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Replication and Consistency

Setting: Concurrent threads accessing shared data

Shared DataThread 1 Thread 2

Problem 1: Access to shared data is slow

Solution 1: Replicate data so that every thread has a copy

Thread 1 Thread 2

Replica 1 Replica 2
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Replication and Consistency

Problem 2: Announce updates to other replicas

Solution 2: Halt the system and inform everybody

Ruins all performance benefits (back to Problem 1)

Solution 2’: Inform other threads in a delayed fashion

Thread 1 Thread 2

Replica 1 Replica 2
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Replication and Consistency

Problem 3: Inconsistent replicas while updates travel

Thread 1 Thread 2

State x = 1 State x = 0

x = 1

Solution 3:

Live with it, inconsistency is here to stay!
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Replication and Consistency

Weaker Consistency

Higher Performance/Availability

CAP

Undesirable

Hardware

Prog. Lang.

Geo

SC

TSO (x86)

C++11
Causal

EC (Dynamo)
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Replication and Consistency

Problem 3: Inconsistent replicas while updates travel

Solution 3: Live with it

Solution 3’: Architectures give guarantees about

ordering and visibility of updates

Problem 4: But there are so many architectures

Solution 4: Yes, but there are underlying principles ... at least in hardware
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Replication and Consistency

Principles in hardware memory consistency models

Guarantees in the update mechanism [Alglave, TOPLAS’14]:

SC per thread: For one thread running in isolation
the system looks consistent

Consequence: We can always rely on address and data dependencies

Coherence: For every variable all threads will see the stores to this variable
in the same order

Why? Programmability + historical reasons
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Replication and Consistency

Principles in hardware memory consistency models

What can be relaxed:

Program order + store order

TSO+W/R PSO

PGAS

RMO

Power

+W/W

+R/R +R/W
+NSA

Very strange (and not in this talk):

Out-of-thin-air values — arise when threads consistently lie to each other
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Lines of Research

Consistency models

Axiomatic, programming language (herd) for consistency models (Alglave)

Geo-replicated consistency

Conflict-free replicated data types (Shapiro)

C++11

Compilation (COMPCERT, ADVENT)

Linearizability

Semantics and algorithmics (Paderborn, Paris, Uppsala)

Verification under relaxed consistency models

Reachability and robustness (Paris, Uppsala, MSR, KL)
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Memory Consistency Models:

TSO and SC
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Concurrent Programs with Shared Memory

Finite number of shared variables {x , y , x1, . . .}
Finite data domain {d , d0, d1, . . .}
Finite number of finite-control threads T1, . . . ,Tn with operations:

w(x , d), r(x , d)

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Dekker’s mutual exclusion protocol.
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Sequential Consistency (SC) Semantics [Lamport 1979]

Threads directly write to and read from memory

Classical interleaving semantics

I Computations of different threads are shuffled

I Program order is preserved for each thread

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = a

Thread 2

pc = p

Mem

x

0

y

0

isu · w(x , 1) · r(y , 0) · isu · w(y , 1) · E
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Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

Sequential Consistency forbids compiler and hardware optimizations

Hence is not implemented by any processor

Processors have various buffers to reduce latency of memory accesses

Behavior captured by relaxed memory models

Here: Total Store Ordering (TSO) memory model
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Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

TSO architectures have write buffers (FIFO)

Read takes value from memory if no write to that variable is buffered

Otherwise read value of last write to that variable in the buffer

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = a

Thread 2

pc = p

Mem

x

0

y

0

isu · r(y , 0) · isu · w(y , 1) · r(x , 0) · w(x , 1)
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TSO architectures have write buffers (FIFO)

Read takes value from memory if no write to that variable is buffered

Otherwise read value of last write to that variable in the buffer

x = y = 0
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a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }
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q : if (x == 0){
r : crit. sect. 2
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Verification Required?!

Relaxed executions may lead to bad behavior

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993]: If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Performance-critical code does have data races

Concurrency libraries Operating systems HPC@Fraunhofer ITWM

This is where our verification techniques apply
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Reachability

[MSR, Oxford, Paris, Uppsala]
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State Reachability Problem

Consider a memory model MM

State Reachability Problem for MM

Input: Program P and a (control + memory) state s.

Problem: Is s reachable when P is run under MM?

Decidability / Complexity ?

