The state equation for Petri Nets with Unordered Data

Piotr Hofman, Jerome Leroux, Patrick Totzke LSV. CNRS & ENS de Cachan Université de Bordeaux, France University of Edinburgh, UK

- Petri Nets and State equation.
- Petri Nets with Unordered Data.
- 3 State equations for UDPN.
- Ideas from the proof.
- Suture work.

Petri Nets

- Places
- Transitions

- Places
- Transitions
- Tokens, a Marking

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

[•] Places - Dimensions.

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

- Places Dimensions.
- Transitions Vectors t_i in \mathbb{Z}^n .

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

- Places Dimensions.
- Transitions Vectors t_i in \mathbb{Z}^n .
- the Marking a Vector m_0 in \mathbb{N}^n .

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

- Places Dimensions.
- Transitions Vectors t_i in \mathbb{Z}^n .
- the Marking a Vector m_0 in \mathbb{N}^n .
- Firing a transition Adding a vector to the marking, m' = m + t_k (the effect has to be positive i.e. m' in ℕⁿ).

• Dim = 7 (4 places +3 auxiliary)

	$\begin{pmatrix} 0 \end{pmatrix}$	
	2	
$m_0 =$	1	
	1	
	0	
	\ 0 /	

 $m_0 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}$ $\mathcal{T} = \left(\begin{array}{rrrrr} -1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{array} \right)$ ٩

$$m_0 = egin{pmatrix} 0 \ 1 \ 2 \ 1 \ 1 \ 0 \ 0 \end{pmatrix}$$
 $T = egin{pmatrix} -1 & 0 & 0 & 1 \ 0 & 1 & -1 & 0 \ 0 & 1 & -1 & 0 \ 0 & 1 & -1 & 0 \ 0 & 0 & 0 & 1 \ -1 & 1 & -1 & 1 \ 1 & -1 & 0 & 0 \ 0 & 0 & 1 & -1 \end{pmatrix}$

$$\left(\begin{array}{c} 0\\1\\2\\1\\1\\0\\0\end{array}\right)+\left(\begin{array}{c} 0\\-1\\0\\-1\\0\\1\end{array}\right)$$

•

$$m_{0} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
•

$$T = \begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} P_{1} & T_{1} & P_{2} \\ \bullet & \bullet & \bullet \\ P_{3} & T_{2} & P_{4} \\ \bullet & \bullet & \bullet \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$m_{0} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$T = \begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

 $m \longrightarrow m'$ if there is $t \in T$ such that m' = m + t.

The reachability relation is a transitive closure of \longrightarrow .

 $m \longrightarrow m'$ if there is $t \in T$ such that m' = m + t.

The reachability relation is a transitive closure of \longrightarrow .

Definition (State equation (for this talk))

Can $m_f - m_i$ be expressed as a sum $\sum_i t_i$

where $t_i \in T$?

 $m \longrightarrow m'$ if there is $t \in T$ such that m' = m + t.

The *reachability* relation is a transitive closure of \longrightarrow .

Definition (State equation (for this talk))

Can $m_f - m_i$ be expressed as a sum $\sum_i t_i$

where $t_i \in T$?

It is an invariant of the reachability relation.

 $m \longrightarrow m'$ if there is $t \in T$ such that m' = m + t.

The reachability relation is a transitive closure of \longrightarrow .

Definition (State equation (for this talk))

Can $m_f - m_i$ be expressed as a sum $\sum_i t_i$

where $t_i \in T$?

Lemma

If there is no solution for the state equation then m_f is not reachable from m_i .

Nets with Data

Nets with Tokens Which Carry Data, by Ranko Lazic, Thomas Newcomb, Joël Ouaknine, Andrew Roscoe, James Worrell.

Let $\ensuremath{\mathbb{D}}$ be an infinite data domain.

- Places Dimensions n.
- Marking a function from \mathbb{D} to \mathbb{N}^n .

- Places Dimensions n.
- Marking a finitely supported function from \mathbb{D} to \mathbb{N}^n .

- Places Dimensions n.
- Marking a finitely supported function from \mathbb{D} to \mathbb{N}^n .
- Transitions a set of finitely supported functions from \mathbb{D} to \mathbb{Z}^n .

- Places Dimensions n.
- Marking a finitely supported function from \mathbb{D} to \mathbb{N}^n .
- Transitions a set of finitely supported functions from D to Zⁿ which is closed under data permutation.

Definition (Data VAS)

- Places Dimensions n.
- Marking a finitely supported function from \mathbb{D} to \mathbb{N}^n .

