The state equation for Petri Nets with Unordered Data

Piotr Hofman, Jerome Leroux, Patrick Totzke LSV, CNRS \& ENS de Cachan Université de Bordeaux, France
University of Edinburgh, UK

Outline

(1) Petri Nets and State equation.
(2) Petri Nets with Unordered Data.
(3) State equations for UDPN.
(1) Ideas from the proof.
(5) Future work.

Petri Nets

Petri nets

- Places

- Transitions

Petri nets

- Places
- Transitions
- Tokens, a Marking

Petri nets

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

Petri nets

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

Petri nets

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

Petri nets

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

Definition (VAS - equivalent formalism)

Petri nets

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

Definition (VAS - equivalent formalism)

- Places - Dimensions.

Petri nets

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

Definition (VAS - equivalent formalism)

- Places - Dimensions.
- Transitions - Vectors t_{i} in \mathbb{Z}^{n}.

Petri nets

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

Definition (VAS - equivalent formalism)

- Places - Dimensions.
- Transitions - Vectors t_{i} in \mathbb{Z}^{n}.
- the Marking - a Vector m_{0} in \mathbb{N}^{n}.

- Places
- Transitions
- Tokens, a Marking
- Firing a transition

Definition (VAS - equivalent formalism)

- Places - Dimensions.
- Transitions - Vectors t_{i} in \mathbb{Z}^{n}.
- the Marking - a Vector m_{0} in \mathbb{N}^{n}.
- Firing a transition - Adding a vector to the marking, $m^{\prime}=m+t_{k}$ (the effect has to be positive i.e. m^{\prime} in \mathbb{N}^{n}).

- $\operatorname{Dim}=7$ (4 places +3 auxiliary)

$$
m_{0}=\left(\begin{array}{l}
0 \\
1 \\
2 \\
1 \\
1 \\
0 \\
0
\end{array}\right)
$$

$$
m_{0}=\left(\begin{array}{l}
0 \\
1 \\
2 \\
1 \\
1 \\
0 \\
0
\end{array}\right)
$$

$$
T=\left(\begin{array}{cccc}
-1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
0 \\
1 \\
2 \\
1 \\
1 \\
0 \\
0
\end{array}\right) \\
& m_{0}=\left(\begin{array}{c}
\left(\begin{array}{c}
0 \\
1 \\
2 \\
1 \\
1 \\
0 \\
0
\end{array}\right) \\
\\
\\
\\
\hline 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
0 \\
1 \\
2 \\
1 \\
1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
-1 \\
-1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
2 \\
1 \\
1 \\
0 \\
0
\end{array}\right) \\
& \\
& \\
& \\
& \\
& \hline 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \\
& \left(\begin{array}{l}
0 \\
1 \\
2 \\
1 \\
1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
-1 \\
-1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{c}
1 \\
0 \\
0 \\
1 \\
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1 \\
2 \\
1 \\
0 \\
0
\end{array}\right) \\
& m_{0}=\left(\begin{array}{l}
0 \\
1 \\
2 \\
1 \\
1 \\
0 \\
0
\end{array}\right) \\
& T=\left(\begin{array}{cccc}
-1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right)
\end{aligned}
$$

Reachability

Definition (Reachability)

$m \longrightarrow m^{\prime}$ if there is $t \in T$ such that $m^{\prime}=m+t$.
The reachability relation is a transitive closure of \longrightarrow.

Reachability

Definition (Reachability)

$m \longrightarrow m^{\prime}$ if there is $t \in T$ such that $m^{\prime}=m+t$.
The reachability relation is a transitive closure of \longrightarrow.

Definition (State equation (for this talk))

$$
\text { Can } m_{f}-m_{i} \text { be expressed as a sum } \sum_{i} t_{i}
$$

Reachability

Definition (Reachability)

$m \longrightarrow m^{\prime}$ if there is $t \in T$ such that $m^{\prime}=m+t$.
The reachability relation is a transitive closure of \longrightarrow.

