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The Choice Coordination problem

» N processes have to agree on exactly one of K alternatives.
» The processes communicate via K shared variables over X.

» Size of the alphabet X for deterministic protocols?

» in general: |X| = N + 2 is sufficient [Fischer,Rabin]
> for k =2: |2 = & + 2 is sufficient
> lower bound: S| > L VN [Rabin'82]
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Rabin’'s Choice Coordination protocol

A B

» Fixed synchronization alphabet ¥ = {0,..., M} with M even
» Pair-up the elements of X: 0,(1,2),(3,4),..., (M —1,M)

» For a pair (a,b), define @ = b and b=a.
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Rabin’'s Choice Coordination protocol
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Initially, all values are 0.
At each step, pick a person outside A or B and perform an action.
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Rabin’'s Choice Coordination protocol
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If v@A and v = a, and a < M — 1 then set

a—+2 with probability
a=<{ ——
(a+2) with probability

N[— D=

Set v to @ and move to B.
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Rabin’'s Choice Coordination protocol
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If v@QA and v < a, then set v to @ and move to B.
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Rabin’'s Choice Coordination protocol
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If v@QA and v < a, then set v to @ and move to B.
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Rabin’'s Choice Coordination protocol
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A B

If vQB then v > b, then enter location B.
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Rabin’'s Choice Coordination protocol

A B

If vQB then v > b, then enter location B.
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Rabin’'s Choice Coordination protocol

[ 1]
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If v@QB and B was chosen, then enter location B.
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Rabin’'s Choice Coordination protocol

(1)
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If v@QB and B was chosen, then enter location B.
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Rabin’'s Choice Coordination protocol

A B

The protocol terminates with probability 1 — —-,
272

where ¥ = {0,..., M} is the synchronization alphabet.

3/15



Quantitative verification of parameterized systems

Model: probabilistic choice + nondeterminism

State-space: infinite (or weakly finite)

» model-checking cannot be applied directly

Property: quantitative

» cannot use methods for almost-sure termination
[Esparza, Gaiser, Kiefer @ CAV'12]
[Chakarov, Sankaranarayanan @ CAV'13]
[Ferrer Fioriti, Hermanns @ POPL'15]
[Lin,Rimmer @ CAV'16]
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A deductive proof system for PCTL*

quantitative temporal properties yes
nondeterminism yes

infinite state space yes

[D., Ferrer Fioriti, Hermanns, Majumdar @ TACAS'16]
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A deductive proof system for PCTL*

Deductive proof systems

for non-probabilistic systems
for CTL* [Kesten,Pnueli] and
for ATL* [Slanina,Sipma,Manna]

Lyapunov ranking functions
for almost-sure termination
[Bournez,Garnier]

‘ Proof rules for quantitative temporal properties ‘
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Probabilistic programs
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Probabilistic programs

Variables
» N € N: number of processes
» a,b € N: shared variables at location A (resp. B)

> Nyad,Mwap € N: number of processes holding value
v €{0,..., M} outside location A (B)

M M
outy = E NyaA, outp = E Ny@B
v=0 v=0

» ina,inp € N: number of processes inside location A (resp. B)
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Probabilistic programs

Variables
» N € N: number of processes
» a,b € N: shared variables at location A (resp. B)

> Nyad,Mwap € N: number of processes holding value
v €{0,..., M} outside location A (B)

M M
outy = E NyaA, outp = E Ny@B
v=0 v=0

» ina,inp € N: number of processes inside location A (resp. B)
Nondeterministic choice (resolved by scheduler)

» choose a guarded command of the program to be executed
Probabilistic transitions

> set a to (a+2) or to (a + 2) with probability 1 each
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Specifications

probabilistic temporal properties

Starting at any initial state, under every possible scheduler, Rabin's

protocol eventually terminates with probability at least 1 — —r.