Each thread is finite-state

For the SC memory model, this problem is PSPACE-complete

Non-trivial for relaxed memory models:

PathsTSO(P) = ClosureTSO(PathsSC (P)) is non-regular
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Robustness

[IMDEA, Oxford, Paris, Uppsala]

[ICALP’11, ESOP’13, ICALP’14, ACM TECS’15]

Decision procedure for robustness that

applies to most memory models (checked TSO, PSO, PGAS, Power)

gives precise complexity

... but relies on a new automaton model and lots of guessing
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Robustness

Idea: SC semantics is specification

Relaxed behavior may contain bugs because programmers only had
SC in mind

Every relaxed behavior has an SC equivalent (up to traces)

Every relaxed behavior that deviates from SC is a programming error

Robustness Problem against relaxed memory model RMM

Input: Program P.

Problem: Does TracesRMM(P) ⊆ TracesSC(P) hold?

Decidability / Complexity ?
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Robustness: General Solution

RMM-computations

Robust
Computations

Minimal

Violations = ∅ ?

Combinatorics: Violations can be assumed to be in normal form

Algorithmics: Check whether normal form violations exist
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Robustness: General Solution

Together: Reduce robustness to an emptiness check

ℒnf ∩ ℛcyc
?
= ∅.

Combinatorics:

Violations to SC (if any) have a representative in normal form.

Algorithmics:

Language ℒnf consists of all normal-form computations.

∩ ℛcyc filters only violating computations.

Decide ℒnf ∩ℛcyc
?
= ∅.
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Combinatorics: Normal Form Violations

Lemma (Shasha and Snir, 1988)
A computation violates SC iff it has a cyclic happens-before relation.

Happens-before relation of computation

𝜏 = isu · r(y , 0) · isu · w(y , 1) · r(x , 0) · w(x , 1) :

Thread 1 Thread 2

initx a : w(x, 1) d : r(x, 0)

inity b : r(y, 0) c : w(y, 1)

po po
st

st

src

src

cf

cf

Program order, store order, source relation, conflict relation

Roland Meyer (TU KL) Replication and Consistency IFIP WG 2.2 09/2016 23 / 32



Combinatorics: Normal Form Violations

Lemma (Shasha and Snir, 1988)
A computation violates SC iff it has a cyclic happens-before relation.

Happens-before relation of computation

𝜏 = isu · r(y , 0) · isu · w(y , 1) · r(x , 0) · w(x , 1) :

Thread 1 Thread 2

initx a : w(x, 1) d : r(x, 0)

inity b : r(y, 0) c : w(y, 1)

po po
st

st

src

src

cf

cf

Program order, store order, source relation, conflict relation

Roland Meyer (TU KL) Replication and Consistency IFIP WG 2.2 09/2016 23 / 32



Combinatorics: Normal Form Violations

Lemma (Shasha and Snir, 1988)
A computation violates SC iff it has a cyclic happens-before relation.

Happens-before relation of computation

𝜏 = isu · r(y , 0) · isu · w(y , 1) · r(x , 0) · w(x , 1) :

Thread 1 Thread 2

initx a : w(x, 1) d : r(x, 0)

inity b : r(y, 0) c : w(y, 1)

po po

st

st

src

src

cf

cf

Program order

, store order, source relation, conflict relation

Roland Meyer (TU KL) Replication and Consistency IFIP WG 2.2 09/2016 23 / 32



Combinatorics: Normal Form Violations

Lemma (Shasha and Snir, 1988)
A computation violates SC iff it has a cyclic happens-before relation.

Happens-before relation of computation

𝜏 = isu · r(y , 0) · isu · w(y , 1) · r(x , 0) · w(x , 1) :

Thread 1 Thread 2

initx a : w(x, 1) d : r(x, 0)

inity b : r(y, 0) c : w(y, 1)

po po
st

st

src

src

cf

cf

Program order, store order

, source relation, conflict relation

Roland Meyer (TU KL) Replication and Consistency IFIP WG 2.2 09/2016 23 / 32



Combinatorics: Normal Form Violations

Lemma (Shasha and Snir, 1988)
A computation violates SC iff it has a cyclic happens-before relation.

Happens-before relation of computation

𝜏 = isu · r(y , 0) · isu · w(y , 1) · r(x , 0) · w(x , 1) :

Thread 1 Thread 2

initx a : w(x, 1) d : r(x, 0)

inity b : r(y, 0) c : w(y, 1)

po po
st

st

src

src

cf

cf

Program order, store order, source relation

, conflict relation

Roland Meyer (TU KL) Replication and Consistency IFIP WG 2.2 09/2016 23 / 32



Combinatorics: Normal Form Violations

Lemma (Shasha and Snir, 1988)
A computation violates SC iff it has a cyclic happens-before relation.