Definition (State equation (for this talk))

$$
\text { Can } m_{f}-m_{i} \text { be expressed as a sum } \sum_{i} t_{i}
$$

It is an invariant of the reachability relation.

Reachability

Definition (Reachability)

$m \longrightarrow m^{\prime}$ if there is $t \in T$ such that $m^{\prime}=m+t$.
The reachability relation is a transitive closure of \longrightarrow.

Definition (State equation (for this talk))

$$
\text { Can } m_{f}-m_{i} \text { be expressed as a sum } \sum_{i} t_{i}
$$

Lemma

If there is no solution for the state equation then m_{f} is not reachable from m_{i}.

Nets with Data

Nets with Tokens Which Carry Data, by Ranko Lazic, Thomas Newcomb, Joël Ouaknine, Andrew Roscoe, James Worrell.

+ whole-place Ordered Data Nets
, Ordered Data Petri Nets

decidable
place boundedness

Let \mathbb{D} be an infinite data domain.

Let \mathbb{D} be an infinite data domain.

Definition (Data VAS)

- Places - Dimensions n.
- Marking - a function from \mathbb{D} to \mathbb{N}^{n}.

Let \mathbb{D} be an infinite data domain.

Definition (Data VAS)

- Places - Dimensions n.
- Marking - a finitely supported function from \mathbb{D} to \mathbb{N}^{n}.

Let \mathbb{D} be an infinite data domain.

Definition (Data VAS)

- Places - Dimensions n.
- Marking - a finitely supported function from \mathbb{D} to \mathbb{N}^{n}.
- Transitions - a set of finitely supported functions from \mathbb{D} to \mathbb{Z}^{n}.

Let \mathbb{D} be an infinite data domain.

Definition (Data VAS)

- Places - Dimensions n.
- Marking - a finitely supported function from \mathbb{D} to \mathbb{N}^{n}.
- Transitions - a set of finitely supported functions from \mathbb{D} to \mathbb{Z}^{n} which is closed under data permutation.

Let \mathbb{D} be an infinite data domain.

Definition (Data VAS)

- Places - Dimensions n.
- Marking - a finitely supported function from \mathbb{D} to \mathbb{N}^{n}.
- Transitions representation T - a finite set of finitely supported functions from \mathbb{D} to \mathbb{Z}^{n}.

Let \mathbb{D} be an infinite data domain.

Definition (Data VAS)

- Places - Dimensions n.
- Marking - a finitely supported function from \mathbb{D} to \mathbb{N}^{n}.
- Transitions representation T - a finite set of finitely supported functions from \mathbb{D} to \mathbb{Z}^{n}.
- Firing an abstract transition $t \in T$.
(1) Instantiate a transition - $t^{\prime}=t \circ \pi$.
(2) $m^{\prime}=m+t^{\prime}$ and m^{\prime} has to be a proper marking.

Example

Let $n=3$

Example

Let $n=3$

$$
m_{0}=\left(\begin{array}{c}
2 \alpha+3 \beta \\
1 \gamma+2 \alpha \\
4 \beta
\end{array}\right) \quad t_{1}=\left(\begin{array}{c}
-1 \alpha \\
1 \alpha \\
0
\end{array}\right) \quad t_{2}=\left(\begin{array}{c}
\beta \\
\alpha \\
-2 \gamma
\end{array}\right)
$$

Example

Let $n=3$

$$
m_{0}=\left(\begin{array}{c}
2 \alpha+3 \beta \\
1 \gamma+2 \alpha \\
4 \beta
\end{array}\right) \quad t_{1}=\left(\begin{array}{c}
-1 \alpha \\
1 \alpha \\
0
\end{array}\right) \quad t_{2}=\left(\begin{array}{c}
\beta \\
\alpha \\
-2 \gamma
\end{array}\right)
$$