22
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probabilistic temporal properties
Starting at any initial state, under every possible scheduler, Rabin’s
protocol eventually terminates with probability at least 1 — —.
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expressed in Probabilistic Computational Tree Logic (PCTL*)
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Specifications

probabilistic temporal properties
Starting at any initial state, under every possible scheduler, Rabin's
1

protocol eventually terminates with probability at least 1 — —.
272

expressed in Probabilistic Computational Tree Logic (PCTL*)

Pinit — Pék% (O(outsa =0A outp = ()))

22
LTL operators probabilistic quantifiers
<> eventually P[ip exists a scheduler
O globally P\;qp for all schedulers
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Lyapunov ranking function & ranking function 7
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Outline

almost-sure reachability:

Lyapunov ranking function &

v

UNTILY

P+ Pinit — Pil(@(@term V (Pstuck))
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Rule for almost-sure reachability

Prove P - P\il(o Oterm ), Where Qierm = outg = 0 A outp = 07
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Rule for almost-sure reachability

Prove P - P\L(Oﬁpterm). where Qierm = out4 = 0N outg = 07

Lyapunov ranking function maps states to (R>q, =), where > is
well-founded, and §(s) = E(¢' | s) when s not in the target set.
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Decreases 01(s) = out4 + outp.
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Rule for almost-sure reachability

Prove P - P\il(o Oterm ), Where Qierm = outg = 0 A outp = 07

Lyapunov ranking function maps states to (R>q, =), where > is
well-founded, and §(s) = E(¢' | s) when s not in the target set.

A B

Decreases d1(s) = out4 + outp.
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Rule for almost-sure reachability

Prove P - P\il(o Oterm ), Where Qierm = outg = 0 A outp = 07

Lyapunov ranking function maps states to (R>q, =), where > is
well-founded, and §(s) = E(¢' | s) when s not in the target set.

v<a “

Decreases d2(s) = Z(n”@A + nyap) + Z(n”@A + nyaB)-

v<b
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Rule for almost-sure reachability

Prove P - P\il(o Oterm ), Where Qierm = outg = 0 A outp = 07

Lyapunov ranking function maps states to (R>q, =), where > is
well-founded, and §(s) = E(¢' | s) when s not in the target set.

o o

Decreases d2(s) = Z(n”@A + nyap) + Z(n”@A + nyaB).
v<a v<b
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Rule for almost-sure reachability

Prove P - P\il(o Oterm ), Where Qierm = outg = 0 A outp = 07

Lyapunov ranking function maps states to (R>q, =), where > is
well-founded, and §(s) = E(¢' | s) when s not in the target set.

vV =a “ “
a b
[T o
A B
3 ifa=b
Decreases in expectation d3(s) =<2 ifa#banda #b,
0 ifa=0.
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Rule for almost-sure reachability

Prove P - P\il(o Oterm ), Where Qierm = outg = 0 A outp = 07

Lyapunov ranking function maps states to (R>q, =), where > is
well-founded, and §(s) = E(¢' | s) when s not in the target set.

N[— -

O O v=ad
/
“ b , a+2 w.pé
a = —
o @ (a+2) w.p
A B
if a =b,

Decreases in expectation d3(s) = if a #band a #b,

if a =b.

S N W
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Rule for almost-sure reachability

Prove P - P\L(Oﬁpterm). where Qierm = out4 = 0N outg = 07

Lyapunov ranking function maps states to (R>q, =), where > is
well-founded, and §(s) = E(¢' | s) when s not in the target set.

Take 5(5) = 51(8) + (52(5) + (2N + 1) . 53(5).
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Rule for almost-sure reachability

Prove P - IP’L((}cpterm), where Qierm = out4 = 0N outg = 07

Lyapunov ranking function maps states to (R>q, =), where > is
well-founded, and §(s) = E(¢' | s) when s not in the target set.

We need idle transitions when a =b=M —1ora=b= M.

