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The Choice Coordination problem

. . .

1 2 K

I N processes have to agree on exactly one of K alternatives.

I The processes communicate via K shared variables over Σ.

I Size of the alphabet Σ for deterministic protocols?

I in general: |Σ| = N + 2 is sufficient [Fischer,Rabin]

I for k = 2: |Σ| = N
2 + 2 is sufficient

I lower bound: |Σ| > 1
2

3
√
N [Rabin’82]
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Rabin’s Choice Coordination protocol

A B

0

0

0

I Fixed synchronization alphabet Σ = {0, . . . ,M} with M even

I Pair-up the elements of Σ: 0, (1, 2), (3, 4), . . . , (M − 1,M)

I For a pair (a, b), define â = b and b̂ = a.
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Rabin’s Choice Coordination protocol

0 0

A B

0

0

0

0

0

Initially, all values are 0.
At each step, pick a person outside A or B and perform an action.
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Rabin’s Choice Coordination protocol

0 0

A B

0

0

0

0

0

If v@A and v = a, and a < M − 1 then set

a =

{
a+ 2 with probability 1

2 ,

̂(a+ 2) with probability 1
2 .

Set v to a and move to B.
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Rabin’s Choice Coordination protocol

1 0

A B

10

0

0

0

If v@A and v < a, then set v to a and move to B.
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Rabin’s Choice Coordination protocol

1 0

A B

1

10

0

0

If v@A and v < a, then set v to a and move to B.
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Rabin’s Choice Coordination protocol

1 0

A B

1

10

0

0

If v@B then v > b, then enter location B.
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Rabin’s Choice Coordination protocol

1

A B
10

0

0

If v@B then v > b, then enter location B.
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Rabin’s Choice Coordination protocol

1

A B
10

0

0

If v@B and B was chosen, then enter location B.
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Rabin’s Choice Coordination protocol

1

A B
0

0

0

If v@B and B was chosen, then enter location B.
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Rabin’s Choice Coordination protocol

1

A B

0

0

0

The protocol terminates with probability 1− 1

2
M
2

,

where Σ = {0, . . . ,M} is the synchronization alphabet.
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Quantitative verification of parameterized systems

Model: probabilistic choice + nondeterminism

State-space: infinite (or weakly finite)

I model-checking cannot be applied directly

Property: quantitative

I cannot use methods for almost-sure termination
[Esparza, Gaiser, Kiefer @ CAV’12]

[Chakarov, Sankaranarayanan @ CAV’13]
[Ferrer Fioriti, Hermanns @ POPL’15]

[Lin,Rümmer @ CAV’16]
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A deductive proof system for PCTL∗

quantitative temporal properties yes

nondeterminism yes

infinite state space yes

[D., Ferrer Fioriti, Hermanns, Majumdar @ TACAS’16]
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A deductive proof system for PCTL∗

Deductive proof systems
for non-probabilistic systems
for CTL* [Kesten,Pnueli] and
for ATL* [Slanina,Sipma,Manna]

Lyapunov ranking functions
for almost-sure termination
[Bournez,Garnier]

Proof rules for quantitative temporal properties
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Probabilistic programs

Variables

I N ∈ N: number of processes

I a, b ∈ N: shared variables at location A (resp. B)

I nv@A, nv@B ∈ N: number of processes holding value
nv@A, nv@B ∈ N: v ∈ {0, . . . ,M} outside location A (B)

outA =

M∑
v=0

nv@A, outB =

M∑
v=0

nv@B

I inA, inB ∈ N: number of processes inside location A (resp. B)

Nondeterministic choice (resolved by scheduler)

I choose a guarded command of the program to be executed

Probabilistic transitions

I set a to (a+ 2) or to ̂(a+ 2) with probability 1
2 each
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Specifications

probabilistic temporal properties
Starting at any initial state, under every possible scheduler, Rabin’s
protocol eventually terminates with probability at least 1− 1

2
M
2

.

expressed in Probabilistic Computational Tree Logic (PCTL∗)

ϕinit → P∀≥1− 1

2
M
2

(

(outA = 0 ∧ outB = 0)

)

LTL operators

eventually
globally

probabilistic quantifiers

P∃./p exists a scheduler
P∀./p for all schedulers
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Outline

almost-sure reachability:

Lyapunov ranking function δ

P ` ϕinit → P∀=1( (ϕterm ∨ ϕstuck ))

until∀=1

quantitative reachability:

ranking function r

P ` ϕinit → P∀≤p( ϕstuck )

until∀≤qm

until∀≥1−p
P ` ϕinit → P∀≥1−p ( ϕterm)
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Rule for almost-sure reachability

Prove P ` P∀=1( ϕterm), where ϕterm ≡ outA = 0 ∧ outB = 0?

Lyapunov ranking function maps states to (R≥0,�), where � is
well-founded, and δ(s) � E(δ′ | s) when s not in the target set.