Different instantiations: $t_{1} \circ \pi_{1}=\left(\begin{array}{c}-1 \delta \\ 1 \delta \\ 0\end{array}\right) t_{1} \circ \pi_{2}=\left(\begin{array}{c}-1 \beta \\ 1 \beta \\ 0\end{array}\right)$

Example

Let $n=3$

$$
m_{0}=\left(\begin{array}{c}
2 \alpha+3 \beta \\
1 \gamma+2 \alpha \\
4 \beta
\end{array}\right) \quad t_{1}=\left(\begin{array}{c}
-1 \alpha \\
1 \alpha \\
0
\end{array}\right) \quad t_{2}=\left(\begin{array}{c}
\beta \\
\alpha \\
-2 \gamma
\end{array}\right)
$$

$$
\begin{gathered}
m_{0}+t_{1} \circ \pi_{1}=\left(\begin{array}{c}
2 \alpha+3 \beta \\
1 \gamma+2 \alpha \\
4 \beta
\end{array}\right)+\left(\begin{array}{c}
-1 \delta \\
1 \delta \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \alpha+3 \beta-\delta \\
1 \gamma+2 \alpha+\delta \\
4 \beta
\end{array}\right) \\
\text { BAD }
\end{gathered}
$$

Example

Let $n=3$

$$
m_{0}=\left(\begin{array}{c}
2 \alpha+3 \beta \\
1 \gamma+2 \alpha \\
4 \beta
\end{array}\right) \quad t_{1}=\left(\begin{array}{c}
-1 \alpha \\
1 \alpha \\
0
\end{array}\right) \quad t_{2}=\left(\begin{array}{c}
\beta \\
\alpha \\
-2 \gamma
\end{array}\right)
$$

$$
m_{0}+t_{1} \circ \pi_{2}=\left(\begin{array}{c}
2 \alpha+3 \beta \\
1 \gamma+2 \alpha \\
4 \beta
\end{array}\right)+\left(\begin{array}{c}
-1 \beta \\
1 \beta \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \alpha+2 \beta \\
1 \gamma+2 \alpha+\beta \\
4 \beta
\end{array}\right)
$$

GOOD

Example

Let $n=3$

$$
m_{0}=\left(\begin{array}{c}
2 \alpha+3 \beta \\
1 \gamma+2 \alpha \\
4 \beta
\end{array}\right) \quad t_{1}=\left(\begin{array}{c}
-1 \alpha \\
1 \alpha \\
0
\end{array}\right) \quad t_{2}=\left(\begin{array}{c}
\beta \\
\alpha \\
-2 \gamma
\end{array}\right)
$$

$$
m_{0}+t_{2} \circ \pi_{3}=\left(\begin{array}{c}
2 \alpha+3 \beta \\
1 \gamma+2 \alpha \\
4 \beta
\end{array}\right)+\left(\begin{array}{c}
1 \alpha \\
1 \delta \\
-2 \beta
\end{array}\right)=\left(\begin{array}{c}
3 \alpha+3 \beta \\
1 \gamma+2 \alpha+\delta \\
2 \beta
\end{array}\right)
$$

GOOD

State equation for UDPN

$$
m_{f}-m_{i}=\sum_{i} \mathbf{t}_{\mathbf{i}} \circ \pi_{i}
$$

where $\mathbf{t}_{\mathbf{i}} \in T$.

State equation for UDPN

$$
m_{f}-m_{i}=\sum_{i} \mathbf{t}_{\mathbf{i}} \circ \pi_{i}
$$

INPUT: a set of data vectors T, and a data vector m, binary encoded

OUTPUT
If \mathbf{m} can be expressed as $\sum_{i} \mathbf{t}_{\mathbf{i}} \circ \pi_{i}$?

Theorem

State equation problem for UDNP is in NP.

State equation for UDPN

$$
m_{f}-m_{i}=\sum_{i} \mathbf{t}_{\mathbf{i}} \circ \pi_{i}
$$

INPUT: a set of data vectors T, and a data vector m, binary encoded

OUTPUT If \mathbf{m} can be expressed as $\sum_{i} \mathbf{t}_{\mathbf{i}} \circ \pi_{i}$?