 Transitions representation *T* - a finite set of finitely supported functions from D to Zⁿ.

- Places Dimensions n.
- Marking a finitely supported function from \mathbb{D} to \mathbb{N}^n .

- Transitions representation *T* a finite set of finitely supported functions from D to Zⁿ.
- Firing an abstract transition $t \in T$.
 - **1** Instantiate a transition $t' = t \circ \pi$.
 - 2 m' = m + t' and m' has to be a proper marking.

$$m_0 = \begin{pmatrix} 2\alpha + 3\beta \\ 1\gamma + 2\alpha \\ 4\beta \end{pmatrix} \quad t_1 = \begin{pmatrix} -1\alpha \\ 1\alpha \\ 0 \end{pmatrix} \quad t_2 = \begin{pmatrix} \beta \\ \alpha \\ -2\gamma \end{pmatrix}$$

$$m_{0} = \begin{pmatrix} 2\alpha + 3\beta \\ 1\gamma + 2\alpha \\ 4\beta \end{pmatrix} \quad t_{1} = \begin{pmatrix} -1\alpha \\ 1\alpha \\ 0 \end{pmatrix} \quad t_{2} = \begin{pmatrix} \beta \\ \alpha \\ -2\gamma \end{pmatrix}$$

Different instantiations: $t_{1} \circ \pi_{1} = \begin{pmatrix} -1\delta \\ 1\delta \\ 0 \end{pmatrix} t_{1} \circ \pi_{2} = \begin{pmatrix} -1\beta \\ 1\beta \\ 0 \end{pmatrix}$

$$m_0 = \begin{pmatrix} 2\alpha + 3\beta \\ 1\gamma + 2\alpha \\ 4\beta \end{pmatrix} \quad t_1 = \begin{pmatrix} -1\alpha \\ 1\alpha \\ 0 \end{pmatrix} \quad t_2 = \begin{pmatrix} \beta \\ \alpha \\ -2\gamma \end{pmatrix}$$

$$m_{0} + t_{1} \circ \pi_{1} = \begin{pmatrix} 2\alpha + 3\beta \\ 1\gamma + 2\alpha \\ 4\beta \end{pmatrix} + \begin{pmatrix} -1\delta \\ 1\delta \\ 0 \end{pmatrix} = \begin{pmatrix} 2\alpha + 3\beta - \delta \\ 1\gamma + 2\alpha + \delta \\ 4\beta \end{pmatrix}$$
$$BAD$$

Let n = 3

$$m_0 = \begin{pmatrix} 2\alpha + 3\beta \\ 1\gamma + 2\alpha \\ 4\beta \end{pmatrix} \quad t_1 = \begin{pmatrix} -1\alpha \\ 1\alpha \\ 0 \end{pmatrix} \quad t_2 = \begin{pmatrix} \beta \\ \alpha \\ -2\gamma \end{pmatrix}$$

$$m_0 + t_1 \circ \pi_2 = \left(egin{array}{c} 2lpha + 3eta\ 1\gamma + 2lpha\ 4eta\end{array}
ight) + \left(egin{array}{c} -1eta\ 1eta\ 0\end{array}
ight) = \left(egin{array}{c} 2lpha + 2eta\ 1\gamma + 2lpha + eta\ 4eta\end{array}
ight)$$

GOOD

Let n = 3

$$m_0 = \begin{pmatrix} 2\alpha + 3\beta \\ 1\gamma + 2\alpha \\ 4\beta \end{pmatrix} \quad t_1 = \begin{pmatrix} -1\alpha \\ 1\alpha \\ 0 \end{pmatrix} \quad t_2 = \begin{pmatrix} \beta \\ \alpha \\ -2\gamma \end{pmatrix}$$

$$m_0 + t_2 \circ \pi_3 = \begin{pmatrix} 2\alpha + 3\beta \\ 1\gamma + 2\alpha \\ 4\beta \end{pmatrix} + \begin{pmatrix} 1\alpha \\ 1\delta \\ -2\beta \end{pmatrix} = \begin{pmatrix} 3\alpha + 3\beta \\ 1\gamma + 2\alpha + \delta \\ 2\beta \end{pmatrix}$$

GOOD

State equation for UDPN

$$m_f - m_i = \sum_i \mathbf{t}_i \circ \pi_i$$

where $\mathbf{t}_{\mathbf{i}} \in T$.

