#

$$
\begin{aligned}
& \left(, q_{1}\right)-\underset{a_{1}}{\lambda}\left(q_{1}, \text { push }_{1}(x)\right) \\
& \left(\#, q_{2}, \text { push }_{1}\right) \xrightarrow{\varepsilon}\left(q_{3}, \text { push }_{2}\right) \\
& \left(\#, q_{3}\right) \xrightarrow{\varepsilon}\left(q_{4}, \text { pop }_{1}\right) \\
& \left(x, q_{4}\right) \xrightarrow{\varepsilon}\left(q_{5}, \text { pop }_{1}\right) \\
& \left(, q_{5}\right) \xrightarrow{\varepsilon}\left(q_{4}, \text { push }_{2}\right)
\end{aligned}
$$

$$
\left(\perp, q_{4}\right) \xrightarrow{b}\left(q_{4}, p o p_{2}\right)
$$

$$
\left(\#, q_{4}\right) \xrightarrow{C}
$$

Higher-order pushdown automata - example

- order 2
- 3 stack symbols: \perp, x, \#

Tree-generating HOPDA - definition
From every pair of stack symbol \& state there is either:

- one ε-transition
- one transition reading a letter of rank k, resulting in k (ordered) pairs of state \& operation.

Higher-order pushdown automata - example

- order 2
- 3 stack symbols: \perp, x, \#

Generated tree:

$$
\begin{aligned}
& \left(,, q_{1}\right)-\underset{\sim}{\lambda}\left(q_{2}, \text { push }_{1}(\#)\right) \\
& \left(\#, \mathrm{q}_{2}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{3}, \text { push }_{2}\right) \\
& \left(\#, q_{3}\right) \xrightarrow{\varepsilon}\left(\mathrm{q}_{4}, \mathrm{pop}_{1}\right) \\
& \left(\mathrm{x}_{\mathrm{a}} \mathrm{q}_{4}\right) \xrightarrow{\boldsymbol{\varepsilon}}\left(\mathrm{q}_{5}, \mathrm{pop}_{1}\right) \\
& \left(, q_{5}\right) \xrightarrow{\varepsilon}\left(q_{4}, \text { push }_{2}\right) \\
& \left(\perp, q_{4}\right) \xrightarrow{b}\left(q_{4}, \text { pop }_{2}\right) \\
& \left(\#, q_{4}\right) \xrightarrow{C}
\end{aligned}
$$

pushdown automata generalization higher-order
 pushdown automata

context-free grammars generalization $\begin{aligned} & \text { higher-order } \\ & \text { recursion schemes }\end{aligned}$

Higher-order recursion schemes - definition

Nonterminals may take arguments, that can be then used on the right side of productions.

Higher-order recursion schemes - definition

Nonterminals may take arguments, that can be then used on the right side of productions.

Every nonterminal (every argument) has assigned some type.
Types:

$$
\alpha::=o \mid \alpha \rightarrow \beta
$$

- o - type of a tree
- $o \rightarrow o$ - type of a function that takes a tree, and produces a tree
- $O \rightarrow(o \rightarrow o) \rightarrow O$ - type of a function that takes a tree and a function of type $o \rightarrow o$, and produces a tree

$$
\text { abbreviation of } O \rightarrow((O \rightarrow O) \rightarrow O)
$$

Higher-order recursion schemes - definition

Nonterminals may take arguments, that can be then used on the right side of productions.

Every nonterminal (every argument) has assigned some type.
Types:

$$
\alpha::=o \mid \alpha \rightarrow \beta
$$

Order:

$$
\begin{aligned}
& \operatorname{ord}(o)=0 \\
& \operatorname{ord}\left(\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{k} \rightarrow o\right)=1+\max \left(\operatorname{ord}\left(\alpha_{1}\right), \ldots, \operatorname{ord}\left(\alpha_{k}\right)\right)
\end{aligned}
$$

- $\operatorname{ord}(o)=0$,
- $\operatorname{ord}(o \rightarrow o)=\operatorname{ord}(o \rightarrow o \rightarrow o)=1$,
- $\operatorname{ord}(o \rightarrow(o \rightarrow o) \rightarrow o)=2$

Higher-order recursion schemes - example

Ranked alphabet: $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:
S^{o} (starting), $A^{(o \rightarrow 0) \rightarrow 0}, D^{(0 \rightarrow 0) \rightarrow 0 \rightarrow 0}$

Higher-order recursion schemes - example (of order 2)

Ranked alphabet: $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals: S^{o} (starting), $A^{(0 \rightarrow 0) \rightarrow 0}, D^{(0 \rightarrow 0) \rightarrow 0 \rightarrow 0}$
order $0 \quad$ order $2 \quad$ order 2

Order of a HORS = maximal order of (a type of) its nonterminal

Higher-order recursion schemes - example (of order 2)

Ranked alphabet: $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:
S^{o} (starting), $A^{(0 \rightarrow 0) \rightarrow 0}, D^{(0 \rightarrow 0) \rightarrow 0 \rightarrow 0}$
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

It is required that:

1) types are respected
e.g. D of type $(o \rightarrow o) \rightarrow o \rightarrow o$ is applied to f of type $o \rightarrow o$,

A of type $(o \rightarrow o) \rightarrow o$ is applied to $D f$ of type $o \rightarrow o$, etc.
2) right side of every rule is of type o

Higher-order recursion schemes - example (of order 2)

Ranked alphabet: $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank $1, c^{o}$ of rank 0

Nonterminals:
S^{o} (starting), $A^{(0 \rightarrow 0) \rightarrow 0}, D^{(0 \rightarrow 0) \rightarrow 0 \rightarrow 0}$
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$

Higher-order recursion schemes - example (of order 2)

Ranked alphabet: $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:
S^{o} (starting), $A^{(0 \rightarrow 0) \rightarrow 0}, D^{(0 \rightarrow 0) \rightarrow 0 \rightarrow 0}$

Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$$
S \rightarrow A b \rightarrow a(A(D b))(b c)
$$

Higher-order recursion schemes - example (of order 2)

Ranked alphabet: $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:
S^{o} (starting), $A^{(0 \rightarrow 0) \rightarrow 0}, D^{(0 \rightarrow 0) \rightarrow 0 \rightarrow 0}$
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$

Higher-order recursion schemes - example (of order 2)

Ranked alphabet: $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:
S^{o} (starting), $A^{(0 \rightarrow 0) \rightarrow 0}, D^{(0 \rightarrow 0) \rightarrow 0 \rightarrow 0}$
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$
$A(D b) \rightarrow a(A(D(D b)))(D b c)$

Higher-order recursion schemes - example (of order 2)

Ranked alphabet: $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:
S^{o} (starting), $A^{(0 \rightarrow 0) \rightarrow 0}, D^{(0 \rightarrow 0) \rightarrow 0 \rightarrow 0}$
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$
$A(D b) \rightarrow a(A(D(D b)))(D b c)$

Higher-order recursion schemes - example (of order 2)

Ranked alphabet: $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals: S^{o} (starting), $A^{(0 \rightarrow 0) \rightarrow 0}, D^{(0 \rightarrow 0) \rightarrow 0 \rightarrow 0}$

Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$
$A(D b) \rightarrow a(A(D(D b)))(D b c)$
$D b c \rightarrow b(b c)$

Higher-order recursion schemes - example (of order 2)

Ranked alphabet: $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals: S^{o} (starting), $A^{(0 \rightarrow 0) \rightarrow 0}, D^{(0 \rightarrow 0) \rightarrow 0 \rightarrow 0}$

Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$
$A(D b) \rightarrow a(A(D(D b)))(D b c)$
$D b c \rightarrow b(b c)$
$A(D(D b)) \rightarrow a(A(D(D(D b))))(D(D b) c)$
$D(D b) c \rightarrow D b(D b c) \rightarrow b(b(D b c))$

Higher-order recursion schemes - example (of order 2)

Ranked alphabet: $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals: S^{o} (starting), $A^{(0 \rightarrow 0) \rightarrow 0}, D^{(0 \rightarrow 0) \rightarrow 0 \rightarrow 0}$

Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$
$A(D b) \rightarrow a(A(D(D b)))(D b c)$
$D b c \rightarrow b(b c)$
$A(D(D b)) \rightarrow a(A(D(D(D b))))(D(D b) c)$
$D(D b) c \rightarrow D b(D b c) \rightarrow b(b(D b c))$

Higher-order recursion schemes

- Previous slides: a deterministic HORS generating a single tree.

