* in and hardware general memory consistency models in particular

Roland Meyer

Technische Universität Kaiserslautern

Setting: Concurrent threads accessing shared data

Setting: Concurrent threads accessing shared data

Setting: Concurrent threads accessing shared data

Problem 1: Access to shared data is slow

Setting: Concurrent threads accessing shared data

Problem 1: Access to shared data is slow

Setting: Concurrent threads accessing shared data

Problem 1: Access to shared data is slow

Solution 1: Replicate data so that every thread has a copy

Setting: Concurrent threads accessing shared data

Problem 1: Access to shared data is slow

Solution 1: Replicate data so that every thread has a copy

Problem 2: Announce updates to other replicas

Problem 2: Announce updates to other replicas

Solution 2: Halt the system and inform everybody

Problem 2: Announce updates to other replicas

Solution 2: Halt the system and inform everybody Ruins all performance benefits (back to Problem 1)

Problem 2: Announce updates to other replicas

Solution 2: Halt the system and inform everybody Ruins all performance benefits (back to Problem 1)

Solution 2': Inform other threads in a delayed fashion

Problem 2: Announce updates to other replicas

Solution 2: Halt the system and inform everybody Ruins all performance benefits (back to Problem 1)

Solution 2': Inform other threads in a delayed fashion

Problem 3: Inconsistent replicas while updates travel

Problem 3: Inconsistent replicas while updates travel

Problem 3: Inconsistent replicas while updates travel

Solution 3:

Live with it, inconsistency is here to stay!

Problem 3: Inconsistent replicas while updates travel Solution 3: Live with it

Problem 3: Inconsistent replicas while updates travel

Solution 3: Live with it

Solution 3': Architectures give guarantees about updates

Problem 3: Inconsistent replicas while updates travel

Solution 3: Live with it

Solution 3': Architectures give guarantees about ordering of updates

Problem 3: Inconsistent replicas while updates travel

Solution 3: Live with it

Solution 3': Architectures give guarantees about ordering and visibility of updates

Problem 3: Inconsistent replicas while updates travel

Solution 3: Live with it

Solution 3': Architectures give guarantees about ordering and visibility of updates

Problem 4: But there are so many architectures

Problem 3: Inconsistent replicas while updates travel Solution 3: Live with it Solution 3': Architectures give guarantees about

ordering and visibility of updates

Problem 4: But there are so many architectures Solution 4: Yes, but there are underlying principles

Problem 3: Inconsistent replicas while updates travel

Solution 3: Live with it

Solution 3': Architectures give guarantees about ordering and visibility of updates

Problem 4: But there are so many architectures Solution 4: Yes, but there are underlying principles ... at least in hardware

Principles in hardware memory consistency models

Principles in hardware memory consistency models

Guarantees in the update mechanism [Alglave, TOPLAS'14]:

Principles in hardware memory consistency models

Guarantees in the update mechanism [Alglave, TOPLAS'14]: SC per thread: For one thread running in isolation the system looks consistent

Principles in hardware memory consistency models

Guarantees in the update mechanism [Alglave, TOPLAS'14]:

SC per thread: For one thread running in isolation the system looks consistent

Consequence: We can always rely on address and data dependencies

Principles in hardware memory consistency models

Guarantees in the update mechanism [Alglave, TOPLAS'14]:

SC per thread: For one thread running in isolation the system looks consistent

Consequence: We can always rely on address and data dependencies

Coherence: For every variable all threads will see the stores to this variable in the same order

Principles in hardware memory consistency models

Guarantees in the update mechanism [Alglave, TOPLAS'14]:

SC per thread: For one thread running in isolation the system looks consistent

Consequence: We can always rely on address and data dependencies

Coherence: For every variable all threads will see the stores to this variable in the same order

Why? Programmability

Principles in hardware memory consistency models

Guarantees in the update mechanism [Alglave, TOPLAS'14]:

SC per thread: For one thread running in isolation the system looks consistent

Consequence: We can always rely on address and data dependencies

Coherence: For every variable all threads will see the stores to this variable in the same order

Why? Programmability + historical reasons

Principles in hardware memory consistency models

Principles in hardware memory consistency models

What can be relaxed:

Program order

Roland Meyer (TU KL)

Principles in hardware memory consistency models

What can be relaxed:

Program order

Principles in hardware memory consistency models

What can be relaxed:

Program order

Principles in hardware memory consistency models

What can be relaxed:

Program order

Very strange (and not in this talk):

Principles in hardware memory consistency models

What can be relaxed:

Program order

Very strange (and not in this talk):

Out-of-thin-air values — arise when threads consistently lie to each other

Roland Meyer (TU KL)
Replication and Consistency

Principles in hardware memory consistency models

What can be relaxed:

Program order + store order

Very strange (and not in this talk):

Out-of-thin-air values — arise when threads consistently lie to each other

Roland Meyer (TU KL)

Replication and Consistency

Replication and Consistency

Principles in hardware memory consistency models

What can be relaxed:

Program order + store order

Very strange (and not in this talk):

Out-of-thin-air values — arise when threads consistently lie to each other

Roland Meyer (TU KL)

Replication and Consistency

Consistency models

Axiomatic, programming language (herd) for consistency models (Alglave)

Consistency models

Axiomatic, programming language (herd) for consistency models (Alglave)

Geo-replicated consistency

Conflict-free replicated data types (Shapiro)

Consistency models

Axiomatic, programming language (herd) for consistency models (Alglave)

Geo-replicated consistency

Conflict-free replicated data types (Shapiro)

C++11

Compilation (COMPCERT, ADVENT)

Consistency models

Axiomatic, programming language (herd) for consistency models (Alglave)

Geo-replicated consistency

Conflict-free replicated data types (Shapiro)

C++11

```
Compilation (COMPCERT, ADVENT)
```

Linearizability

Semantics and algorithmics (Paderborn, Paris, Uppsala)

Consistency models

Axiomatic, programming language (herd) for consistency models (Alglave)

Geo-replicated consistency

Conflict-free replicated data types (Shapiro)

C++11

```
Compilation (COMPCERT, ADVENT)
```

Linearizability

Semantics and algorithmics (Paderborn, Paris, Uppsala)

Verification under relaxed consistency models

Reachability and robustness (Paris, Uppsala, MSR, KL)

Memory Consistency Models: TSO and SC

Concurrent Programs with Shared Memory

- Finite number of shared variables {*x*, *y*, *x*₁,...}
- Finite data domain $\{d, d_0, d_1, \ldots\}$
- Finite number of finite-control threads T_1, \ldots, T_n with operations:

w(x,d), r(x,d)

x = y = 0Thread 1
Thread 2 p: y = 1 $p: if(y == 0) \{ q: if(x == 0) \{ r: crit. sect. 2 \\ d: \}$

Dekker's mutual exclusion protocol.

Roland Meyer (TU KL)

- Threads directly write to and read from memory
- Classical interleaving semantics
 - Computations of different threads are shuffled
 - Program order is preserved for each thread

x = y = 0			Mem
Thread 1	Thread 2	Thread 1 pc = a	<i>x</i> 0
<pre>a : x = 1 b : if(y == 0){ c : crit.sect.1 d : }</pre>	<pre>p: y = 1 q: if(x == 0){ r: crit.sect.2 s: }</pre>	Thread 2 pc = p	<i>у</i> 0

- Threads directly write to and read from memory
- Classical interleaving semantics
 - Computations of different threads are shuffled
 - Program order is preserved for each thread

x = y = 0			Mem
Thread 1 <i>a</i> : <i>x</i> = 1	Thread 2 <i>p</i> : <i>y</i> = 1	Thread 1 $pc = b$	x 1
<pre>b: if(y == 0){ c: crit.sect.1 d: }</pre>	<pre>q : if(x == 0){ r : crit.sect.2 s : }</pre>	Thread 2 pc = p	<i>у</i> 0

 $isu \cdot w(x,1)$

- Threads directly write to and read from memory
- Classical interleaving semantics
 - Computations of different threads are shuffled
 - Program order is preserved for each thread

x = y = 0			Mem
Thread 1 <i>a</i> : <i>x</i> = 1	Thread 2 <i>p</i> : <i>y</i> = 1	Thread 1 pc = c	x 1
<pre>b: if(y == 0){ c: crit.sect.1 d: }</pre>	<pre>q : if(x == 0){ r : crit.sect.2 s : }</pre>	Thread 2 pc = p	<i>у</i> 0

 $isu \cdot w(x,1) \cdot r(y,0)$

- Threads directly write to and read from memory
- Classical interleaving semantics
 - Computations of different threads are shuffled
 - Program order is preserved for each thread

x = y = 0			Mem
Thread 1 a: x = 1	Thread 2 p: y = 1	Thread 1 pc = c	x 1
<pre>b : if(y == 0){ c : crit.sect.1 d : }</pre>	<pre>q : if(x == 0){ r : crit.sect.2 s : }</pre>	Thread 2 pc = q	у 1

