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Petri nets

P1
T1 P2

P3
T2 P4

Places

Transitions

Tokens, a Marking

Firing a transition

Definition (VAS - equivalent formalism)

Places - Dimensions.

Transitions - Vectors ti in Zn.

the Marking - a Vector m0 in Nn.

Firing a transition - Adding a vector to the marking, m′ = m + tk (the

effect has to be positive i.e. m′ in Nn).

August 23, 2016 4 / 19



Petri nets

P1
T1 P2

P3
T2 P4

Places

Transitions

Tokens, a Marking

Firing a transition

Definition (VAS - equivalent formalism)

Places - Dimensions.

Transitions - Vectors ti in Zn.

the Marking - a Vector m0 in Nn.

Firing a transition - Adding a vector to the marking, m′ = m + tk (the

effect has to be positive i.e. m′ in Nn).

August 23, 2016 4 / 19



Petri nets

P1
T1 P2

P3
T2 P4

Places

Transitions

Tokens, a Marking

Firing a transition

Definition (VAS - equivalent formalism)

Places - Dimensions.

Transitions - Vectors ti in Zn.

the Marking - a Vector m0 in Nn.

Firing a transition - Adding a vector to the marking, m′ = m + tk (the

effect has to be positive i.e. m′ in Nn).

August 23, 2016 4 / 19



Petri nets

P1
T1 P2

P3
T2 P4

Places

Transitions

Tokens, a Marking

Firing a transition

Definition (VAS - equivalent formalism)

Places - Dimensions.

Transitions - Vectors ti in Zn.

the Marking - a Vector m0 in Nn.

Firing a transition - Adding a vector to the marking, m′ = m + tk (the

effect has to be positive i.e. m′ in Nn).

August 23, 2016 4 / 19



Petri nets

P1
T1 P2

P3
T2 P4

Places

Transitions

Tokens, a Marking

Firing a transition

Definition (VAS - equivalent formalism)

Places - Dimensions.

Transitions - Vectors ti in Zn.

the Marking - a Vector m0 in Nn.

Firing a transition - Adding a vector to the marking, m′ = m + tk (the

effect has to be positive i.e. m′ in Nn).

August 23, 2016 4 / 19



Petri nets

P1
T1 P2

P3
T2 P4

Places

Transitions

Tokens, a Marking

Firing a transition

Definition (VAS - equivalent formalism)

Places - Dimensions.

Transitions - Vectors ti in Zn.

the Marking - a Vector m0 in Nn.

Firing a transition - Adding a vector to the marking, m′ = m + tk (the

effect has to be positive i.e. m′ in Nn).

August 23, 2016 4 / 19



Petri nets

P1
T1 P2

P3
T2 P4

Places

Transitions

Tokens, a Marking

Firing a transition

Definition (VAS - equivalent formalism)

Places - Dimensions.

Transitions - Vectors ti in Zn.

the Marking - a Vector m0 in Nn.

Firing a transition - Adding a vector to the marking, m′ = m + tk (the

effect has to be positive i.e. m′ in Nn).

August 23, 2016 4 / 19



Petri nets

P1
T1 P2

P3
T2 P4

Places

Transitions

Tokens, a Marking

Firing a transition

Definition (VAS - equivalent formalism)

Places - Dimensions.

Transitions - Vectors ti in Zn.

the Marking - a Vector m0 in Nn.

Firing a transition - Adding a vector to the marking, m′ = m + tk (the

effect has to be positive i.e. m′ in Nn).

August 23, 2016 4 / 19



Petri nets

P1
T1 P2

P3
T2 P4

Places

Transitions

Tokens, a Marking

Firing a transition

Definition (VAS - equivalent formalism)

Places - Dimensions.

Transitions - Vectors ti in Zn.

the Marking - a Vector m0 in Nn.

Firing a transition - Adding a vector to the marking, m′ = m + tk (the

effect has to be positive i.e. m′ in Nn).

August 23, 2016 4 / 19



Petri nets

P1
T1 P2

P3
T2 P4

Places

Transitions

Tokens, a Marking

Firing a transition

Definition (VAS - equivalent formalism)

Places - Dimensions.

Transitions - Vectors ti in Zn.

the Marking - a Vector m0 in Nn.

Firing a transition - Adding a vector to the marking, m′ = m + tk (the

effect has to be positive i.e. m′ in Nn).

August 23, 2016 4 / 19



P1
T1 P2

P3
T2 P4



0
1
2
1
1
0
0



+


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−1
0
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0
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auxiliary)
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Reachability

Definition (Reachability)

m −→ m′ if there is t ∈ T such that m′ = m + t.

The reachability relation is a transitive closure of −→ .

Definition (State equation (for this talk))

Can mf −mi be expressed as a sum
∑

i ti

where ti ∈ T ?

It is an invariant of the reachability relation.
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Reachability

Definition (Reachability)

m −→ m′ if there is t ∈ T such that m′ = m + t.

The reachability relation is a transitive closure of −→ .

Definition (State equation (for this talk))

Can mf −mi be expressed as a sum
∑

i ti

where ti ∈ T ?

Lemma

If there is no solution for the state equation then mf is not reachable from mi .
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Nets with Data
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Ordered Data Petri Nets
Fωωω -complete

decidable coverability
and termination

Ordered Data Nets
Fωωω -complete

ν-Petri Nets
Fω2 - complete Unordered Data Nets

Fωω -complete

Affine Nets
Fω-complete

Unordered Data Petri Nets
F3 ≤ ? ≤ Fω2

Petri Nets
ExpSpace-complete

+whole-place

+
or
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place boundedness
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undecidable
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Nets with Tokens Which Carry Data, by Ranko Lazic, Thomas Newcomb, Joël
Ouaknine, Andrew Roscoe, James Worrell.
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Let D be an infinite data domain.