State equation for UDPN

$$m_f - m_i = \sum_i \mathbf{t}_i \circ \pi_i$$

where $\mathbf{t}_{i} \in T$.

INPUT: a set of data vectors T, and a data vector **m**, binary encoded OUTPUT If **m** can be expressed as $\sum_{i} \mathbf{t}_{i} \circ \pi_{i}$?

Theorem

State equation problem for UDNP is in NP.

State equation for UDPN

$$m_f - m_i = \sum_i \mathbf{t}_i \circ \pi_i$$

where $\mathbf{t}_{i} \in \mathcal{T}$.

INPUT:	a set of data vectors \mathcal{T} , and a data vector
	m , binary encoded
OUTPUT	If m can be expressed as $\sum_i \mathbf{t_i} \circ \pi_i$?

Theorem

State equation problem for UDNP is in NP.

Exactly the same like the state equation for Petri Nets.

Problems and Ideas

Definition (Support)

Let supp $(\mathbf{x}) \stackrel{\text{def}}{=} \{ \alpha : \alpha \in \mathbb{D} \text{ and } \mathbf{x}(\alpha) \neq \mathbf{0} \}.$

Problem 1- unbounded number of data.

There is no bound on the number of data involved in the sum.

Definition (Support)

Let supp $(\mathbf{x}) \stackrel{\text{def}}{=} \{ \alpha : \alpha \in \mathbb{D} \text{ and } \mathbf{x}(\alpha) \neq \mathbf{0} \}.$

Problem 1- unbounded number of data.

Suppose $\mathbf{m} = \sum_{i=1}^{n} \mathbf{t}_{i} \circ \pi_{i}$, and $\mathbb{S} = \bigcup_{0 < i < n} supp(\mathbf{t}_{i} \circ \pi_{i})$.

What is the bound on |S|?

Definition (Support)

Let supp $(\mathbf{x}) \stackrel{\text{def}}{=} \{ \alpha : \alpha \in \mathbb{D} \text{ and } \mathbf{x}(\alpha) \neq \mathbf{0} \}.$

Problem 1- unbounded number of data.

Suppose $\mathbf{m} = \sum_{i=1}^{n} \mathbf{t}_{i} \circ \pi_{i}$, and $\mathbb{S} = \bigcup_{0 < i < n} supp(\mathbf{t}_{i} \circ \pi_{i})$.

What is the bound on |S|?

Lemma

 $|\mathbb{S}|$ can be bounded by polynomially.

Definition (Support)

Let supp $(\mathbf{x}) \stackrel{\text{def}}{=} \{ \alpha : \alpha \in \mathbb{D} \text{ and } \mathbf{x}(\alpha) \neq \mathbf{0} \}.$

Problem 1- unbounded number of data.

Suppose $\mathbf{m} = \sum_{i=1}^{n} \mathbf{t}_{i} \circ \pi_{i}$, and $\mathbb{S} = \bigcup_{0 < i < n} supp(\mathbf{t}_{i} \circ \pi_{i})$.

What is the bound on |S|?

Lemma

 $|\mathbb{S}|$ can be bounded by polynomially.

Problem 2- compression.

Suppose |S| is already bounded by a polynomial and we reduce problem to the state equation for a Petri Net. What will be the size of the Petri Net?

Definition (Support)

Let supp $(\mathbf{x}) \stackrel{\text{def}}{=} \{ \alpha : \alpha \in \mathbb{D} \text{ and } \mathbf{x}(\alpha) \neq \mathbf{0} \}.$

Problem 1- unbounded number of data.

Suppose $\mathbf{m} = \sum_{i=1}^{n} \mathbf{t}_{i} \circ \pi_{i}$, and $\mathbb{S} = \bigcup_{0 < i < n} supp(\mathbf{t}_{i} \circ \pi_{i})$.

What is the bound on |S|?

Lemma

 $|\mathbb{S}|$ can be bounded by polynomially.

Problem 2- compression.

Suppose |S| is already bounded by a polynomial and we reduce problem to the state equation for a Petri Net. What will be the size of the Petri Net?

Exponential!

Definition (*n*-histogram)

+

Suppose $\mathbb{S} \subset \mathbb{D}$ is a finite set. A function $H : \mathbb{S} \times \mathbb{D} \longrightarrow \mathbb{N}$ is a *n*-histogram if:

$$) \ \sum_{\beta \in \mathbb{D}} H(\alpha,\beta) = n \text{ for all } \alpha \in \mathbb{S}$$

2 $\sum_{\alpha \in \mathbb{S}} H(\alpha, \beta) \leq n$ for all $\beta \in \mathbb{D}$.