 $isu \cdot w(x,1) \cdot r(y,0) \cdot isu \cdot w(y,1)$

- Threads directly write to and read from memory
- Classical interleaving semantics
 - Computations of different threads are shuffled
 - Program order is preserved for each thread

 $isu \cdot w(x,1) \cdot r(y,0) \cdot isu \cdot w(y,1) \cdot f$

- Sequential Consistency forbids compiler and hardware optimizations
- Hence is not implemented by any processor
- Processors have various buffers to reduce latency of memory accesses
- Behavior captured by relaxed memory models
- Here: Total Store Ordering (TSO) memory model

- TSO architectures have write buffers (FIFO)
- Read takes value from memory if no write to that variable is buffered
- Otherwise read value of last write to that variable in the buffer

x = y = 0			Mem
Thread 1 a : x = 1 b : if(y == 0){ c : crit.sect.1 d : }	Thread 2 p: y = 1 q: if (x == 0){ r: crit. sect. 2 s: }	Thread 1 pc = a Thread 2 pc = p	 х 0 у 0
a: x = 1 b: if(y == 0){ c: crit.sect.1 d: }	<pre>p: y = 1 q: if(x == 0){ r: crit.sect.2 s: }</pre>	Thread 2 pc = p	 -

- TSO architectures have write buffers (FIFO)
- Read takes value from memory if no write to that variable is buffered
- Otherwise read value of last write to that variable in the buffer

x = y = 0				Mem
Thread 1	Thread 2	Thread 1 $pc = b$	w(x,1)	<i>х</i> 0
<pre>a : x = 1 b : if(y == 0){ c : crit.sect.1 d : }</pre>	<pre>p : y = 1 q : if(x == 0){ r : crit.sect.2 s : }</pre>	Thread 2 pc = p		у 0

isu

- TSO architectures have write buffers (FIFO)
- Read takes value from memory if no write to that variable is buffered
- Otherwise read value of last write to that variable in the buffer

x = y = 0				Mem
Thread 1	Thread 2	Thread 1 $pc = c$	w(x,1)	<i>х</i> 0
<pre>a : x = 1 b : if(y == 0){ c : crit.sect.1 d : }</pre>	<pre>p: y = 1 q: if(x == 0){ r: crit.sect.2 s: }</pre>	Thread 2 pc = p		у 0

$$isu \cdot r(y, 0)$$

Roland Meyer (TU KL)

- TSO architectures have write buffers (FIFO)
- Read takes value from memory if no write to that variable is buffered
- Otherwise read value of last write to that variable in the buffer

x = y = 0				Mem
Thread 1	Thread 2	Thread 1 $pc = c$	w(x,1)	<i>х</i> 0
<pre>a : x = 1 b : if(y == 0){ c : crit.sect.1 d : }</pre>	<pre>p: y = 1 q: if(x == 0){ r: crit.sect.2 s: }</pre>	Thread 2 pc = q	w(y,1)	у 0

$$isu \cdot r(y, 0) \cdot isu$$

Roland Meyer (TU KL)

- TSO architectures have write buffers (FIFO)
- Read takes value from memory if no write to that variable is buffered
- Otherwise read value of last write to that variable in the buffer

x = y = 0				Mem
Thread 1	Thread 2	Thread 1 pc = c	w(x,1)	<i>х</i> 0
a: x = 1 b: if(y == 0){ c: crit.sect.1 d: }	<pre>p:y = 1 q: if(x == 0){ r: crit.sect.2 s: }</pre>	Thread 2 pc = q		у 1

$$isu \cdot r(y, 0) \cdot isu \cdot w(y, 1)$$

- TSO architectures have write buffers (FIFO)
- Read takes value from memory if no write to that variable is buffered
- Otherwise read value of last write to that variable in the buffer

x = y = 0				Mem
Thread 1	Thread 2	Thread 1 $pc = c$	w (x, 1)	<i>х</i> 0
<pre>a : x = 1 b : if(y == 0){ c : crit.sect.1 d : }</pre>	<pre>p: y = 1 q: if(x == 0){ r: crit.sect.2 s: }</pre>	Thread 2 pc = r		у 1

$$isu \cdot r(y,0) \cdot isu \cdot w(y,1) \cdot r(x,0)$$

Roland Meyer (TU KL)