Higher-order recursion schemes

- Previous slides: a deterministic HORS generating a single tree.
- One can also consider a nondeterministic HORS, recognizing a language of finite trees.

Higher-order recursion schemes

- Previous slides: a deterministic HORS generating a single tree.
- One can also consider a nondeterministic HORS, recognizing a language of finite trees.
- If every letter is of rank 1, except a single letter of rank 0, then these trees, consisting of a single branch, can be seen as words \rightarrow the HORS recognizes a set of words.

Higher-order recursion schemes

- Previous slides: a deterministic HORS generating a single tree.
- One can also consider a nondeterministic HORS, recognizing a language of finite trees.
- If every letter is of rank 1, except a single letter of rank 0 , then these trees, consisting of a single branch, can be seen as words \rightarrow the HORS recognizes a set of words.

Example:

end of word marker

Alphabet: of rank 2, b of rank 1, c of rank 0
Nonterminals: S^{o} (starting), $A^{(0 \rightarrow 0) \rightarrow o}, D^{(0 \rightarrow 0) \rightarrow o \rightarrow o}$
Rules: $\quad S \rightarrow A b$

$$
\begin{array}{ll}
s \rightarrow A D \\
\hat{A f} \rightarrow a(A(D) f)(f c) & A f \rightarrow A(D f) \\
D f x \rightarrow f(f x) & A f \rightarrow f c
\end{array}
$$

Recognized language: $\left\{b^{2^{k}}: k \in \mathbb{N}\right\}$

HOPDA vs HORS

Are these two formalisms equivalent?

HOPDA vs HORS

Are these two formalisms equivalent?

HOPDA vs HORS

Are these two formalisms equivalent?

Theorem [Knapik, Niwiński, Urzyczyn 2002 \& earlier results] For every n, HOPDA of order n and safe HORSes of order n generate the same trees (recognize the same word languages); [Caucal 2002] these are trees from the Caucal hierarchy, defined by iterating MSO interpretations and unfolding of graphs into trees.

Theorem [Hague, Murawski, Ong, Serre 2008]
For every n, collapsible HOPDA of order n and HORSes of order n generate the same trees (recognize the same word languages).

What is safety?

Restriction on terms appearing on right sides of rules:

- unrestricted terms:

$$
M::=a|x| A \mid M N
$$

- safe terms:

$$
\begin{aligned}
& M::=a|x| A \mid M N_{1} \ldots N_{k} \\
& \quad \text { only if } \operatorname{ord}\left(M N_{1} \ldots N_{k}\right) \leq \operatorname{ord}\left(N_{i}\right) \text { for all } i
\end{aligned}
$$

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

What is safety?

Restriction on terms appearing on right sides of rules:

- unrestricted terms:

$$
M::=a|x| A \mid M N
$$

- safe terms:

$$
\begin{aligned}
& M::=a|x| A \mid M N_{1} \ldots N_{k} \\
& \quad \text { only if } \operatorname{ord}\left(M N_{1} \ldots N_{k}\right) \leq \operatorname{ord}\left(N_{i}\right) \text { for all } i
\end{aligned}
$$

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

Let's check for our example HORS:

$$
\begin{aligned}
& S \rightarrow A b \\
& A f \rightarrow a(A(D f f)(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

What is safety?

Restriction on terms appearing on right sides of rules:

- unrestricted terms:

$$
M::=a|x| A \mid M N
$$

- safe terms:

$$
\begin{aligned}
& M::=a|x| A \mid M N_{1} \ldots N_{k} \\
& \quad \text { only if } \operatorname{ord}\left(M N_{1} \ldots N_{k}\right) \leq \operatorname{ord}\left(N_{i}\right) \text { for all } i
\end{aligned}
$$

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

Let's check for our example HORS:

$$
\begin{aligned}
& S \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$\operatorname{ord}(\mathrm{D} f)=1 \leq 1=\operatorname{ord}(f) \rightarrow \mathrm{OK}$

What is safety?

Restriction on terms appearing on right sides of rules:

- unrestricted terms:

$$
M::=a|x| A \mid M N
$$

- safe terms:

$$
\begin{aligned}
M::=a|x| A \mid & M N_{1} \ldots N_{k} \\
& \text { only if } \operatorname{ord}\left(M N_{1} \ldots N_{k}\right) \leq \operatorname{ord}\left(N_{i}\right) \text { for all } i
\end{aligned}
$$

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

Let's check for our example HORS:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \quad \checkmark \text { safe } \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$\operatorname{ord}(D f)=1 \leq 1=\operatorname{ord}(f) \rightarrow \mathrm{OK}$
All other subterms are of order $0 \rightarrow$ OK

What is safety?

Restriction on terms appearing on right sides of rules:

- unrestricted terms:

$$
M::=a|x| A \mid M N
$$

- safe terms:

$$
\begin{aligned}
& M::=a|x| A \mid M N_{1} \ldots N_{k} \\
& \quad \text { only if } \operatorname{ord}\left(M N_{1} \ldots N_{k}\right) \leq \operatorname{ord}\left(N_{i}\right) \text { for all } i
\end{aligned}
$$

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

Example: Unsafe HORS (generating "Urzyczyn's tree" U): Types: $a^{o \rightarrow 0 \rightarrow 0}, b^{o \rightarrow 0}, c^{o \rightarrow o}, d^{0}, e^{0}, S^{o}, F^{(0 \rightarrow 0) \rightarrow 0 \rightarrow 0 \rightarrow 0}$
Rules: $S \rightarrow$ Fbde

$$
F f x y \rightarrow a(F(F f x) y(c y))(a(f y) x)
$$

$\operatorname{ord}(F f x)=1>0=\operatorname{ord}(x)$
(and not equivalent
to any safe HORS)
(F expects two order-0 arguments; we have applied one (x), but not the other)

Why safety helps?

Theorem [Knapik, Niwiński, Urzyczyn 2002; Blum, Ong 2007] Substitution (hence β-reduction) in safe λ-calculus can be implemented without renaming bound variables.

Bad example: when you substitute ($\lambda x . y x$) $[a x x / y]$, it is neccessary to change the first two x to some other variable name

Collapsible pushdown automata

- Every stack symbol has an identifier.
- push $_{1} x$ pushes symbol x with a fresh identifier.
- push $_{k}$ for $k \geq 2$ copy symbols with their identifiers.