No variable changes, so no Lyapunov ranking function.
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Rule for almost-sure reachability

Prove P - P\L(Oﬁpterm). where Qierm = out4 = 0N outg = 07

Lyapunov ranking function maps states to (R>q, =), where > is
well-founded, and §(s) = E(¢' | s) when s not in the target set.

Prove the weaker property

P+ Pil(@(@term \ (Pstuck)),
where Qs = (a=M —1ANb=M —1Va=MANb=M).
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Outline

quantitative reachability:

ranking function 7
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A rule for quantitative reachability

Prove Pt pinit — ]P)éqm (O @stuck) for g = %: and m = %
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A rule for quantitative reachability

Prove Pt pinit — ]P)éqm (O @stuck) for g = %: and m = %
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A rule for quantitative reachability

Prove Pt ©ipnis — IP’VSqm (O @stuck) for ¢ = 5, and m = %
auxiliary assertion 6
» PHO— ]P)il (D _‘995t’uck)
Pinit

function r that maps states to N

> for s € pinit, 7(s) > m
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A rule for quantitative reachability

Prove Pt ©ipnis — IP’VSqm (O @stuck) for ¢ = 5, and m = %
auxiliary assertion 6
» PHO— ]P)il (D _‘995t’uck)
Pinit

function r that maps states to N
> for s € pinit, 7(s) > m
> if r(s) >0, then s &€ Qgpuck
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A rule for quantitative reachability
Prove Pt @init = P (O @stuer) for ¢ = 3, and m =

S

auxiliary assertion 6
> P+ 0 — P (0 Pstuck)
function r that maps states to N
> for s € pinit, 7(s) > m
> if r(s) >0, then s &€ Qgpuck

» for states s € 6, r(s’) > r(s) or
r(s") = r(s) — 1 with prob. <gq
s’ € 6 with probability > 1 — ¢
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A rule for quantitative reachability
Prove Pt @init = P (O @stuer) for ¢ = 3, and m =

S
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> P+ 0 — P (0 Pstuck)
function r that maps states to N
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> if r(s) >0, then s &€ Qgpuck

» for states s € 6, r(s’) > r(s) or
r(s") = r(s) — 1 with prob. <gq
s’ € 6 with probability > 1 — ¢

r(s) = 0 reached with probability < ¢™
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A rule for quantitative reachability
Prove Pt ©ipnis — IP’VSqm (O @stuck) for ¢ = 5, and m = %

auxiliary assertion 6
> P+ 0 — P (0 Pstuck)
function r that maps states to N
> for s € pinit, 7(s) > m
> if r(s) >0, then s &€ Qgpuck

» for states s € 6, r(s’) > r(s) or
r(s") = r(s) — 1 with prob. <gq
s’ € 6 with probability > 1 — ¢

r(s) = 0 reached with probability < ¢™

Take @ =a=10> and r(s) = {1\24 _min([?*
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Deductive Proof System for PCTL*

Proof rule for nested state formulas

Proof rules for probabilistic LTL properties

Proof rules for invariance Proof rules for reachability
UNTILY |
UNTILE . UNTILY
<p™’ 21-p

Additional proof rules
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Deductive Proof System for PCTL*

Proof rule for nested state formulas
BASIC-STATE

Proof rules for probabilistic LTL properties

o
BASIC-PATH, REC_l , REC>0, RECZP
Proof rules for invariance Proof rules for reachability
() (] b
INV2,, INVQ,, INVD,, UNTIL®, ,UNTILY ), UNTILY

o o 7
UNTILS m, UNTIL i UNTILY

Additional proof rules
Q) O
NEXT2,, NEXT>0, NEXT,,, GEN, MP, AND, OR

ExavAdEEE S5 oral®)
UNTIL>p1 P2 INVZp, RECZ,
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Summary

Deductive proof system

» for discrete infinite-state probabilistic systems,

v

applicable to quantitative temporal properties,

v

sound, and for finite-state systems also complete,

v

useful for verification of parameterized systems.

Thank you for your attention!

http://www.mpi-sws.org/~rayna/
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