- TSO architectures have write buffers (FIFO)
- Read takes value from memory if no write to that variable is buffered
- Otherwise read value of last write to that variable in the buffer

x = y = 0			Mem
Thread 1	Thread 2	Thread 1 $pc = c$	 x 1
<pre>a : x = 1 b : if(y == 0){ c : crit.sect.1 d : }</pre>	<pre>p: y = 1 q: if(x == 0){ r: crit.sect.2 s: }</pre>	Thread 2 pc = r	 у 1

$$isu \cdot r(y,0) \cdot isu \cdot w(y,1) \cdot r(x,0) \cdot w(x,1)$$

- TSO architectures have write buffers (FIFO)
- Read takes value from memory if no write to that variable is buffered
- Otherwise read value of last write to that variable in the buffer

$$isu \cdot r(y,0) \cdot isu \cdot w(y,1) \cdot r(x,0) \cdot w(x,1)$$

Roland Meyer (TU KL)

- TSO architectures have write buffers (FIFO)
- Read takes value from memory if no write to that variable is buffered
- Otherwise read value of last write to that variable in the buffer

<i>x</i> =	= y = 0			Mem
Thread 1 a: x = 1 b: if(y == 0){ c: crit.sect.1 d: }	Thread 2 p: y = 1 q: if(x == 0){ r: crit. sect. 2 s: }	Thread 1 pc = c Thread 2 pc = r		х У 1
	$isu \cdot r(y,0) \cdot isu \cdot w(y)$	$r,1)\cdot r(x,0)\cdot w(x,0)$	(x,1)	

Relaxed executions may lead to bad behavior

Relaxed executions may lead to bad behavior

If this is the real world, why does anything work?

Relaxed executions may lead to bad behavior

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993]: If a program is data-race-free, then SC and TSO semantics coincide.

Relaxed executions may lead to bad behavior

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993]: If a program is data-race-free, then SC and TSO semantics coincide.

So, go and write data-race-free programs!

Relaxed executions may lead to bad behavior

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993]: If a program is data-race-free, then SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Relaxed executions may lead to bad behavior

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993]: If a program is data-race-free, then SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Performance-critical code does have data races

Relaxed executions may lead to bad behavior

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993]: If a program is data-race-free, then SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Performance-critical code does have data races

Concurrency libraries Operating systems HPC@Fraunhofer ITWM

Relaxed executions may lead to bad behavior

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993]: If a program is data-race-free, then SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Performance-critical code does have data races

Concurrency libraries Operating systems HPC@Fraunhofer ITWM

This is where our verification techniques apply

Roland Meyer (TU KL)

Replication and Consistency

Reachability

[MSR, Oxford, Paris, Uppsala]

State Reachability Problem

Consider a memory model MM

State Reachability Problem for MM

Input: Program P and a (control + memory) state s.

Problem: Is s reachable when P is run under MM?

State Reachability Problem

Consider a memory model MM

State Reachability Problem for MM

Input: Program P and a (control + memory) state s. **Problem**: Is s reachable when P is run under MM?

Decidability / Complexity ?

Each thread is finite-state

• For the SC memory model, this problem is PSPACE-complete

State Reachability Problem

Consider a memory model MM

State Reachability Problem for MM

Input: Program P and a (control + memory) state s. **Problem**: Is s reachable when P is run under MM?

Decidability / Complexity ?

Each thread is finite-state

• For the SC memory model, this problem is PSPACE-complete

• Non-trivial for relaxed memory models:

 $Paths_{TSO}(P) = Closure_{TSO}(Paths_{SC}(P))$ is non-regular
[IMDEA, Oxford, Paris, Uppsala] [ICALP'11, ESOP'13, ICALP'14, ACM TECS'15]

[IMDEA, Oxford, Paris, Uppsala] [ICALP'11, ESOP'13, ICALP'14, ACM TECS'15]

Decision procedure for robustness that

[IMDEA, Oxford, Paris, Uppsala] [ICALP'11, ESOP'13, ICALP'14, ACM TECS'15]

Decision procedure for robustness that

• applies to most memory models (checked TSO, PSO, PGAS, Power)

[IMDEA, Oxford, Paris, Uppsala] [ICALP'11, ESOP'13, ICALP'14, ACM TECS'15]

Decision procedure for robustness that

- applies to most memory models (checked TSO, PSO, PGAS, Power)
- gives precise complexity

[IMDEA, Oxford, Paris, Uppsala] [ICALP'11, ESOP'13, ICALP'14, ACM TECS'15]

Decision procedure for robustness that

- applies to most memory models (checked TSO, PSO, PGAS, Power)
- gives precise complexity
- ... but relies on a new automaton model and lots of guessing