Collapsible pushdown automata

- Every stack symbol has an identifier.
- push ${ }_{1} x$ pushes symbol x with a fresh identifier.
- $p^{2} h_{k}$ for $k \geq 2$ copy symbols with their identifiers.
- New operation collapse ${ }_{k}$:
remove from the topmost order- k stack all order-(k-1) stacks containing a copy of the topmost stack symbol.

Collapsible pushdown automata

- Every stack symbol has an identifier.
- push ${ }_{1} x$ pushes symbol x with a fresh identifier.
- $p^{2} h_{k}$ for $k \geq 2$ copy symbols with their identifiers.
- New operation collapse ${ }_{k}$:
remove from the topmost order- k stack all order-(k-1) stacks containing a copy of the topmost stack symbol.
\square

Collapsible pushdown automata

- Every stack symbol has an identifier.
- push ${ }_{1} x$ pushes symbol x with a fresh identifier.
- $p^{2} h_{k}$ for $k \geq 2$ copy symbols with their identifiers.
- New operation collapse ${ }_{k}$:
remove from the topmost order-k stack all order-(k-1) stacks containing a copy of the topmost stack symbol.

$$
\text { push }_{1} X
$$

Collapsible pushdown automata

- Every stack symbol has an identifier.
- push ${ }_{1} x$ pushes symbol x with a fresh identifier.
- $p^{2} h_{k}$ for $k \geq 2$ copy symbols with their identifiers.
- New operation collapse ${ }_{k}$:
remove from the topmost order-k stack all order-(k-1) stacks containing a copy of the topmost stack symbol.

push ${ }_{1} X$
push ${ }_{2}$

Collapsible pushdown automata

- Every stack symbol has an identifier.
- push ${ }_{1} x$ pushes symbol x with a fresh identifier.
- $p^{2} h_{k}$ for $k \geq 2$ copy symbols with their identifiers.
- New operation collapse ${ }_{k}$:
remove from the topmost order-k stack all order-(k-1) stacks containing a copy of the topmost stack symbol.

push ${ }_{1} X$
push ${ }_{2}$
push ${ }_{2}$

$$
\begin{array}{|c|c|c|}
\hline x, 1 & x, 1 & x, 1 \\
\hline \perp & \perp & \hline \perp \\
\hline
\end{array}
$$

Collapsible pushdown automata

- Every stack symbol has an identifier.
- push ${ }_{1} x$ pushes symbol x with a fresh identifier.
- $p^{2} h_{k}$ for $k \geq 2$ copy symbols with their identifiers.
- New operation collapse ${ }_{k}$:
remove from the topmost order-k stack all order-(k-1) stacks containing a copy of the topmost stack symbol.

push ${ }_{1} X$
push ${ }_{2}$
push ${ }_{2}$
pop $_{1}$

Collapsible pushdown automata

- Every stack symbol has an identifier.
- push ${ }_{1} x$ pushes symbol x with a fresh identifier.
- push $_{k}$ for $k \geq 2$ copy symbols with their identifiers.
- New operation collapse ${ }_{k}$:
remove from the topmost order-k stack all order-(k-1) stacks containing a copy of the topmost stack symbol.

Collapsible pushdown automata

- Every stack symbol has an identifier.
- push ${ }_{1} x$ pushes symbol x with a fresh identifier.
- push $_{k}$ for $k \geq 2$ copy symbols with their identifiers.
- New operation collapse ${ }_{k}$:
remove from the topmost order-k stack all order-(k-1) stacks containing a copy of the topmost stack symbol.

Collapsible pushdown automata

- Every stack symbol has an identifier.
- push ${ }_{1} x$ pushes symbol x with a fresh identifier.
- push $_{k}$ for $k \geq 2$ copy symbols with their identifiers.
- New operation collapse ${ }_{k}$:
remove from the topmost order-k stack all order-(k-1) stacks containing a copy of the topmost stack symbol.

$$
\begin{aligned}
& \text { push }{ }_{1} X \\
& \text { push }{ }_{2} \\
& \text { push }_{2}
\end{aligned}
$$

Collapsible pushdown automata

- Every stack symbol has an identifier.
- push ${ }_{1} x$ pushes symbol x with a fresh identifier.
- push $_{k}$ for $k \geq 2$ copy symbols with their identifiers.
- New operation collapse ${ }_{k}$:
remove from the topmost order-k stack all order-(k-1) stacks containing a copy of the topmost stack symbol.

$$
\begin{aligned}
& \text { push }{ }_{1} X \\
& \text { push }_{2} \\
& \text { push }{ }_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { push }{ }_{2}
\end{aligned}
$$

Collapsible pushdown automata

- Every stack symbol has an identifier.
- push ${ }_{1} x$ pushes symbol x with a fresh identifier.
- push $_{k}$ for $k \geq 2$ copy symbols with their identifiers.
- New operation collapse ${ }_{k}$:
remove from the topmost order-k stack all order-(k-1) stacks containing a copy of the topmost stack symbol.

Collapsible pushdown automata

- Every stack symbol has an identifier.
- push ${ }_{1} x$ pushes symbol x with a fresh identifier.
- push $_{k}$ for $k \geq 2$ copy symbols with their identifiers.
- New operation collapse ${ }_{k}$: remove from the topmost order-k stack all order-(k-1) stacks containing a copy of the topmost stack symbol.

Collapsible pushdown automata

How collapse can be useful? - Urzyczyn's language U (\approx branches in the Urzyczyn's tree)
alphabet: [,], *
U contains words of the form:

- segment A forms a prefix of a well-bracketed word that ends in [not matched in the entire word
- segment B forms a well-bracketed word
- the number of stars in C equals the number of brackets in A

Collapsible pushdown automata

How collapse can be useful? - Urzyczyn's language U (\approx branches in the Urzyczyn's tree)
Words in U:
A) a prefix of a well-bracketed word
B) a well-bracketed word
C) as many stars as brackets in part A
\rightarrow one stack symbol
\rightarrow first-order stack counts the number of currently open brackets
\rightarrow a copy is done after each bracket
\square
[[] [[] [[]] ****

Collapsible pushdown automata

How collapse can be useful? - Urzyczyn's language U (\approx branches in the Urzyczyn's tree)
Words in U:
A) a prefix of a well-bracketed word
B) a well-bracketed word
C) as many stars as brackets in part A
\rightarrow one stack symbol
\rightarrow first-order stack counts the number of currently open brackets
\rightarrow a copy is done after each bracket

Collapsible pushdown automata

How collapse can be useful? - Urzyczyn's language U (\approx branches in the Urzyczyn's tree)
Words in U:
A) a prefix of a well-bracketed word
B) a well-bracketed word
C) as many stars as brackets in part A
\rightarrow one stack symbol
\rightarrow first-order stack counts the number of currently open brackets
\rightarrow a copy is done after each bracket

Collapsible pushdown automata

How collapse can be useful? - Urzyczyn's language U (\approx branches in the Urzyczyn's tree)
Words in U:
A) a prefix of a well-bracketed word
B) a well-bracketed word
C) as many stars as brackets in part A
\rightarrow one stack symbol
\rightarrow first-order stack counts the number of currently open brackets
\rightarrow a copy is done after each bracket

Collapsible pushdown automata

How collapse can be useful? - Urzyczyn's language U (\approx branches in the Urzyczyn's tree)
Words in U:
A) a prefix of a well-bracketed word
B) a well-bracketed word
C) as many stars as brackets in part A
\rightarrow one stack symbol
\rightarrow first-order stack counts the number of currently open brackets
\rightarrow a copy is done after each bracket
\rightarrow on the first star make the collapse
\rightarrow count the number of stacks