Histograms over the same set ${\mathbb S}$ can be added pointwise.

-	-	
0	0	
1	0	
0	0	
0	1	
0	0	
0	0	

0	0
0	0
0	0
0	0
1	0
0	1

0	0	
0	0	
0	0	
0	0	
1	0	
0	1	

+

0	0
1	0
0	0
1	1
2	0
0	3

Definition

For a given π and **t** we define 1-histogram $H^{supp(t)}_{\pi}$: $supp(t) \times \mathbb{D} \longrightarrow \mathbb{N}$ such that

 $H_{\pi}(\alpha,\beta) = 1 \iff \pi(\beta) = \alpha.$

Definition

For a given π and **t** we define 1-histogram $H^{supp(t)}_{\pi}$: $supp(t) \times \mathbb{D} \longrightarrow \mathbb{N}$ such that

$$H_{\pi}(lpha,eta)=1\iff \pi(eta)=lpha$$

Let

$$t = \begin{pmatrix} 2\alpha + 3\beta \\ 2\alpha \\ 4\beta \end{pmatrix} \quad \pi(\phi) \stackrel{\text{def}}{=} \begin{cases} \beta & \text{if } \phi = \alpha \\ \delta & \text{if } \phi = \beta \\ \alpha & \text{if } \phi = \delta \\ \phi & \text{otherwise} \end{cases} \quad H_{\pi}^{\text{supp}(t)} = \begin{bmatrix} \alpha & \beta \\ 0 & 1 & \alpha \\ 0 & 0 & \beta \\ 0 & 0 & \gamma \\ 1 & 0 & \delta \end{bmatrix}$$

Definition

For a given π and **t** we define 1-histogram $H_{\pi}^{supp(t)} : supp(t) \times \mathbb{D} \longrightarrow \mathbb{N}$ such that

$$H_{\pi}(lpha,eta)=1\iff \pi(eta)=lpha$$

Let

$$t = \begin{pmatrix} 2\alpha + 3\beta \\ 2\alpha \\ 4\beta \end{pmatrix} \quad \pi(\phi) \stackrel{\text{def}}{=} \begin{cases} \beta & \text{if } \phi = \alpha \\ \delta & \text{if } \phi = \beta \\ \alpha & \text{if } \phi = \delta \\ \phi & \text{otherwise} \end{cases} \quad H_{\pi}^{\text{supp}(t)} = \frac{\begin{vmatrix} \alpha & \beta \\ 0 & 1 & \alpha \\ 0 & 0 & \beta \\ \hline 0 & 0 & \beta \\ \hline 0 & 0 & \gamma \\ \hline 1 & 0 & \delta \end{cases}$$
$$t \circ \pi = \begin{pmatrix} 2\delta + 3\alpha \\ 2\delta \end{pmatrix}$$

 4α

Definition

For a given π and **t** we define 1-histogram $H_{\pi}^{supp(t)} : supp(t) \times \mathbb{D} \longrightarrow \mathbb{N}$ such that

$$H_{\pi}(lpha,eta)=1\iff \pi(eta)=lpha$$

Let

$$t = \begin{pmatrix} 2\alpha + 3\beta \\ 2\alpha \\ 4\beta \end{pmatrix} \quad \pi(\phi) \stackrel{\text{def}}{=} \begin{cases} \beta & \text{if } \phi = \alpha \\ \delta & \text{if } \phi = \beta \\ \alpha & \text{if } \phi = \delta \\ \phi & \text{otherwise} \end{cases} \quad H_{\pi}^{\text{supp}(t)} = \begin{bmatrix} \alpha & \beta \\ 0 & 1 & \alpha \\ 0 & 0 & \beta \\ 0 & 0 & \gamma \\ 1 & 0 & \delta \end{bmatrix}$$
$$t \circ \pi = \begin{pmatrix} 2\delta + 3\alpha \\ 2\delta \end{pmatrix}$$

 4α

Definition

For a given π and **t** we define 1-histogram $H_{\pi}^{supp(t)}$: $supp(t) \times \mathbb{D} \longrightarrow \mathbb{N}$ such that

$$H_{\pi}(lpha,eta)=1\iff \pi(eta)=lpha$$

Let

$$t = \begin{pmatrix} 2\alpha + 3\beta \\ 2\alpha \\ 4\beta \end{pmatrix} \quad t \circ \pi = \begin{pmatrix} 2\delta + 3\alpha \\ 2\delta \\ 4\alpha \end{pmatrix} \quad H_{\pi}^{supp(t)} = \begin{bmatrix} \alpha & \beta & \\ 0 & 1 & \alpha \\ 0 & 0 & \beta \\ 0 & 0 & \gamma \\ 1 & 0 & \delta \end{bmatrix}$$