Idea: SC semantics is specification

Idea: SC semantics is specification

• Relaxed behavior may contain bugs because programmers only had SC in mind

Idea: SC semantics is specification

- Relaxed behavior may contain bugs because programmers only had SC in mind
- Every relaxed behavior has an SC equivalent (up to traces)

Idea: SC semantics is specification

- Relaxed behavior may contain bugs because programmers only had SC in mind
- Every relaxed behavior has an SC equivalent (up to traces)
- Every relaxed behavior that deviates from SC is a programming error

Idea: SC semantics is specification

- Relaxed behavior may contain bugs because programmers only had SC in mind
- Every relaxed behavior has an SC equivalent (up to traces)
- Every relaxed behavior that deviates from SC is a programming error

Robustness Problem against relaxed memory model RMM

Idea: SC semantics is specification

- Relaxed behavior may contain bugs because programmers only had SC in mind
- Every relaxed behavior has an SC equivalent (up to traces)
- Every relaxed behavior that deviates from SC is a programming error

Robustness Problem against relaxed memory model RMM

Input: Program **P**.

Idea: SC semantics is specification

- Relaxed behavior may contain bugs because programmers only had SC in mind
- Every relaxed behavior has an SC equivalent (up to traces)
- Every relaxed behavior that deviates from SC is a programming error

Robustness Problem against relaxed memory model RMM

Input: Program **P**.

Problem: Does $Traces_{RMM}(P) \subseteq Traces_{SC}(P)$ hold?

Idea: SC semantics is specification

- Relaxed behavior may contain bugs because programmers only had SC in mind
- Every relaxed behavior has an SC equivalent (up to traces)
- Every relaxed behavior that deviates from SC is a programming error

Robustness Problem against relaxed memory model RMM

Input: Program **P**.

Problem: Does $Traces_{RMM}(P) \subseteq Traces_{SC}(P)$ hold?

Decidability / Complexity ?

Roland Meyer (TU KL)

Replication and Consistency

IFIP WG 2.2 09/2016 20 / 32

Combinatorics: Violations can be assumed to be in normal form

Combinatorics: Violations can be assumed to be in normal form Algorithmics: Check whether normal form violations exist

Together: Reduce robustness to an emptiness check

 $\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset.$

Together: Reduce robustness to an emptiness check

$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset.$$

Combinatorics:

Together: Reduce robustness to an emptiness check

$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset.$$

Combinatorics:

• Violations to SC (if any) have a representative in normal form.

Together: Reduce robustness to an emptiness check

$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset.$$

Combinatorics:

• Violations to SC (if any) have a representative in normal form. Algorithmics:

Together: Reduce robustness to an emptiness check

$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset.$$

Combinatorics:

• Violations to SC (if any) have a representative in normal form.

Algorithmics:

• Language \mathcal{L}_{nf} consists of all normal-form computations.

Together: Reduce robustness to an emptiness check

$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset.$$

Combinatorics:

• Violations to SC (if any) have a representative in normal form.

Algorithmics:

- Language \mathcal{L}_{nf} consists of all normal-form computations.
- $\cap \mathcal{R}_{cyc}$ filters only violating computations.

Together: Reduce robustness to an emptiness check

$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset.$$

Combinatorics:

• Violations to SC (if any) have a representative in normal form.

Algorithmics:

- Language \mathcal{L}_{nf} consists of all normal-form computations.
- $\cap \mathcal{R}_{cyc}$ filters only violating computations.

• Decide
$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset$$
.

Reduce robustness to an emptiness check

$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset.$$

Combinatorics:

• Violations to SC (if any) have a representative in normal form.

Algorithmics:

- Language \mathcal{L}_{nf} consists of all normal-form computations.
- $\cap \mathcal{R}_{cyc}$ filters only violating computations.
- Decide $\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset$.

Lemma (Shasha and Snir, 1988)

A computation violates SC iff it has a cyclic happens-before relation.

Lemma (Shasha and Snir, 1988)

A computation violates SC iff it has a cyclic happens-before relation.

Happens-before relation of computation

Lemma (Shasha and Snir, 1988)

A computation violates SC iff it has a cyclic happens-before relation.

Happens-before relation of computation

Program order

Lemma (Shasha and Snir, 1988)

A computation violates SC iff it has a cyclic happens-before relation.

Happens-before relation of computation

Program order, store order

Lemma (Shasha and Snir, 1988)

A computation violates SC iff it has a cyclic happens-before relation.