Happens-before relation of computation

𝜏 = isu · r(y , 0) · isu · w(y , 1) · r(x , 0) · w(x , 1) :

Thread 1 Thread 2

initx a : w(x, 1) d : r(x, 0)

inity b : r(y, 0) c : w(y, 1)

po po
st

st

src

src

cf

cf

Program order, store order, source relation, conflict relation

Roland Meyer (TU KL) Replication and Consistency IFIP WG 2.2 09/2016 23 / 32



Combinatorics: Normal Form Violations
Normal Form:

Computation has two parts 𝜏 = 𝜏1 · 𝜏2
No delays within a part

Delays in 𝜏2 respect ordering in 𝜏1

In normal form

. . . isu . . . isu . . .⏟  ⏞  
𝜏1

. . .w(x , 1) . . .w(y , 1) . . .⏟  ⏞  
𝜏2

Not in normal form

. . . isu . . . isu . . .⏟  ⏞  
𝜏1

. . .w(y , 1) . . .w(x , 1) . . .⏟  ⏞  
𝜏2
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Combinatorics: Normal Form Violations

Theorem (Normal form):
If a program is not robust, it has a violation in normal form.

Proof:

Take a shortest computation 𝜏 with cyclic happens-before relation.

There is (may be non-trivial, depending on RMM) an event that can
be cancelled:

𝜏 = 𝜏1 · a · 𝜏2 .

Computation 𝜏1 · 𝜏2 is shorter

, hence not violating.

There is an SC computation 𝜎 with same happens-before relation.

Now

(𝜎 ↓ 𝜏1) · a · (𝜎 ↓ 𝜏2)

is in normal form and violating.
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Robustness: General Solution

Reduce robustness to an emptiness check

ℒnf ∩ ℛcyc
?
= ∅.

Combinatorics:

Violations to SC (if any) have a representative in normal form.

Algorithmics:

Language ℒnf consists of all normal-form computations.

∩ ℛcyc filters only violating computations.

Decide ℒnf ∩ℛcyc
?
= ∅.
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Algorithmics: Generating Normal-Form Computations

Challenge
Describe language ℒnf of all normal-form computations

Need a language class that

includes ℒnf ,

is closed under regular intersection (ℒnf ∩ℛcyc),

has decidable emptiness problem (ℒnf ∩ℛcyc
?
= ∅).

Properties of ℒnf

Number of concurrently executed instructions is unbounded

May include computations like isun · w(xi , 1)
n

⇒ not context-free (language 𝜎 · 𝜎)
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Algorithmics: Generating Normal-Form Computations

Solution
Define ℒnf as language of a multiheaded automaton

Multiheaded automata

Extension of NFA

Generates parts 𝜏1 and 𝜏2 of a computation 𝜏1 · 𝜏2 simultaneously

Transitions q
1,a−−→ q′ and q

2,b−−→ q′ labeled by head i = 1, 2

Example:

. . . isu . . . isu . . .⏟  ⏞  
𝜏1

. . .w(x , 1) . . .w(y , 1) . . .⏟  ⏞  
𝜏2
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Robustness: General Solution

Reduce robustness to an emptiness check

ℒnf ∩ ℛcyc
?
= ∅.

Combinatorics:

Violations to SC (if any) have a representative in normal form.

Algorithmics:

Language ℒnf consists of all normal-form computations.

∩ ℛcyc filters only violating computations.

Decide ℒnf ∩ℛcyc
?
= ∅.
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Algorithmics: Checking Cyclicity

Happens-before relation from the example:

Thread 1 Thread 2

initx a : w(x, 1) d : r(x, 0)

inity b : r(y, 0) c : w(y, 1)

po po
st

st

src

src

cf

cf

cf

Checking cyclicity

Finitely many types of cycles

Guess per thread two instructions in program order

Finite automata check edges between guessed instructions from
different threads
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Robustness: General Solution
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Algorithmics: Emptiness

Theorem:

Assuming finite memory, robustness is PSpace-complete.

Proof:

Upper bound: ℒnf ∩ℛcyc
?
= ∅.

Lower bound: SC state reachability [Kozen 1977].
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