Collapse = remove all stacks on which the topmost symbol is present

Collapsible pushdown automata

How collapse can be useful? - Urzyczyn's language U (\approx branches in the Urzyczyn's tree)
Words in U:
A) a prefix of a well-bracketed word
B) a well-bracketed word
C) as many stars as brackets in part A
\rightarrow one stack symbol
\rightarrow first-order stack counts the number of currently open brackets
\rightarrow a copy is done after each bracket
\rightarrow on the first star make the collapse
\rightarrow count the number of stacks

Collapsible pushdown automata

How collapse can be useful? - Urzyczyn's language U (\approx branches in the Urzyczyn's tree)
Words in U:
A) a prefix of a well-bracketed word
B) a well-bracketed word
C) as many stars as brackets in part A
\rightarrow one stack symbol
\rightarrow first-order stack counts the number of currently open brackets
\rightarrow a copy is done after each bracket
\rightarrow on the first star make the collapse
\rightarrow count the number of stacks

Remark:
A nondeterministic order-2 PDA without collapse can recognize U, as it can guess when is the beginning of the " B " part.
But not a deterministic HOPDA without collapse, of any order!
(This means that the Urzyczyn's tree cannot be generated by a HOPDA)

Expressivity questions

Tree $(n)=$ trees generated by HORSes (CPDA) of order n
SafeTree $(n)=$ trees generated by safe HORSes (HOPDA) of order n

Lang(n) = word languages recogn. by HORSes (CPDA) of order n SafeLang (n) = word lang. rec. by safe HORSes (HOPDA) of order n

Expressivity questions

Tree $(n)=$ trees generated by HORSes (CPDA) of order n SafeTree $(n)=$ trees generated by safe HORSes (HOPDA) of order n

regular trees
Lang (n) = word languages recogn. by HORSes (CPDA) of order n SafeLang (n) = word lang. rec. by safe HORSes (HOPDA) of order n

> SafeLang $(0) \subseteq \operatorname{SafeLang}(1) \subseteq$ SafeLang $(2) \subseteq \operatorname{SafeLang(3)\subseteq \ldots }$ $\underset{\operatorname{lang}(0)}{\ln } \mathfrak{\operatorname { l a n g } (1)} \subseteq \operatorname{lang}(2) \subseteq \operatorname{lang}(3) \subseteq \ldots$ regular
> languages

Expressivity questions

Tree $(n)=$ trees generated by HORSes (CPDA) of order n SafeTree (n) = trees generated by safe HORSes (HOPDA) of order n

Lang (n) = word languages recogn. by HORSes (CPDA) of order n SafeLang (n) = word lang. rec. by safe HORSes (HOPDA) of order n

Expressivity questions

Tree $(n)=$ trees generated by HORSes (CPDA) of order n SafeTree (n) = trees generated by safe HORSes (HOPDA) of order n

Lang (n) = word languages recogn. by HORSes (CPDA) of order n SafeLang (n) = word lang. rec. by safe HORSes (HOPDA) of order n

Expressivity questions

Tree $(n)=$ trees generated by HORSes (CPDA) of order n SafeTree (n) = trees generated by safe HORSes (HOPDA) of order n

Lang (n) = word languages recogn. by HORSes (CPDA) of order n SafeLang (n) = word lang. rec. by safe HORSes (HOPDA) of order n

Are these hierarchies strict?

Expressivity questions

Are these hierarchies strict?

Theorem [Engelfriet 1991]
For every n, SafeLang $(n) \neq$ SafeLang $(n+1)$, and thus also SafeTree $(n) \neq$ SafeTree $(n+1)$.
Separating language: correct sequences of operations of order-($n+1$) HOPDA (including the topmost stack symbol after every step).
Proof: "Simple trick" using the fact that reachability for order- n HOPDA is in $(n-1)$-EXPTIME, while reachability for order- $(n+1)$ HOPDA is n-EXPTIME-hard.

Expressivity questions

SafeLang $(0) \mp \operatorname{SafeLang(1)} \mp \operatorname{SafeLang(2)} \ddagger \operatorname{SafeLang(3)} \mp \cdots$
$\operatorname{Lang}(0)$
Lan
Lang (1)

Are these hierarchies strict?
Theorem [Engelfriet 1991]
For every n, SafeLang $(n) \neq \operatorname{SafeLang}(n+1)$, and thus also SafeTree $(n) \neq \operatorname{Safe} \operatorname{Tree}(n+1)$.

Separating language: correct sequences of operations of order-($n+1$) HOPDA (including the topmost stack symbol after every step).
Proof: "Simple trick" using the fact that reachability for order-n HOPDA is in $(n-1)$-EXPTIME, while reachability for order- $(n+1)$ HOPDA is n-EXPTIME-hard.
The same proof works for CPDA.
Thus Tree $(n) \neq \operatorname{Tree}(n+1) \& \operatorname{Lang}(n) \neq \operatorname{Lang}(n+1)$.

Expressivity questions

$$
\operatorname{Tree}(0) \quad \mp \operatorname{Tree}(1) \quad \mp \operatorname{Tree}(2) \quad \mp \operatorname{Tree}(3) \quad \mp \ldots
$$

SafeLang $(0) \mp$ SafeLang $(1) \mp$ SafeLang $(2) \mp$ SafeLang $(3) \mp \cdots$ $\operatorname{Lang}(0) \mp \operatorname{Lang}(1) \mp \operatorname{Lang}(2) \mp \operatorname{Lang}(3) \mp \cdots$

Are these hierarchies strict?

Another separator:
$T_{n}=$ tree with branches $a^{k} b^{\exp _{n}(k)} c$, where $\exp _{n}(k)=2^{2^{2}} \dot{\bullet}_{n}^{k}$
We have SafeTree $(n+1) \ni T_{n} \notin \operatorname{Tree}(n)$.
pumping lemma [Kartzow, P. 2012]

Expressivity questions

$$
\begin{aligned}
& \text { SafeTree }(0) \mp \operatorname{SafeTree}(1) \mp \operatorname{SafeTree}(2) \mp \operatorname{Safe} \operatorname{Tree}(3) \mp \cdots \\
& \operatorname{Tree}(0) \mp \operatorname{Tree}(1) ~ \mp \operatorname{Tree}(2) \quad \mp \operatorname{Tree}(3) \quad \mp \ldots
\end{aligned}
$$

SafeLang $(0) \mp$ SafeLang $(1) \mp$ SafeLang $(2) \mp$ SafeLang $(3) \mp \cdots$ $\operatorname{Lang}(0) \quad \mp \quad \operatorname{Lang}(1) \mp \quad \operatorname{Lang}(2) \mp \operatorname{Lang}(3) \quad \mp \cdots$

Are these hierarchies strict?

Another separator:
$T_{n}=$ tree with branches $a^{k} b^{\exp _{n}(k)} c$, where $\exp _{n}(k)=2^{2^{2}} \dot{\bullet}_{n}^{k}$
We have SafeTree $(n+1) \ni T_{n} \notin \operatorname{Tree}(n)$.
pumping lemma [Kartzow, P. 2012]
For languages we do not know:
SafeLang $(n+1) \ni\left\{b^{\text {exp }_{n}(k)}: k \in \mathbb{N}\right\} \stackrel{?}{\notin} \operatorname{Lang}(n)$.
Open problem: a pumping lemma for nondeterministic HORSes.