Happens-before relation of computation

Program order, store order, source relation

Lemma (Shasha and Snir, 1988)

A computation violates SC iff it has a cyclic happens-before relation.

Happens-before relation of computation

Program order, store order, source relation, conflict relation

• Computation has two parts $au = au_1 \cdot au_2$

- Computation has two parts $au = au_1 \cdot au_2$
- No delays within a part

- Computation has two parts $au = au_1 \cdot au_2$
- No delays within a part
- Delays in τ_2 respect ordering in τ_1

- Computation has two parts $au = au_1 \cdot au_2$
- No delays within a part
- Delays in τ_2 respect ordering in τ_1

In normal form

$$\underbrace{\cdots isu \cdots isu}_{\tau_1} \underbrace{\cdots w(x,1) \cdots w(y,1) \cdots}_{\tau_2}$$

- Computation has two parts $au = au_1 \cdot au_2$
- No delays within a part
- Delays in τ_2 respect ordering in τ_1

In normal form

Not in normal form

Theorem (Normal form):

If a program is not robust, it has a violation in normal form.

Theorem (Normal form):

If a program is not robust, it has a violation in normal form.

Proof:

• Take a shortest computation τ with cyclic happens-before relation.

Theorem (Normal form):

If a program is not robust, it has a violation in normal form.

Proof:

- Take a shortest computation au with cyclic happens-before relation.
- There is (may be non-trivial, depending on RMM) an event that can be cancelled:

 $\tau = \tau_1 \cdot \textbf{a} \cdot \tau_2$.

Theorem (Normal form):

If a program is not robust, it has a violation in normal form.

Proof:

- Take a shortest computation au with cyclic happens-before relation.
- There is (may be non-trivial, depending on RMM) an event that can be cancelled:

$$\tau = \tau_1 \cdot \mathbf{a} \cdot \tau_2 \; .$$

• Computation $\tau_1 \cdot \tau_2$ is shorter

Theorem (Normal form):

If a program is not robust, it has a violation in normal form.

Proof:

- Take a shortest computation au with cyclic happens-before relation.
- There is (may be non-trivial, depending on RMM) an event that can be cancelled:

$$\tau = \tau_1 \cdot \mathbf{a} \cdot \tau_2 \; .$$

• Computation $\tau_1 \cdot \tau_2$ is shorter, hence not violating.

Theorem (Normal form):

If a program is not robust, it has a violation in normal form.

Proof:

- Take a shortest computation τ with cyclic happens-before relation.
- There is (may be non-trivial, depending on RMM) an event that can be cancelled:

$$\tau = \tau_1 \cdot \mathbf{a} \cdot \tau_2 \; .$$

- Computation $\tau_1 \cdot \tau_2$ is shorter, hence not violating.
- There is an SC computation σ with same happens-before relation.

Theorem (Normal form):

If a program is not robust, it has a violation in normal form.

Proof:

- Take a shortest computation τ with cyclic happens-before relation.
- There is (may be non-trivial, depending on RMM) an event that can be cancelled:

$$\tau = \tau_1 \cdot \mathbf{a} \cdot \tau_2 \; .$$

- Computation $\tau_1 \cdot \tau_2$ is shorter, hence not violating.
- There is an SC computation σ with same happens-before relation.

Now

$$(\sigma \downarrow \tau_1) \cdot a \cdot (\sigma \downarrow \tau_2)$$

Theorem (Normal form):

If a program is not robust, it has a violation in normal form.

Proof:

- Take a shortest computation τ with cyclic happens-before relation.
- There is (may be non-trivial, depending on RMM) an event that can be cancelled:

$$\tau = \tau_1 \cdot \mathbf{a} \cdot \tau_2 \; .$$

- Computation $\tau_1 \cdot \tau_2$ is shorter, hence not violating.
- There is an SC computation σ with same happens-before relation.

Now

$$(\sigma \downarrow \tau_1) \cdot a \cdot (\sigma \downarrow \tau_2)$$

is in normal form

Roland Meyer (TU KL)

Theorem (Normal form):

If a program is not robust, it has a violation in normal form.

Proof:

- Take a shortest computation au with cyclic happens-before relation.
- There is (may be non-trivial, depending on RMM) an event that can be cancelled:

$$\tau = \tau_1 \cdot \mathbf{a} \cdot \tau_2 \; .$$

- Computation $\tau_1 \cdot \tau_2$ is shorter, hence not violating.
- There is an SC computation σ with same happens-before relation.