Observe:

$$\mathbf{t} \circ \pi(\phi) = \sum_{\eta \in \textit{supp}(\mathbf{t})} \mathbf{t}(\eta) \cdot \mathcal{H}_{\pi}(\eta, \phi) ext{ for all } \phi \in \mathbb{D}.$$

Histograms - Theorem

Observe:

$$\mathbf{t} \circ \pi(\phi) = \sum_{\eta \in \textit{supp}(\mathbf{t})} \mathbf{t}(\eta) \cdot \mathcal{H}_{\pi}(\eta, \phi)$$
 for all $\phi \in \mathbb{D}$.

Definition: Homomorphism Eval

$$Eval(\mathbf{t}, H)(\phi) \stackrel{\text{def}}{=} \sum_{\eta \in supp(\mathbf{t})} \mathbf{t}(\eta) \cdot H(\eta, \phi) \quad \text{for all } \phi \in \mathbb{D}.$$

Definition: Homomorphism Eval

$$\textit{Eval}(\mathbf{t},\textit{H})(\phi) \stackrel{\text{def}}{=} \quad \sum_{\eta \in \textit{supp}(\mathbf{t})} \mathbf{t}(\eta) \cdot \textit{H}(\eta,\phi) \qquad \text{for all } \phi \in \mathbb{D}.$$

Theorem

A function $H : \mathbb{S} \times \mathbb{D} \to \mathbb{N}$ is an n-histogram if, and only if, H is the sum of n 1-histograms over \mathbb{S} .

Lemma

 $\mathbf{m}_{\mathbf{t}}$ can be expressed as $\sum_{i=1}^{n} \mathbf{t} \circ \pi_{i}$ iff

there is a *n*-histogram H such that $\mathbf{m}_{t} = Eval(\mathbf{t}, H)$.

Histograms - Theorem

Lemma

m can be expressed as $\sum_{\mathbf{t}\in\mathcal{T}}\sum_{i=1}^{n_{\mathbf{t}}}\mathbf{t}\circ\pi_{\mathbf{t},i}$ iff

there is a sequence of $n_t\text{-histogram}\ H_t$ for any $t\in T$ such that

$$\mathbf{m} = \sum_{\mathbf{t} \in \mathcal{T}} \textit{Eval}(\mathbf{t}, H_{\mathbf{t}}).$$

Lemma

m can be expressed as $\sum_{t \in T} \sum_{i=1}^{n_t} t \circ \pi_{t,i}$ iff

there is a sequence of $\mathit{n_t}\text{-}\mathit{histogram}$ $\mathit{H_t}$ for any $t \in \mathit{T}$ such that

$$\mathbf{m} = \sum_{\mathbf{t} \in \mathcal{T}} \textit{Eval}(\mathbf{t}, \textit{H}_{\mathbf{t}}).$$

Lemma (recall)

The set of data that appear in the solution, $\mathbb{T} \stackrel{\text{def}}{=} |\bigcup_{\mathbf{t} \in \mathcal{T}, i \in \mathbb{N}} \operatorname{supp} (\mathbf{t} \circ \pi_{\mathbf{t}, i})|$, can be bounded by polynomially.

Lemma

m can be expressed as $\sum_{t \in T} \sum_{i=1}^{n_t} t \circ \pi_{t,i}$ iff

there is a sequence of $n_t\text{-histogram}\ H_t$ for any $t\in T$ such that

$$\mathbf{m} = \sum_{\mathbf{t} \in \mathcal{T}} \textit{Eval}(\mathbf{t}, \textit{H}_{\mathbf{t}}).$$

Lemma (recall)

The set of data that appear in the solution, $\mathbb{T} \stackrel{\text{def}}{=} |\bigcup_{\mathbf{t} \in T, i \in \mathbb{N}} \operatorname{supp} (\mathbf{t} \circ \pi_{\mathbf{t},i})|$, can be bounded by polynomially.

• We can restrict histograms to $\mathbb{S} \times \mathbb{T} \longrightarrow \mathbb{N}$.