9/15



Rule for almost-sure reachability

Prove P ` P∀=1( ϕterm), where ϕterm ≡ outA = 0 ∧ outB = 0?

Lyapunov ranking function maps states to (R≥0,�), where � is
well-founded, and δ(s) � E(δ′ | s) when s not in the target set.

9/15



Rule for almost-sure reachability

Prove P ` P∀=1( ϕterm), where ϕterm ≡ outA = 0 ∧ outB = 0?

Lyapunov ranking function maps states to (R≥0,�), where � is
well-founded, and δ(s) � E(δ′ | s) when s not in the target set.

a b

A B

v > b

Decreases δ1(s) = outA + outB.
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Lyapunov ranking function maps states to (R≥0,�), where � is
well-founded, and δ(s) � E(δ′ | s) when s not in the target set.

a b

A B

v < a

v = a

Decreases δ2(s) =
∑
v<a

(nv@A + nv@B) +
∑
v<b

(nv@A + nv@B).
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Rule for almost-sure reachability

Prove P ` P∀=1( ϕterm), where ϕterm ≡ outA = 0 ∧ outB = 0?

Lyapunov ranking function maps states to (R≥0,�), where � is
well-founded, and δ(s) � E(δ′ | s) when s not in the target set.

a b

A B

v = a

v = a′

a′ =

{
a+ 2 w.p.12 ,

̂(a+ 2) w.p. 1
2 .

Decreases in expectation δ3(s) =


3 if a = b,

2 if a 6= b and â 6= b,

0 if â = b.
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Rule for almost-sure reachability

Prove P ` P∀=1( ϕterm), where ϕterm ≡ outA = 0 ∧ outB = 0?

Lyapunov ranking function maps states to (R≥0,�), where � is
well-founded, and δ(s) � E(δ′ | s) when s not in the target set.

Take δ(s) = δ1(s) + δ2(s) + (2N + 1) · δ3(s).
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Rule for almost-sure reachability

Prove P ` P∀=1( ϕterm), where ϕterm ≡ outA = 0 ∧ outB = 0?

Lyapunov ranking function maps states to (R≥0,�), where � is
well-founded, and δ(s) � E(δ′ | s) when s not in the target set.

We need idle transitions when a = b = M − 1 or a = b = M .

No variable changes, so no Lyapunov ranking function.
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Rule for almost-sure reachability

Prove P ` P∀=1( ϕterm), where ϕterm ≡ outA = 0 ∧ outB = 0?

Lyapunov ranking function maps states to (R≥0,�), where � is
well-founded, and δ(s) � E(δ′ | s) when s not in the target set.

Prove the weaker property

P ` P∀=1( (ϕterm ∨ ϕstuck )),
where ϕstuck ≡ (a = M − 1 ∧ b = M − 1 ∨ a = M ∧ b = M).
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A rule for quantitative reachability
Prove P ` ϕinit → P∀≤qm( ϕstuck ) for q = 1

2 , and m = M
2 .

auxiliary assertion θ

I P ` θ → P∀=1( ¬ϕstuck)

function r that maps states to N

I for s ∈ ϕinit , r(s) ≥ m
I if r(s) > 0, then s 6∈ ϕstuck

I for states s 6∈ θ, r(s′) ≥ r(s) or
r(s′) = r(s)− 1 with prob. ≤ q
s′ ∈ θ with probability ≥ 1− q

r(s) = 0 reached with probability ≤ qm

θ

ϕstuck

r ≥ m
ϕinit

≥ 1 − q
r′ = r − 1

Take θ ≡ â = b and r(s) =

{
M
2 −min(da2 e, d

b
2e) if â 6= b,

M
2 −min(da2 e, d

b
2e) + 1 if â = b.
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2e) if â 6= b,

M
2 −min(da2 e, d

b
2e) + 1 if â = b.
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Deductive Proof System for PCTL∗

Proof rule for nested state formulas
basic-state

Proof rules for probabilistic LTL properties
basic-path, rec

Q

=1 , rec

Q

>0, rec

Q

≥p

Proof rules for invariance
inv

Q

=1, inv

Q

>0, inv

Q

./p

Proof rules for reachability
until

Q

=1 ,until

Q

>0, until

Q

≥p
until

Q

≥pm , until

Q

≤pm ,until∀≥1−p

Additional proof rules
next

Q

=1, next

Q

>0, next

Q

./p, gen, mp, and, or

until

Q

≥p1·p2 ,inv∀≥p, rec

Q

=1
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Summary

Deductive proof system

I for discrete infinite-state probabilistic systems,

I applicable to quantitative temporal properties,

I sound, and for finite-state systems also complete,

I useful for verification of parameterized systems.

Thank you for your attention!

http://www.mpi-sws.org/~rayna/
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