Now

$$(\sigma \downarrow \tau_1) \cdot a \cdot (\sigma \downarrow \tau_2)$$

is in normal form and violating.

Robustness: General Solution

Reduce robustness to an emptiness check

$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset.$$

Combinatorics:

• Violations to SC (if any) have a representative in normal form.

Algorithmics:

- Language \mathcal{L}_{nf} consists of all normal-form computations.
- $\cap \mathcal{R}_{cyc}$ filters only violating computations.

• Decide
$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset$$
.

Challenge

Describe language \mathcal{L}_{nf} of all normal-form computations

Challenge

Describe language \mathcal{L}_{nf} of all normal-form computations

Need a language class that

Challenge

Describe language \mathcal{L}_{nf} of all normal-form computations

Need a language class that

• includes \mathcal{L}_{nf} ,

Challenge

Describe language \mathcal{L}_{nf} of all normal-form computations

Need a language class that

- includes \mathcal{L}_{nf} ,
- is closed under regular intersection $(\mathcal{L}_{nf} \cap \mathcal{R}_{cyc})$,

Challenge

Describe language \mathcal{L}_{nf} of all normal-form computations

Need a language class that

- includes \mathcal{L}_{nf} ,
- is closed under regular intersection ($\mathcal{L}_{nf} \cap \mathcal{R}_{cyc}$),
- has decidable emptiness problem $(\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset)$.

Challenge

Describe language \mathcal{L}_{nf} of all normal-form computations

Need a language class that

- includes \mathcal{L}_{nf} ,
- is closed under regular intersection ($\mathcal{L}_{nf} \cap \mathcal{R}_{cyc}$),
- has decidable emptiness problem $(\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset).$

Properties of \mathcal{L}_{nf}

Challenge

Describe language \mathcal{L}_{nf} of all normal-form computations

Need a language class that

- includes \mathcal{L}_{nf} ,
- is closed under regular intersection ($\mathcal{L}_{nf} \cap \mathcal{R}_{cyc}$),
- has decidable emptiness problem $(\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset).$

Properties of \mathcal{L}_{nf}

• Number of concurrently executed instructions is unbounded

Challenge

Describe language \mathcal{L}_{nf} of all normal-form computations

Need a language class that

- includes \mathcal{L}_{nf} ,
- is closed under regular intersection ($\mathcal{L}_{nf} \cap \mathcal{R}_{cyc}$),
- has decidable emptiness problem $(\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset).$

Properties of \mathcal{L}_{nf}

- Number of concurrently executed instructions is unbounded
- May include computations like $isu^n \cdot w(x_i, 1)^n$

Challenge

Describe language \mathcal{L}_{nf} of all normal-form computations

Need a language class that

- includes \mathcal{L}_{nf} ,
- is closed under regular intersection ($\mathcal{L}_{nf} \cap \mathcal{R}_{cyc}$),
- has decidable emptiness problem $(\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset).$

Properties of \mathcal{L}_{nf}

- Number of concurrently executed instructions is unbounded
- May include computations like $isu^n \cdot w(x_i, 1)^n$

 \Rightarrow not context-free (language $\sigma \cdot \sigma$)

Solution

Define \mathcal{L}_{nf} as language of a multiheaded automaton

Solution

Define \mathcal{L}_{nf} as language of a multiheaded automaton

Multiheaded automata

Solution

Define \mathcal{L}_{nf} as language of a multiheaded automaton

Multiheaded automata

Extension of NFA

Solution

Define \mathcal{L}_{nf} as language of a multiheaded automaton

Multiheaded automata

- Extension of NFA
- Generates parts τ_1 and τ_2 of a computation $\tau_1 \cdot \tau_2$ simultaneously

Solution

Define \mathcal{L}_{nf} as language of a multiheaded automaton

Multiheaded automata

- Extension of NFA
- Generates parts τ_1 and τ_2 of a computation $\tau_1 \cdot \tau_2$ simultaneously
- Transitions $q \xrightarrow{1,a} q'$ and $q \xrightarrow{2,b} q'$ labeled by head i = 1,2

Solution

Define \mathcal{L}_{nf} as language of a multiheaded automaton

Multiheaded automata

- Extension of NFA
- Generates parts τ_1 and τ_2 of a computation $\tau_1 \cdot \tau_2$ simultaneously
- Transitions $q \xrightarrow{1,a} q'$ and $q \xrightarrow{2,b} q'$ labeled by head i = 1,2