Theorem

State equation problem for UDNP is in NP.
Exactly the same like the state equation for Petri Nets.

Problems and Ideas

> Definition (Support)
> Let $\operatorname{supp}(\mathbf{x}) \stackrel{\text { def }}{=}\{\alpha: \alpha \in \mathbb{D}$ and $\mathbf{x}(\alpha) \neq 0\}$.

Problem 1- unbounded number of data.
There is no bound on the number of data involved in the sum.

Definition (Support)

Let $\operatorname{supp}(\mathbf{x}) \stackrel{\text { def }}{=}\{\alpha: \alpha \in \mathbb{D}$ and $\mathbf{x}(\alpha) \neq 0\}$.

Problem 1- unbounded number of data.
Suppose $\mathbf{m}=\sum_{i=1}^{n} \mathbf{t}_{\mathbf{i}} \circ \pi_{i}$, and $\mathbb{S}=\bigcup_{0<i<n} \operatorname{supp}\left(\mathbf{t}_{\mathbf{i}} \circ \pi_{i}\right)$.
What is the bound on $|\mathbb{S}|$?

Definition (Support)

Let $\operatorname{supp}(\mathbf{x}) \stackrel{\text { def }}{=}\{\alpha: \alpha \in \mathbb{D}$ and $\mathbf{x}(\alpha) \neq 0\}$.

Problem 1- unbounded number of data.
Suppose $\mathbf{m}=\sum_{i=1}^{n} \mathbf{t}_{\mathbf{i}} \circ \pi_{i}$, and $\mathbb{S}=\bigcup_{0<i<n} \operatorname{supp}\left(\mathbf{t}_{\mathbf{i}} \circ \pi_{i}\right)$.
What is the bound on $|\mathbb{S}|$?

Lemma

|S| can be bounded by polynomially.

Idea: Problems.

Definition (Support)

Let $\operatorname{supp}(\mathbf{x}) \stackrel{\text { def }}{=}\{\alpha: \alpha \in \mathbb{D}$ and $\mathbf{x}(\alpha) \neq 0\}$.

Problem 1- unbounded number of data.
Suppose $\mathbf{m}=\sum_{i=1}^{n} \mathbf{t}_{\mathbf{i}} \circ \pi_{i}$, and $\mathbb{S}=\bigcup_{0<i<n} \operatorname{supp}\left(\mathbf{t}_{\mathbf{i}} \circ \pi_{i}\right)$.

What is the bound on $|\mathbb{S}|$?

Lemma

$|\mathbb{S}|$ can be bounded by polynomially.

Problem 2- compression.
Suppose $|\mathbb{S}|$ is already bounded by a polynomial and we reduce problem to the state equation for a Petri Net. What will be the size of the Petri Net?

Idea: Problems.

Definition (Support)

Let $\operatorname{supp}(\mathbf{x}) \stackrel{\text { def }}{=}\{\alpha: \alpha \in \mathbb{D}$ and $\mathbf{x}(\alpha) \neq 0\}$.

Problem 1- unbounded number of data.
Suppose $\mathbf{m}=\sum_{i=1}^{n} \mathbf{t}_{\mathbf{i}} \circ \pi_{i}$, and $\mathbb{S}=\bigcup_{0<i<n} \operatorname{supp}\left(\mathbf{t}_{\mathbf{i}} \circ \pi_{i}\right)$.

What is the bound on $|\mathbb{S}|$?

Lemma

$|\mathbb{S}|$ can be bounded by polynomially.

Problem 2- compression.
Suppose $|\mathbb{S}|$ is already bounded by a polynomial and we reduce problem to the state equation for a Petri Net. What will be the size of the Petri Net?

Exponential!

The main combinatorial insight.