Expressivity questions

SafeTree $(0) \mp$ SafeTree $(1) \mp$ SafeTree $(2) ~ \varsubsetneqq$ SafeTree $(3) ~ \varsubsetneqq \cdots$

SafeLang $(0) \mp$ SafeLang $(1) \mp$ SafeLang $(2) \mp$ SafeLang $(3) \mp \cdots$

Is safety really a restriction?

Expressivity questions

$$
\begin{aligned}
& \text { SafeTree }(0) \mp \text { SafeTree }(1) \mp \text { SafeTree }(2) ~ \varsubsetneqq \text { SafeTree }(3) ~ \varsubsetneqq \cdots
\end{aligned}
$$

SafeLang $(0) \mp$ SafeLang $(1) \mp$ SafeLang $(2) \mp$ SafeLang $(3) \mp \cdots$ $\underset{\operatorname{Lang}(0)}{\| \text { II }} \mp \quad \operatorname{Lang}(1) \mp \operatorname{Lang(2)} \mp \underset{\operatorname{Lang}(3)}{\ln } \mp \ldots$

Is safety really a restriction?
For trees - yes.
Example: Urzyczyn's tree U
Tree(2) $\ni U \notin$ SafeTree(n) for every $n \quad$ [P. 2012]
For word languages - open problem (e.g. SafeLang(3) $\stackrel{?}{\mp}$ Lang(3))

Expressivity questions

Are these languages context-sensitive?

Expressivity questions

SafeLang $(0) \mp$ SafeLang $(1) \mp$ SafeLang $(2) \mp$ SafeLang $(3) \mp \cdots \subseteq$ CSens

Are these languages context-sensitive?
CSens = context-sensitive languages (type-1 in the Chomsky hierarchy)
SafeLang $(n) \subseteq$ CSens, for every $n \quad$ [Inaba, Maneth 2008]

Expressivity questions

Are these languages context-sensitive?
CSens = context-sensitive languages (type-1 in the Chomsky hierarchy)
SafeLang $(n) \subseteq$ CSens, for every $n \quad$ [Inaba, Maneth 2008]
Lang(3) \subseteq CSens
[Kobayashi, Inaba, Tsukada 2014]

Expressivity questions

Are these languages context-sensitive?
CSens = context-sensitive languages (type-1 in the Chomsky hierarchy)
SafeLang $(n) \subseteq$ CSens, for every $n \quad$ [Inaba, Maneth 2008]
Lang $(3) \subseteq$ CSens [Kobayashi, Inaba, Tsukada 2014]
Lang $(n) \stackrel{?}{\subseteq}$ CSens for $n \geq 4$ - open problem

Expressivity questions

Are these languages context-sensitive?

This inclusion is "almost obvious":

- Recall that CSens = languages recognized by a nondeterministic Turing machine in linear space.

Expressivity questions

Are these languages context-sensitive?
Lang $(n) \stackrel{?}{\subseteq}$ CSens for $n \geq 4$ - open problem
This inclusion is "almost obvious":

- Recall that CSens = languages recognized by a nondeterministic Turing machine in linear space.
- Consider the following algorithm: starting from the initial nonterminal, follow nondeterministically rules of the HORS, trying to derive the input word.

Expressivity questions

Are these languages context-sensitive?
Lang $(n) \stackrel{?}{\subseteq}$ CSens for $n \geq 4$ - open problem
This inclusion is "almost obvious":

- Recall that CSens = languages recognized by a nondeterministic Turing machine in linear space.
- Consider the following algorithm: starting from the initial nonterminal, follow nondeterministically rules of the HORS, trying to derive the input word.
- It works well if all intermediate terms are smaller than the derived word (= input word).
- The "only difficulty": describe/eliminate nonterminals that are "not productive", i.e., that do not increase the size of the derived word.

Algorithmic questions

Problem: MSO model-checking Input: MSO formula ϕ, HORS S
Output: does ϕ hold in the tree generated by S ?

Algorithmic questions

Problem: MSO model-checking Input: MSO formula ϕ, HORS S
 Output: does ϕ hold in the tree generated by S ?

Theorem: MSO model-checking is decidable.
[Knapik, Niwiński, Urzyczyn 2002] - safe schemes only
[Knapik, Niwiński, Urzyczyn, Walukiewicz 2005] - order-2 only
[Ong 2006] - via game semantics
[Hague, Murawski, Ong, Serre 2008] - via collapsible pushdown automata
[Broadbent, Ong 2009] - global model-checking
[Kobayashi, Ong 2009] - via a type system
[Broadbent, Carayol, Ong, Serre 2010] - MSO reflection
[Salvati, Walukiewicz 2011] - via Krivine machine
[Carayol, Serre 2012] - MSO selection
[Salvati, Walukiewicz 2015] - model for λ Y-calculus

Algorithmic questions

Problem: MSO model-checking Input: MSO formula ϕ, HORS S
Output: does ϕ hold in the tree generated by S ?

Theorem: MSO model-checking is decidable.
Complexity:

- nonelementary when $\phi \in \mathrm{MSO}$

Algorithmic questions

Problem: MSO model-checking Input: MSO formula ϕ, HORS S
Output: does ϕ hold in the tree generated by S ?

Theorem: MSO model-checking is decidable.
Complexity:

- nonelementary when $\phi \in \mathrm{MSO}$
- n-EXPTIME-complete when ϕ is given as a μ-calculus formula or a parity automaton, and the scheme is of order n

Algorithmic questions

Problem: MSO model-checking Input: MSO formula ϕ, HORS S
Output: does ϕ hold in the tree generated by S ?

Theorem: MSO model-checking is decidable.
Complexity:

- nonelementary when $\phi \in \mathrm{MSO}$
- n-EXPTIME-complete when ϕ is given as a μ-calculus formula or a parity automaton, and the scheme is of order n
- (n-1)-EXPTIME-complete for reachability properties (is " a " present in the tree)

Algorithmic questions

Problem: MSO model-checking Input: MSO formula ϕ, HORS S
Output: does ϕ hold in the tree generated by S ?
Theorem: MSO model-checking is decidable.
Complexity:

- nonelementary when $\phi \in \mathrm{MSO}$
- n-EXPTIME-complete when ϕ is given as a μ-calculus formula or a parity automaton, and the scheme is of order n
- (n-1)-EXPTIME-complete for reachability properties (is " a " present in the tree)
- polynomial when n, ϕ, and maximal arity of a nonterminal fixed

Algorithmic questions

Problem: MSO model-checking Input: MSO formula ϕ, HORS S
 Output: does ϕ hold in the tree generated by S ?