Solution

Define \mathcal{L}_{nf} as language of a multiheaded automaton

Multiheaded automata

- Extension of NFA
- Generates parts au_1 and au_2 of a computation $au_1 \cdot au_2$ simultaneously
- Transitions $q \xrightarrow{1,a} q'$ and $q \xrightarrow{2,b} q'$ labeled by head i = 1,2

Solution

Define \mathcal{L}_{nf} as language of a multiheaded automaton

Multiheaded automata

- Extension of NFA
- Generates parts au_1 and au_2 of a computation $au_1 \cdot au_2$ simultaneously
- Transitions $q \xrightarrow{1,a} q'$ and $q \xrightarrow{2,b} q'$ labeled by head i = 1,2

Solution

Define \mathcal{L}_{nf} as language of a multiheaded automaton

Multiheaded automata

- Extension of NFA
- Generates parts au_1 and au_2 of a computation $au_1 \cdot au_2$ simultaneously
- Transitions $q \xrightarrow{1,a} q'$ and $q \xrightarrow{2,b} q'$ labeled by head i = 1,2

Solution

Define \mathcal{L}_{nf} as language of a multiheaded automaton

Multiheaded automata

- Extension of NFA
- Generates parts au_1 and au_2 of a computation $au_1 \cdot au_2$ simultaneously
- Transitions $q \xrightarrow{1,a} q'$ and $q \xrightarrow{2,b} q'$ labeled by head i = 1,2

Example:

Transitions: $q_1 \xrightarrow{1,isu} q_2 \xrightarrow{2,w(x,1)} q_3$

Solution

Define \mathcal{L}_{nf} as language of a multiheaded automaton

Multiheaded automata

- Extension of NFA
- Generates parts τ_1 and τ_2 of a computation $\tau_1 \cdot \tau_2$ simultaneously
- Transitions $q \xrightarrow{1,a} q'$ and $q \xrightarrow{2,b} q'$ labeled by head i = 1,2

Example:

Transitions: $q_1 \xrightarrow{1,isu} q_2 \xrightarrow{2,w(x,1)} q_3$

Solution

Define \mathcal{L}_{nf} as language of a multiheaded automaton

Multiheaded automata

- Extension of NFA
- Generates parts τ_1 and τ_2 of a computation $\tau_1 \cdot \tau_2$ simultaneously
- Transitions $q \xrightarrow{1,a} q'$ and $q \xrightarrow{2,b} q'$ labeled by head i = 1,2

Example:

Transitions: $q_1 \xrightarrow{1,isu} q_2 \xrightarrow{2,w(x,1)} q_3$

Robustness: General Solution

Reduce robustness to an emptiness check

$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset.$$

Combinatorics:

• Violations to SC (if any) have a representative in normal form.

Algorithmics:

- Language \mathcal{L}_{nf} consists of all normal-form computations.
- $\cap \mathcal{R}_{cyc}$ filters only violating computations.
- Decide $\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset$.

Happens-before relation from the example:

Happens-before relation from the example:

Checking cyclicity

Happens-before relation from the example:

Checking cyclicity

• Finitely many types of cycles

Happens-before relation from the example:

Checking cyclicity

- Finitely many types of cycles
- Guess per thread two instructions in program order
Algorithmics: Checking Cyclicity

Happens-before relation from the example:

Checking cyclicity

- Finitely many types of cycles
- Guess per thread two instructions in program order
- Finite automata check edges between guessed instructions from different threads

Roland Meyer (TU KL)

Replication and Consistency

Robustness: General Solution

Reduce robustness to an emptiness check

$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset.$$

Combinatorics:

• Violations to SC (if any) have a representative in normal form.

Algorithmics:

- Language \mathcal{L}_{nf} consists of all normal-form computations.
- $\cap \mathcal{R}_{cyc}$ filters only violating computations.
- Decide $\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset$.

Theorem:

Assuming finite memory, robustness is $\ensuremath{\operatorname{PSpace}}$ -complete.

Theorem:

Assuming finite memory, robustness is $\ensuremath{\operatorname{PSpace}}$ -complete.

Proof:

Theorem:

Assuming finite memory, robustness is $\ensuremath{\operatorname{PSpace}}$ -complete.

Proof:

• Upper bound:
$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset$$
.

Theorem:

Assuming finite memory, robustness is PSPACE-complete.

Proof:

• Upper bound:
$$\mathcal{L}_{nf} \cap \mathcal{R}_{cyc} \stackrel{?}{=} \emptyset$$
.

• Lower bound: SC state reachability [Kozen 1977].