Definition (n-histogram)

Suppose $\mathbb{S} \subset \mathbb{D}$ is a finite set. A function $H: \mathbb{S} \times \mathbb{D} \longrightarrow \mathbb{N}$ is a n-histogram if:
(1) $\sum_{\beta \in \mathbb{D}} H(\alpha, \beta)=n$ for all $\alpha \in \mathbb{S}$,
(2) $\sum_{\alpha \in \mathbb{S}} H(\alpha, \beta) \leq n$ for all $\beta \in \mathbb{D}$.

Histograms over the same set \mathbb{S} can be added pointwise.

0	0
1	0
0	0
0	1
0	0
0	0

0	0
0	0
0	0
1	0
0	0
0	1

0	0
0	0
0	0
0	0
1	0
0	1

$+$| 0 | 0 |
| :---: | :---: |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 1 | 0 |
| 0 | 1 |

$=$| 0 | 0 |
| :--- | :--- |
| 1 | 0 |
| 0 | 0 |
| 1 | 1 |
| 2 | 0 |
| 0 | 3 |

A relation between 1 -histogram and $t_{i} \circ \pi_{i}$.

Definition

For a given π and \mathbf{t} we define 1-histogram $H_{\pi}^{\text {supp }(\mathbf{t})}: \operatorname{supp}(\mathbf{t}) \times \mathbb{D} \longrightarrow \mathbb{N}$ such that

$$
H_{\pi}(\alpha, \beta)=1 \Longleftrightarrow \pi(\beta)=\alpha
$$

A relation between 1 -histogram and $t_{i} \circ \pi_{i}$.

Definition

For a given π and \mathbf{t} we define 1-histogram $H_{\pi}^{\text {supp }(\mathbf{t})}: \operatorname{supp}(\mathbf{t}) \times \mathbb{D} \longrightarrow \mathbb{N}$ such that

$$
H_{\pi}(\alpha, \beta)=1 \Longleftrightarrow \pi(\beta)=\alpha
$$

Let

$$
t=\left(\begin{array}{c}
2 \alpha+3 \beta \\
2 \alpha \\
4 \beta
\end{array}\right) \pi(\phi) \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
\beta & \text { if } \phi=\alpha \\
\delta & \text { if } \phi=\beta \\
\alpha & \text { if } \phi=\delta \\
\phi & \text { otherwise }
\end{array} \quad H_{\pi}^{\text {supp }(\mathbf{t})}=\begin{array}{|c|c|c}
\hline \alpha & \beta & \\
\hline 0 & 1 & \alpha \\
\hline 0 & 0 & \beta \\
\hline 0 & 0 & \gamma \\
\hline 1 & 0 & \delta
\end{array}\right.
$$

A relation between 1 -histogram and $t_{i} \circ \pi_{i}$.

Definition

For a given π and \mathbf{t} we define 1-histogram $H_{\pi}^{\text {supp }(\mathbf{t})}: \operatorname{supp}(\mathbf{t}) \times \mathbb{D} \longrightarrow \mathbb{N}$ such that

$$
H_{\pi}(\alpha, \beta)=1 \Longleftrightarrow \pi(\beta)=\alpha
$$

Let

$$
\begin{aligned}
& t=\left(\begin{array}{c}
2 \alpha+3 \beta \\
2 \alpha \\
4 \beta
\end{array}\right) \pi(\phi) \stackrel{\text { def }}{=}\left\{\begin{array}{ll|l|l|l}
\beta & \text { if } \phi=\alpha \\
\delta & \text { if } \phi=\beta \\
\alpha & \text { if } \phi=\delta \\
\phi & \text { otherwise }
\end{array} \quad H_{\pi}^{\text {supp }(\mathbf{t})}=\begin{array}{|c|c|c}
\hline 0 & \beta & \\
\hline 0 & 0 & \beta \\
\hline & 0 & 0 \\
\hline & 1 & 0 \\
\hline
\end{array}\right. \\
& t \circ \pi=\left(\begin{array}{c}
2 \delta+3 \alpha \\
2 \delta \\
4 \alpha
\end{array}\right)
\end{aligned}
$$

A relation between 1 -histogram and $t_{i} \circ \pi_{i}$.