Theorem: MSO model-checking is decidable.
Complexity:

- nonelementary when $\phi \in \mathrm{MSO}$
- n-EXPTIME-complete when ϕ is given as a μ-calculus formula or a parity automaton, and the scheme is of order n
- ($n-1$)-EXPTIME-complete for reachability properties (is " a " present in the tree)
- polynomial when n, ϕ, and maximal arity of a nonterminal fixed
- despite high complexity, solvable in practice (see next talk)

Algorithmic questions

Theorem: MSO model-checking is decidable.
Idea of a proof
Input: alternating parity automaton A, HORS S
Question: does A accept the tree generated by S ?
We refine simple types into intersection types of the form:
o is refined to $q \in Q$ (a state)
$\alpha \rightarrow \beta$ is refined to $\left\{\left(\tau_{1}, \mathrm{~m}_{1}\right), \ldots,\left(\tau_{k}, \mathrm{~m}_{k}\right)\right\} \rightarrow \tau$ where τ_{i} refines α, τ refines β, m_{i} is a priority

Intuition: a function with type $\left\{\left(q_{1}, m_{1}\right),\left(q_{2}, m_{2}\right)\right\} \rightarrow q($ refining $o \rightarrow o)$:

Algorithmic questions

Theorem: MSO model-checking is decidable.
[Knapik, Niwiński, Urzyczyn 2002] - safe schemes only
[Knapik, Niwiński, Urzyczyn, Walukiewicz 2005] - order-2 only
[Ong 2006] - via game semantics
[Hague, Murawski, Ong, Serre 2008] - via collapsible pushdown automata
[Broadbent, Ong 2009] - global model-checking
[Kobayashi, Ong 2009] - via a type system ??
[Broadbent, Carayol, Ong, Serre 2010] MSO reflection
[Salvati, Walukiewicz 2011] - via Krivine machine
[Carayol, Serre 2012] - MSO selection
[Salvati, Walukiewicz 2015] - model for λ Y-calculus
MSO reflection
Input: MSO formula $\phi(x)$, HORS S
Output: HORS S' generating the same tree as S, where the nodes x in which $\phi(x)$ holds are marked.

Algorithmic questions

Theorem: MSO model-checking is decidable.
[Knapik, Niwiński, Urzyczyn 2002] - safe schemes only
[Knapik, Niwiński, Urzyczyn, Walukiewicz 2005] - order-2 only
[Ong 2006] - via game semantics
[Hague, Murawski, Ong, Serre 2008] - via collapsible pushdown automata
[Broadbent, Ong 2009] - global model-checking
[Kobayashi, Ong 2009] - via a type system ??
[Broadbent, Carayol, Ong, Serre 2010] -MSO reflection
[Salvati, Walukiewicz 2011] - via Krivine machine
[Carayol, Serre 2012] MSO selection ??
[Salvati, Walukiewicz 2015] - model for λY-calculus

MSO reflection

Input: MSO formula $\phi(x)$, HORS S
Output: HORS S' generating the same tree as S, where the nodes x in which $\phi(x)$ holds are marked.

MSO selection
Input: MSO formula $\phi(X)$, HORS S
Output: HORS S' generating the same tree as S with some nodes marked so that $\phi(X)$ holds for the set X of marked nodes.

Algorithmic questions

Theorem: MSO model-checking is decidable.
[Knapik, Niwiński, Urzyczyn 2002] - safe schemes only
[Knapik, Niwiński, Urzyczyn, Walukiewicz 2005] - order-2 only
[Ong 2006] - via game semantics
[Hague, Murawski, Ong, Serre 2008] - via collapsible pushdown automata
[Broadbent, Ong 2009] - global model-checking
[Kobayashi, Ong 2009] - via a type system ??
[Broadbent, Carayol, Ong, Serre 2010] -MSO reflection
[Salvati, Walukiewicz 2011] - via Krivine machine
[Carayol, Serre 2012] MSO selection??
[Salvati, Walukiewicz 2015] -model for λ Y-calculus

MSO reflection

Input: MSO formula $\phi(x)$, HORS S
Output: HORS S' generating the same tree as S, where the nodes x in which $\phi(x)$ holds are marked.

MSO selection
Input: MSO formula $\phi(X)$, HORS S
Output: HORS S' generating the same tree as S with some nodes marked so that $\phi(X)$ holds for the set X of marked nodes.

What is a model?

Input: MSO formula ϕ, HORS S
Output: a finite set D_{α} for every sort α

What is a model?

Input: MSO formula ϕ, HORS S
[M] depends on valuation of free variables of M

Output: a finite set D_{α} for every sort α, a value $[M] \in D_{\alpha}$ for every term M sort α

$\overline{M N}$

What is a model?

Input: MSO formula ϕ, MORS S
[M] depends on valuation of free variables of M

Output: a finite set D_{α} for every sort α,
a value $[M] \in D_{\alpha}$ for every term M sort α has to be compositional: $[M N]$ determined by $[M]$ and $[N]$.

$\overline{M N} \quad \bar{M} ' N$

$$
\begin{array}{llll}
N & \bar{M} & \bar{M}^{\prime} & \bar{M}^{\prime \prime}
\end{array}
$$

What is a model?

Input: MSO formula ϕ, HORS S
[M] depends on valuation of free variables of M

Output: a finite set D_{α} for every sort α,
a value $[M] \in D_{\alpha}$ for every term M sort α
has to be compositional: [MN] determined by [M] and [N].

(we enrich the scheme so that every
model \Rightarrow reflection $\boldsymbol{\wedge}$

What is a model?

Input: MSO formula ϕ, HORS S
[M] depends on valuation of free variables of M

Output: a finite set D_{α} for every sort α,
a value $[M] \in D_{\alpha}$ for every term M sort α
has to be compositional: $[M N]$ determined by $[M]$ and $[N]$.

(we enrich the scheme so that every
model \Rightarrow reflection $⿶$ term "knows" its value in the model)
transfer theorem

Input: MSO formula ϕ, HORS S
[M] depends on valuation of free variables of M

Output: a finite set D_{α} for every sort α,
a value $[M] \in D_{\alpha}$ for every term M sort α has to be compositional: $[M N]$ determined by $[M]$ and $[N]$.
model \Rightarrow reflection
transfer theorem
Basing on ϕ one can construct ϕ^{\prime} such that ϕ^{\prime} holds in a closed term M of sort o iff ϕ holds in the tree generated from M.

(special case: $M=$ starting nonterminal)

Beyond MSO?

Problem: WMSO+U model-checking Input: WMSO+U formula ϕ, HORS S
Output: does ϕ hold in the tree generated by S ?

Ongoing work: WMSO+U model-checking is decidable.
MSO+U = Weak MSO (set quantifiers range over finite sets only) + new quantifier U
where: UX. ϕ means that ϕ holds for some arbitrarily large finite sets X

Downward closure

Let L be a set of words. Its downward closure $L \downarrow$ contains all words that can be obtained from words in L by removing some letters.

$$
\text { E.g. } L=\{a b c\}, L \downarrow=\{e, a, b, c, a b, b c, a c, a b c\}
$$

Downward closure

Let L be a set of words. Its downward closure $L \downarrow$ contains all words that can be obtained from words in L by removing some letters.
E.g. $L=\{a b c\}, L \downarrow=\{e, a, b, c, a b, b c, a c, a b c\}$

Higman's lemma: the downward closure of any set L is a regular language.

Downward closure

Let L be a set of words. Its downward closure $L \downarrow$ contains all words that can be obtained from words in L by removing some letters.
E.g. $L=\{a b c\}, L \downarrow=\{e, a, b, c, a b, b c, a c, a b c\}$

Higman's lemma: the downward closure of any set L is a regular language.

Quest: Given a scheme S recognizing L, compute $L \downarrow$.

Downward closure

Let L be a set of words. Its downward closure $L \downarrow$ contains all words that can be obtained from words in L by removing some letters.
E.g. $L=\{a b c\}, L \downarrow=\{e, a, b, c, a b, b c, a c, a b c\}$

Higman's lemma: the downward closure of any set L is a regular language.

Quest: Given a scheme S recognizing L, compute $L \downarrow$.

- Trivial but useless: Compute a scheme S^{\prime} recognizing $L \downarrow$.

Downward closure

Let L be a set of words. Its downward closure $L \downarrow$ contains all words that can be obtained from words in L by removing some letters.
E.g. $L=\{a b c\}, L \downarrow=\{e, a, b, c, a b, b c, a c, a b c\}$

Higman's lemma: the downward closure of any set L is a regular language.