Definition (Data VAS)

Places - Dimensions n.

Marking - a function from D to Nn.

Transitions - a set of finitely supported functions from D to Zn.

Transitions representation T - a finite set of finitely supported functions
from D to Zn.

Firing an abstract transition t ∈ T .

1 Instantiate a transition - t ′ = t ◦ π.
2 m′ = m + t ′ and m′ has to be a proper marking.
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Example

Let n = 3

m0 =

 2α + 3β
1γ + 2α

4β

 t1 =

 −1α
1α
0

 t2 =

 β
α
−2γ



Different instantiations: t1 ◦ π1 =

 −1δ
1δ
0

 t1 ◦ π2 =

 −1β
1β
0


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 t1 =

 −1α
1α
0

 t2 =

 β
α
−2γ



m0 + t1 ◦ π1 =

 2α + 3β
1γ + 2α

4β

 +

 −1δ
1δ
0

 =

 2α + 3β − δ
1γ + 2α + δ

4β


BAD
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Example

Let n = 3
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 2α + 3β
1γ + 2α

4β

 t1 =

 −1α
1α
0

 t2 =

 β
α
−2γ



m0 + t2 ◦ π3 =

 2α + 3β
1γ + 2α

4β

 +

 1α
1δ
−2β

 =

 3α + 3β
1γ + 2α + δ

2β



GOOD
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State equation for UDPN

mf −mi =
∑
i

ti ◦ πi

where ti ∈ T .

INPUT: a set of data vectors T , and a data vector
m, binary encoded

OUTPUT If m can be expressed as
∑

i ti ◦ πi ?

Theorem

State equation problem for UDNP is in NP.

Exactly the same like the state equation for Petri Nets.
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Problems and Ideas
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Idea: Problems.

Definition (Support)

Let supp (x)
def
= {α : α ∈ D and x(α) 6= 0}.

Problem 1- unbounded number of data.

There is no bound on the number of data involved in the sum.

Lemma

|S| can be bounded by polynomially.

Problem 2- compression.

Suppose |S| is already bounded by a polynomial and we reduce problem to the
state equation for a Petri Net. What will be the size of the Petri Net?

Exponential!
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The main combinatorial insight.

Definition (n-histogram)

Suppose S ⊂ D is a finite set. A function H : S× D−→N is a n-histogram if:

1
∑
β∈D H(α, β) = n for all α ∈ S,

2
∑
α∈S H(α, β) ≤ n for all β ∈ D.

Histograms over the same set S can be added pointwise.
0 0

1 0

0 0

0 1

0 0

0 0

+

0 0

0 0

0 0

1 0

0 0

0 1

+

0 0

0 0

0 0

0 0

1 0

0 1

+

0 0

0 0

0 0

0 0

1 0

0 1

=

0 0

1 0

0 0

1 1

2 0

0 3

August 23, 2016 14 / 19



A relation between 1-histogram and ti ◦ πi .

Definition

For a given π and t we define 1-histogram H
supp(t)
π : supp (t)× D−→N such

that
Hπ(α, β) = 1 ⇐⇒ π(β) = α.

Let

t =

 2α + 3β
2α
4β

 π(φ)
def
=


β if φ = α

δ if φ = β

α if φ = δ

φ otherwise

H
supp(t)
π =

α β

0 1 α

0 0 β

0 0 γ

1 0 δ

t ◦ π =

 2δ + 3α
2δ
4α


Observe:

t ◦ π(φ) =
∑

η∈supp(t)

t(η) · Hπ(η, φ) for all φ ∈ D.
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Histograms - Theorem

Observe:
t ◦ π(φ) =

∑
η∈supp(t) t(η) · Hπ(η, φ) for all φ ∈ D.

Theorem

A function H : S× D→ N is an n-histogram if, and only if, H is the sum of n
1-histograms over S.

Lemma

mt can be expressed as
∑n

i=1 t ◦ πi iff

there is a n-histogram H such that mt = Eval(t,H).
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Histograms - Theorem

Lemma

m can be expressed as
∑

t∈T

∑nt
i=1 t ◦ πt,i iff

there is a sequence of nt-histogram Ht for any t ∈ T such that

m =
∑
t∈T

Eval(t,Ht).

Lemma (recall)

The set of data that appear in the solution, T def
= |

⋃
t∈T ,i∈N supp (t ◦ πt,i )|, can

be bounded by polynomially.

We can restrict histograms to S× T−→N.

Thus histograms Ht can be described using polynomially many numbers.

Guess values and check the sum.

Incorrect as we don’t have bound on
numbers.
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Histograms

Lemma
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Lemma (recall)

The set of data that appear in the solution, T def
= |

⋃
t∈T ,i∈N supp (t ◦ πt,i )|, can

be bounded by polynomially.

We can restrict histograms to S× T−→N.

Thus histograms Ht can be described using polynomially many numbers.

We need to build a system of linear equations which incorporates
conditions for being a histogram and proper Eval-uation
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Future.
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Reachability for UDPN.

Which algebraic techniques can be transfered to UDPN.

What with the free-choice and the conflict-free Nets?

What is the impact of a state equation if used to improve the
coverability algorithm for UDPN.

How a state equation should look like for Petri Nets with
ordered data, or a fresh datum operator.

And many other questions...

Thank You.
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