Definition

For a given π and \mathbf{t} we define 1-histogram $H_{\pi}^{\text {supp }(\mathbf{t})}: \operatorname{supp}(\mathbf{t}) \times \mathbb{D} \longrightarrow \mathbb{N}$ such that

$$
H_{\pi}(\alpha, \beta)=1 \Longleftrightarrow \pi(\beta)=\alpha
$$

Let

$$
\begin{gathered}
t=\left(\begin{array}{c}
2 \alpha+3 \beta \\
2 \alpha \\
4 \beta
\end{array}\right) \\
t(\phi) \stackrel{\text { def }}{=} \begin{cases}\beta & \text { if } \phi=\alpha \\
\delta & \text { if } \phi=\beta \\
\alpha & \text { if } \phi=\delta \\
\phi & \text { otherwise }\end{cases} \\
t \circ \pi=\left(\begin{array}{c}
2 \delta+3 \alpha \\
2 \delta \\
4 \alpha
\end{array}\right)
\end{gathered}
$$

$$
H_{\pi}^{\text {supp }(\mathbf{t})}=\left\lvert\, \begin{array}{c|c|c}
\alpha & \beta & \\
\hline 0 & 1 & \alpha \\
\hline 0 & 0 & \beta \\
\hline 0 & 0 & \gamma \\
\hline 1 & 0 & \delta
\end{array}\right.
$$

A relation between 1 -histogram and $t_{i} \circ \pi_{i}$.

Definition

For a given π and \mathbf{t} we define 1-histogram $H_{\pi}^{\text {supp }(\mathbf{t})}: \operatorname{supp}(\mathbf{t}) \times \mathbb{D} \longrightarrow \mathbb{N}$ such that

$$
H_{\pi}(\alpha, \beta)=1 \Longleftrightarrow \pi(\beta)=\alpha
$$

Let

$$
t=\left(\begin{array}{c}
2 \alpha+3 \beta \\
2 \alpha \\
4 \beta
\end{array}\right) \quad t \circ \pi=\left(\begin{array}{c}
2 \delta+3 \alpha \\
2 \delta \\
4 \alpha
\end{array}\right)
$$

$H_{\pi}^{\text {supp }(\mathbf{t})}=$| α | β | |
| :---: | :---: | :---: |
| 0 | 1 | α |
| 0 | 0 | β |
| 0 | 0 | γ |
| 1 | 0 | δ |

Observe:

$$
\mathbf{t} \circ \pi(\phi)=\sum_{\eta \in \operatorname{supp}(\mathbf{t})} \mathbf{t}(\eta) \cdot H_{\pi}(\eta, \phi) \text { for all } \phi \in \mathbb{D} .
$$

Histograms - Theorem

Observe:

$$
\mathbf{t} \circ \pi(\phi)=\sum_{\eta \in \operatorname{supp}(\mathbf{t})} \mathbf{t}(\eta) \cdot H_{\pi}(\eta, \phi) \quad \text { for all } \phi \in \mathbb{D}
$$

Definition: Homomorphism Eval

$$
\text { Eval }(\mathbf{t}, H)(\phi) \stackrel{\text { def }}{=} \quad \sum_{\eta \in \operatorname{supp}(\mathbf{t})} \mathbf{t}(\eta) \cdot H(\eta, \phi) \quad \text { for all } \phi \in \mathbb{D} \text {. }
$$

Histograms - Theorem

Definition: Homomorphism Eval

$$
\operatorname{Eval}(\mathbf{t}, H)(\phi) \stackrel{\text { def }}{=} \quad \sum_{\eta \in \operatorname{supp}(\mathbf{t})} \mathbf{t}(\eta) \cdot H(\eta, \phi) \quad \text { for all } \phi \in \mathbb{D} .
$$

Theorem

A function $H: \mathbb{S} \times \mathbb{D} \rightarrow \mathbb{N}$ is an n-histogram if, and only if, H is the sum of n 1 -histograms over \mathbb{S}.