Quest: Given a scheme S recognizing L, compute $L \downarrow$.

- Trivial but useless: Compute a scheme S^{\prime} recognizing $L \downarrow$.
- Real quest: Compute an NFA A recognizing $L \downarrow$.

Downward closure

Let L be a set of words. Its downward closure $L \downarrow$ contains all words that can be obtained from words in L by removing some letters.
E.g. $L=\{a b c\}, L \downarrow=\{e, a, b, c, a b, b c, a c, a b c\}$

Higman's lemma: the downward closure of any set L is a regular language.

Quest: Given a scheme S recognizing L, compute $L \downarrow$.

- Trivial but useless: Compute a scheme S^{\prime} recognizing $L \downarrow$.
- Real quest: Compute an NFA A recognizing $L \downarrow$.

Theorem [Zetzsche 2015, Hague, Kochems, Ong 2016, Clemente, P., Salvati, Walukiewicz 2016]
Given a scheme S recognizing L, one can compute an NFA A recognizing $L \downarrow$.

Downward closure

Theorem
Given a scheme S recognizing L, one can compute an NFA A recognizing $L \downarrow$.
Some ideas:

- For every regular language K we check whether $L \downarrow=K$.

Downward closure

Theorem
Given a scheme S recognizing L, one can compute an NFA A recognizing $L \downarrow$.
Some ideas:

- For every regular language K we check whether $L \downarrow=K$.
- Easy to test whether $L \downarrow \subseteq K$, i.e. $L \downarrow \cap \bar{K}=0$.

Downward closure

Theorem

Given a scheme S recognizing L, one can compute an NFA A recognizing $L \downarrow$.

Some ideas:

- For every regular language K we check whether $L \downarrow=K$.
- Easy to test whether $L \downarrow \subseteq K$, i.e. $L \downarrow \cap \bar{K}=\varnothing$.
- $L \downarrow$ (so K as well) is necessarily a finite union of languages of the form $S_{i}=A_{0}^{*} a_{i}^{?} A_{1}^{*} a_{2}^{?} \ldots A_{k-1}^{*} a_{k}^{?} A_{k}^{*}$. It remains to check whether $S_{i} \subseteq L \downarrow$ for all i.

Downward closure

Theorem

Given a scheme S recognizing L, one can compute an NFA A recognizing $L \downarrow$.

Some ideas:

- For every regular language K we check whether $L \downarrow=K$.
- Easy to test whether $L \downarrow \subseteq K$, i.e. $L \downarrow \cap \bar{K}=\varnothing$.
- $L \downarrow$ (so K as well) is necessarily a finite union of languages of the form $S_{i}=A_{0}^{*} a_{1}^{?} A_{1}^{*} a_{2}^{?} \ldots A_{k-1}^{*} a_{k}^{?} A_{k}^{*}$. It remains to check whether $S_{i} \subseteq L \downarrow$ for all i.
- By transforming the scheme, this reduces to the diagonal problem:

Input: a scheme S recognizing $L \subseteq a_{1}^{*} a_{2}^{*} . . a_{k}^{*}$ (with different letters)
Question: does $L \downarrow=a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$?
(in other words: is it the case that for every n we have in L words with more than n appearances of every letter?)

This is the actual problem to be solved.

The diagonal problem

Input: a scheme S recognizing $L \subseteq a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$ (with different letters)
Question: does $L \downarrow=a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$?
How to solve it?
a scheme S of order n with step $1 \rightarrow$ a scheme S of order $n-1$ with a word written on a branch this word written in leaves

The diagonal problem

Input: a scheme S recognizing $L \subseteq a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$ (with different letters)
Question: does $L \downarrow=a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$?
How to solve it?
a scheme S of order n with step $1 \rightarrow$ a scheme S of order $n-1$ with a word written on a branch this word written in leaves

Example:

$S \rightarrow A e$	$S \rightarrow \wedge A e$
$A x \rightarrow a(A(b x))$	- $A \rightarrow \wedge a(\wedge A b))$
$\begin{aligned} & A x \rightarrow x \\ & \text { (rank 1: } a, b ; \text { rank } 0: e \text {) } \end{aligned}$	$\begin{aligned} & A \rightarrow \bullet \\ & (\text { rank 2: } \wedge \text {; rank } 0: a, b, e, \bullet \text {) } \end{aligned}$

The diagonal problem

Input: a scheme S recognizing $L \subseteq a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$ (with different letters)
Question: does $L \downarrow=a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$?
How to solve it?
a scheme S of order n with step $1 \rightarrow$ a scheme S of order $n-1$ with a word written on a branch this word written in leaves

Example: $S \rightarrow A e$

$$
A x \rightarrow a(A(b x)) \longrightarrow A \rightarrow \wedge a(\wedge A b))
$$

$$
A x \rightarrow x
$$

(rank 1: $a, b ;$ rank $0: e)$

Idea: 1) Observe that an argument of type o can be used at most once.

The diagonal problem

Input: a scheme S recognizing $L \subseteq a_{1}^{*} a_{2}^{*} . . a_{k}^{*}$ (with different letters)
Question: does $L \downarrow=a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$?
How to solve it?
a scheme S of order n with step $1 \longrightarrow$ a scheme S of order $n-1$ with a word written on a branch this word written in leaves

Example:

$$
\begin{array}{ll}
S \rightarrow A e & S \rightarrow \wedge A e \\
A x \rightarrow a(A(b x)) & A \rightarrow \wedge a(\wedge A b)) \\
A x \rightarrow x & A \rightarrow \bullet \\
(\text { rank 1:a,b; rank } 0: e) & A(\operatorname{rank} 2: \wedge ; \operatorname{rank} 0: a, b, e, \bullet)
\end{array}
$$

Idea: 1) Observe that an argument of type o can be used at most once.
2) All arguments of type o are dropped (\Rightarrow order decreases).
3) Every subterm $M N$ with N of type o can be replaced
a) either by $\wedge M N$ (when the argument is used in M),
b) or by M (when the argument is ignored in M).

The diagonal problem

Input: a scheme S recognizing $L \subseteq a_{1}^{*} a_{2}^{*} . . a_{k}^{*}$ (with different letters)
Question: does $L \downarrow=a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$?
How to solve it?
a scheme S of order n with step $1 \longrightarrow$ a scheme S of order $n-1$ with a word written on a branch this word written in leaves

Example: | $S \rightarrow A e$ | |
| :--- | :--- |
| $A x \rightarrow a(A(b x))$ | $S \rightarrow \wedge A e$ |
| $A x \rightarrow x$ | $A \rightarrow \wedge a(\wedge A b))$ |
| $($ rank 1: $a, b ;$ rank $0: e)$ | $A \rightarrow \bullet$ |
| | $($ rank 2: $\wedge ;$ rank $0: a, b, e, \bullet)$ |

Idea: 1) Observe that an argument of type o can be used at most once.
2) All arguments of type o are dropped (\Rightarrow order decreases).
3) Every subterm $M N$ with N of type o can be replaced
a) either by $\wedge M N$ (when the argument is used in M),
b) or by M (when the argument is ignored in M).
4) Additional work is required to choose correctly a) or b).