Lemma

m can be expressed as $\sum_{t \in T} \sum_{i=1}^{n_t} t \circ \pi_{t,i}$ iff

there is a sequence of $n_t\text{-histogram}\ H_t$ for any $t\in T$ such that

$$\mathbf{m} = \sum_{\mathbf{t} \in \mathcal{T}} \textit{Eval}(\mathbf{t}, H_{\mathbf{t}}).$$

Lemma (recall)

The set of data that appear in the solution, $\mathbb{T} \stackrel{\text{def}}{=} |\bigcup_{\mathbf{t} \in \mathcal{T}, i \in \mathbb{N}} \operatorname{supp} (\mathbf{t} \circ \pi_{\mathbf{t}, i})|$, can be bounded by polynomially.

- We can restrict histograms to $\mathbb{S} \times \mathbb{T} \longrightarrow \mathbb{N}$.
- Thus histograms *H*_t can be described using polynomially many numbers.

Lemma

m can be expressed as $\sum_{t \in T} \sum_{i=1}^{n_t} t \circ \pi_{t,i}$ iff

there is a sequence of $\mathit{n_t}\text{-}\mathit{histogram}$ $\mathit{H_t}$ for any $t \in \mathit{T}$ such that

$$\mathbf{m} = \sum_{\mathbf{t} \in \mathcal{T}} \textit{Eval}(\mathbf{t}, H_{\mathbf{t}}).$$

Lemma (recall)

The set of data that appear in the solution, $\mathbb{T} \stackrel{\text{def}}{=} |\bigcup_{\mathbf{t} \in \mathcal{T}, i \in \mathbb{N}} \operatorname{supp} (\mathbf{t} \circ \pi_{\mathbf{t}, i})|$, can be bounded by polynomially.

- We can restrict histograms to $\mathbb{S} \times \mathbb{T} \longrightarrow \mathbb{N}$.
- Thus histograms H_t can be described using polynomially many numbers.
- Guess values and check the sum. Incorrect as we don't have bound on numbers.

Lemma

m can be expressed as $\sum_{\mathbf{t}\in T} \sum_{i=1}^{n_{\mathbf{t}}} \mathbf{t} \circ \pi_{\mathbf{t},i}$ iff

there is a sequence of $\textit{n}_t\text{-}\textit{histogram}$ \textit{H}_t for any $t\in\textit{T}$ such that

$$\mathbf{m} = \sum_{\mathbf{t} \in \mathcal{T}} \textit{Eval}(\mathbf{t}, \textit{H}_{\mathbf{t}}).$$

Lemma (recall)

The set of data that appear in the solution, $\mathbb{T} \stackrel{\text{def}}{=} |\bigcup_{\mathbf{t} \in \mathcal{T}, i \in \mathbb{N}} \operatorname{supp}(\mathbf{t} \circ \pi_{\mathbf{t}, i})|$, can be bounded by polynomially.

- We can restrict histograms to $\mathbb{S} \times \mathbb{T} \longrightarrow \mathbb{N}$.
- Thus histograms *H*_t can be described using polynomially many numbers.
- We need to build a system of linear equations which incorporates conditions for being a histogram and proper *Eval*-uation

Future.

• Reachability for UDPN.

- Reachability for UDPN.
- Which algebraic techniques can be transfered to UDPN.

- Reachability for UDPN.
- Which algebraic techniques can be transfered to UDPN.
- What with the free-choice and the conflict-free Nets?

- Reachability for UDPN.
- Which algebraic techniques can be transfered to UDPN.
- What with the free-choice and the conflict-free Nets?
- What is the impact of a state equation if used to improve the coverability algorithm for *UDPN*.

- Reachability for UDPN.
- Which algebraic techniques can be transfered to UDPN.
- What with the free-choice and the conflict-free Nets?
- What is the impact of a state equation if used to improve the coverability algorithm for *UDPN*.
- How a state equation should look like for Petri Nets with ordered data, or a fresh datum operator.

- Reachability for UDPN.
- Which algebraic techniques can be transfered to UDPN.
- What with the free-choice and the conflict-free Nets?
- What is the impact of a state equation if used to improve the coverability algorithm for *UDPN*.
- How a state equation should look like for Petri Nets with ordered data, or a fresh datum operator.
- And many other questions...

- Reachability for UDPN.
- Which algebraic techniques can be transfered to UDPN.
- What with the free-choice and the conflict-free Nets?
- What is the impact of a state equation if used to improve the coverability algorithm for *UDPN*.
- How a state equation should look like for Petri Nets with ordered data, or a fresh datum operator.
- And many other questions...

Thank You.