Lemma

$\mathbf{m}_{\mathbf{t}}$ can be expressed as $\sum_{i=1}^{n} \mathbf{t} \circ \pi_{i}$ iff
there is a n-histogram H such that $\mathbf{m}_{\mathbf{t}}=\operatorname{Eval}(\mathbf{t}, H)$.

Histograms - Theorem

Lemma
\mathbf{m} can be expressed as $\sum_{\mathbf{t} \in T} \sum_{i=1}^{n_{t}} \mathbf{t} \circ \pi_{\mathbf{t}, i}$ iff
there is a sequence of n_{t}-histogram H_{t} for any $\mathbf{t} \in T$ such that

$$
\mathbf{m}=\sum_{\mathbf{t} \in T} \operatorname{Eval}\left(\mathbf{t}, H_{\mathbf{t}}\right)
$$

Histograms

Lemma

\mathbf{m} can be expressed as $\sum_{\mathbf{t} \in T} \sum_{i=1}^{n_{\mathrm{t}}} \mathbf{t} \circ \pi_{\mathbf{t}, i}$ iff
there is a sequence of $n_{\mathbf{t}}$-histogram $H_{\mathbf{t}}$ for any $\mathbf{t} \in T$ such that

$$
\mathbf{m}=\sum_{\mathbf{t} \in T} E v a l\left(\mathbf{t}, H_{\mathbf{t}}\right) .
$$

Lemma (recall)

The set of data that appear in the solution, $\mathbb{T} \stackrel{\text { def }}{=}\left|\bigcup_{\mathbf{t} \in T, i \in \mathbb{N}} \operatorname{supp}\left(\mathbf{t} \circ \pi_{\mathbf{t}, i}\right)\right|$, can be bounded by polynomially.

Histograms

Lemma

\mathbf{m} can be expressed as $\sum_{\mathbf{t} \in T} \sum_{i=1}^{n_{\mathrm{t}}} \mathbf{t} \circ \pi_{\mathbf{t}, i}$ iff
there is a sequence of $n_{\mathbf{t}}$-histogram $H_{\mathbf{t}}$ for any $\mathbf{t} \in T$ such that

$$
\mathbf{m}=\sum_{\mathbf{t} \in T} E v a l\left(\mathbf{t}, H_{\mathbf{t}}\right) .
$$

Lemma (recall)

The set of data that appear in the solution, $\mathbb{T} \stackrel{\text { def }}{=}\left|\bigcup_{\mathbf{t} \in T, i \in \mathbb{N}} \operatorname{supp}\left(\mathbf{t} \circ \pi_{\mathbf{t}, i}\right)\right|$, can be bounded by polynomially.

- We can restrict histograms to $\mathbb{S} \times \mathbb{T} \longrightarrow \mathbb{N}$.

Histograms

Lemma

\mathbf{m} can be expressed as $\sum_{\mathbf{t} \in T} \sum_{i=1}^{n_{\mathrm{t}}} \mathbf{t} \circ \pi_{\mathbf{t}, i}$ iff
there is a sequence of $n_{\mathbf{t}}$-histogram $H_{\mathbf{t}}$ for any $\mathbf{t} \in T$ such that

$$
\mathbf{m}=\sum_{\mathbf{t} \in T} E v a l\left(\mathbf{t}, H_{\mathbf{t}}\right) .
$$

Lemma (recall)

The set of data that appear in the solution, $\mathbb{T} \stackrel{\text { def }}{=}\left|\bigcup_{\mathbf{t} \in T, i \in \mathbb{N}} \operatorname{supp}\left(\mathbf{t} \circ \pi_{\mathbf{t}, i}\right)\right|$, can be bounded by polynomially.