The diagonal problem

Input: a scheme S recognizing $L \subseteq a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$ (with different letters)
Question: does $L \downarrow=a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$?
How to solve it?
a scheme S of order n with step $1 \rightarrow$ a scheme S of order $n-1$ with
a word written on a branch this word written in leaves
step 2
a scheme S of order $n-1$ with a similar word written on a branch

The diagonal problem

Input: a scheme S recognizing $L \subseteq a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$ (with different letters)
Question: does $L \downarrow=a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$?
How to solve it?
a scheme S of order n with step $1 \rightarrow$ a scheme S of order $n-1$ with
a word written on a branch

```
step 2
```

a scheme S of order $n-1$ with a similar word written on a branch
Example:

Idea:

1) Choose (nondeterministically) only one branch.
2) For every removed subtree with a, write a new a just above.

The diagonal problem

Input: a scheme S recognizing $L \subseteq a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$ (with different letters)
Question: does $L \downarrow=a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$?
How to solve it?
a scheme S of order n with step $1, ~$ a scheme S of order $n-1$ with
a word written on a branch

step 2

a scheme S of order $n-1$ with a similar word written on a branch
Example:

Idea:

1) Choose (nondeterministically) only one branch.
2) For every removed subtree with a, write a new a just above.
3) The number of a 's decreases at most logarithmically, if the branch is chosen correctly (always go to the subtree with more a^{\prime} s).

The diagonal problem

Input: a scheme S recognizing $L \subseteq a_{1}^{*} a_{2}^{*} . . a_{k}^{*}$ (with different letters)
Question: does $L \downarrow=a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$?
How to solve it?
a scheme S of order n with step $1, ~$ a scheme S of order $n-1$ with
a word written on a branch

step 2

a scheme S of order $n-1$ with a similar "word" written on $|\Sigma|$ branches
Example:

Idea:

1) Choose (nondeterministically) only one branch.
2) For every removed subtree with a, write a new a just above.
3) The number of a 's decreases at most logarithmically,
if the branch is chosen correctly (always go to the subtree with more a 's).
We have to this for every letter $\Rightarrow|\Sigma|$ branches

The diagonal problem

Input: a scheme S recognizing $L \subseteq a_{1}^{*} a_{2}^{*} . . a_{k}^{*}$ (with different letters)
Question: does $L \downarrow=a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$?
How to solve it?
a scheme S of order n with step $1 \rightarrow$ a scheme S of order $n-1$ with a "word" written on $|\Sigma|$ branches this "word" written in leaves

```
                                    step 2
```

a scheme S of order $n-1$ with
a similar "word" written on $|\Sigma|$ branches

Example:

Idea:

1) Choose (nondeterministically) only one branch.
2) For every removed subtree with a, write a new a just above.
3) The number of a 's decreases at most logarithmically,
if the branch is chosen correctly (always go to the subtree with more a 's).
We have to this for every letter $\Rightarrow|\Sigma|$ branches

The diagonal problem

Input: a scheme S recognizing $L \subseteq a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$ (with different letters)
Question: does $L \downarrow=a_{1}^{*} a_{2}^{*} \ldots a_{k}^{*}$?
How to solve it?
a scheme S of order n with step 1, a scheme S of order $n-1$ with a "word" written on $|\Sigma|$ branches this "word" written in leaves step 2
a scheme S of order $n-1$ with a similar "word" written on $|\Sigma|$ branches

Repeat these steps until the order drops down to 0, and solve the diagonal problem for a regular language.

Downward closure

Theorem
Given a scheme S recognizing L, one can compute an NFA A recognizing $L \downarrow$.

Motivation?

0 . It gives a simple abstraction of the language recognized by a scheme.

Downward closure

Theorem

Given a scheme S recognizing L, one can compute an NFA A recognizing $L \downarrow$.

Motivation?

0 . It gives a simple abstraction of the language recognized by a scheme.

1. It is undecidable whether $L=A^{*}, L_{1}=L_{2}$, etc.

But we can check this approximately, by checking whether $L \downarrow=A^{*}, L_{1} \downarrow=L_{2} \downarrow$, etc.

Downward closure

Theorem

Given a scheme S recognizing L, one can compute an NFA A recognizing $L \downarrow$.

Motivation?

0 . It gives a simple abstraction of the language recognized by a scheme.

1. It is undecidable whether $L=A^{*}, L_{1}=L_{2}$, etc.

But we can check this approximately, by checking whether $L \downarrow=A^{*}, L_{1} \downarrow=L_{2} \downarrow$, etc.
2. The problem "is there a piecewise testable language (i.e., boolean combination of downward closed languages) containing L_{1} and not intersecting with L_{2} " reduces to the diagonal problem [Czerwiński, Martens, van Rooijen, Zeitoun 2015]. This gives a more refined approximation for disjointness of L_{1} and L_{2} than the test $L_{1} \downarrow \cap L_{2} \downarrow=\varnothing$.

Downward closure

Theorem

Given a scheme S recognizing L, one can compute an NFA A recognizing $L \downarrow$.

Motivation?

0 . It gives a simple abstraction of the language recognized by a scheme.

1. It is undecidable whether $L=A^{*}, L_{1}=L_{2}$, etc.

But we can check this approximately, by checking whether $L \downarrow=A^{*}, L_{1} \downarrow=L_{2} \downarrow$, etc.
2. The problem "is there a piecewise testable language (i.e., boolean combination of downward closed languages) containing L_{1} and not intersecting with L_{2} " reduces to the diagonal problem [Czerwiński, Martens, van Rooijen, Zeitoun 2015]. This gives a more refined approximation for disjointness of L_{1} and L_{2} than the test $L_{1} \downarrow \cap L_{2} \downarrow=0$.
3. Gonsider a system with one leader and some (unspeeified) number
-of contributors, that communicate via common register (read or write, without any locks). The reachability problem in such system reduces
to computation of the downward closure [ta Torre, Muscholl,
-Waltkiewiez 2015.f. (Yesterday's talk - downward closure no longer needed)

Downward closure

Theorem
Given a scheme S recognizing L, one can compute an NFA A recognizing $L \downarrow$.
Complexity?

Downward closure

Theorem

Given a scheme S recognizing L, one can compute an NFA A recognizing $L \downarrow$.

Complexity?

- The diagonal problem \Rightarrow probably ($n-1$)-EXPTIME for schemes of order n (ongoing work)

Downward closure

Theorem

Given a scheme S recognizing L, one can compute an NFA A recognizing $L \downarrow$.

Complexity?

- The diagonal problem \Rightarrow probably ($n-1$)-EXPTIME for schemes of order n (ongoing work)
- Computation of downward closure \Rightarrow open problem We need to bound the maximal size of the downward closure (a pumping lemma is needed).
- Lower bound: checking whether $L_{1} \downarrow=L_{2} \downarrow$ or $L_{1} \downarrow \subseteq L_{2} \downarrow$ is co-n-NEXPTIME-hard [Zetzsche 2016]

Downward closure

Theorem

Given a scheme S recognizing L, one can compute an NFA A recognizing $L \downarrow$.

Complexity?

- The diagonal problem \Rightarrow probably ($n-1$)-EXPTIME for schemes of order n (ongoing work)
- Computation of downward closure \Rightarrow open problem We need to bound the maximal size of the downward closure (a pumping lemma is needed).
- Lower bound: checking whether $L_{1} \downarrow=L_{2} \downarrow$ or $L_{1} \downarrow \subseteq L_{2} \downarrow$ is co-n-NEXPTIME-hard [Zetzsche 2016]

Another open problem: computation of downward closure for schemes recognizing languages of trees.
(By Kruskal's tree theorem the downward closure of any language of trees is a regular language.)

Thank you!