- We can restrict histograms to $\mathbb{S} \times \mathbb{T} \longrightarrow \mathbb{N}$.
- Thus histograms H_{t} can be described using polynomially many numbers.

Histograms

Lemma

\mathbf{m} can be expressed as $\sum_{\mathbf{t} \in T} \sum_{i=1}^{n_{\mathrm{t}}} \mathbf{t} \circ \pi_{\mathbf{t}, i}$ iff
there is a sequence of $n_{\mathbf{t}}$-histogram $H_{\mathbf{t}}$ for any $\mathbf{t} \in T$ such that

$$
\mathbf{m}=\sum_{\mathbf{t} \in T} E v a l\left(\mathbf{t}, H_{\mathbf{t}}\right) .
$$

Lemma (recall)

The set of data that appear in the solution, $\mathbb{T} \stackrel{\text { def }}{=}\left|\bigcup_{\mathbf{t} \in T, i \in \mathbb{N}} \operatorname{supp}\left(\mathbf{t} \circ \pi_{\mathbf{t}, i}\right)\right|$, can be bounded by polynomially.

- We can restrict histograms to $\mathbb{S} \times \mathbb{T} \longrightarrow \mathbb{N}$.
- Thus histograms H_{t} can be described using polynomially many numbers.
- Guess values and check the sum. Incorrect as we don't have bound on numbers.

Histograms

Lemma

\mathbf{m} can be expressed as $\sum_{\mathbf{t} \in T} \sum_{i=1}^{n_{t}} \mathbf{t} \circ \pi_{\mathbf{t}, i}$ iff
there is a sequence of n_{t}-histogram H_{t} for any $\mathbf{t} \in T$ such that

$$
\mathbf{m}=\sum_{\mathbf{t} \in T} \operatorname{Eval}\left(\mathbf{t}, H_{\mathbf{t}}\right) .
$$

Lemma (recall)

The set of data that appear in the solution, $\mathbb{T} \stackrel{\text { def }}{=}\left|\bigcup_{\mathbf{t} \in T, i \in \mathbb{N}} \operatorname{supp}\left(\mathbf{t} \circ \pi_{\mathbf{t}, i}\right)\right|$, can be bounded by polynomially.

- We can restrict histograms to $\mathbb{S} \times \mathbb{T} \longrightarrow \mathbb{N}$.
- Thus histograms H_{t} can be described using polynomially many numbers.
- We need to build a system of linear equations which incorporates conditions for being a histogram and proper Eval-uation

Future.

- Reachability for UDPN.
- Reachability for UDPN.
- Which algebraic techniques can be transfered to UDPN.
- Reachability for UDPN.
- Which algebraic techniques can be transfered to UDPN.
- What with the free-choice and the conflict-free Nets?
- Reachability for UDPN.
- Which algebraic techniques can be transfered to UDPN.
- What with the free-choice and the conflict-free Nets?
- What is the impact of a state equation if used to improve the coverability algorithm for UDPN.
- Reachability for UDPN.
- Which algebraic techniques can be transfered to UDPN.
- What with the free-choice and the conflict-free Nets?
- What is the impact of a state equation if used to improve the coverability algorithm for UDPN.
- How a state equation should look like for Petri Nets with ordered data, or a fresh datum operator.
- Reachability for UDPN.
- Which algebraic techniques can be transfered to UDPN.
- What with the free-choice and the conflict-free Nets?
- What is the impact of a state equation if used to improve the coverability algorithm for UDPN.
- How a state equation should look like for Petri Nets with ordered data, or a fresh datum operator.
- And many other questions...
- Reachability for UDPN.
- Which algebraic techniques can be transfered to UDPN.
- What with the free-choice and the conflict-free Nets?
- What is the impact of a state equation if used to improve the coverability algorithm for UDPN.
- How a state equation should look like for Petri Nets with ordered data, or a fresh datum operator.
- And many other questions...

Thank You.

