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This Talk
About refinement intersection type systems that refute 
judgements of other type systems.



Background
Refinement intersection type systems are the basis for

• model checkers of higher-order model checking 
(cf. [Kobayashi 09] [Broadbent&Kobayashi 11] [Ramsay+ 14]),

• software model-checker for higher-order 
programs (cf. MoCHi [Kobayashi+ 11]).

In those type systems,

• a derivation gives a witness of derivability,
• but nothing witnesses that a given derivation is 

not derivable.



Motivation
A witness of underivability would be useful for

• a compact representation of an error trace

• an efficient model-checker in collaboration with 
the affirmative system

• cf. [Ramsay+ 14] [Godefroid+ 10]

• development of a type system proving safety
• In some cases (e.g. [T&Kobayashi 14]), a type system 

proving failure is easier to be developed.



Contribution
Development of type systems refuting derivability in 
some type systems such as

• a basic type system for the 𝜆𝜆-calculus
• a type system for call-by-value reachability

Theoretical study of the development



Outline
• Reviewing a refinement intersection type system

for higher-order model checking

• Negative type system

• Extensions

• Discussions



Target language: CbN 𝜆𝜆→-calculus
A simply typed calculus equipped with 𝛽𝛽𝛽𝛽-equivalence.

Kinds (i.e. simple types): 

Terms:

Typing rules:



Refinement types
Types are parameterised by kinds and ground type sets:

We use the following syntax for types:



Alternative definition
Let 𝐴𝐴 be a kind.
The set Ty𝑄𝑄(𝐴𝐴) of types that refines 𝐴𝐴 is given by

where is the refinement relation:



Subtyping
The subtyping relation is defined by induction on kinds.



Type Environments
A (finite) map from variables to sets of types

(or intersection types).



Typing rules



Fact: Invariance under 𝛽𝛽𝛽𝛽-equivalence
Suppose that 𝑀𝑀 =𝛽𝛽𝛽𝛽 𝑁𝑁.  Then

• This fact will not be used in the sequel. 



Convention: Subtyping closure
In what follows, sets of types are assumed to be closed 
under the subtyping relation.

The rule for variables becomes simpler.



Outline
• Reviewing a refinement intersection type system

• Negative type system

• Extensions

• Discussions



Negative Types
Negative types are those constructed from the negative 
ground types :

Typing rules are the same as the affirmative system.



Goal and approach
Giving an anti-monotone bijections on prime types

such that, for every term             ,

This implies that

We shall first study this relation.



(In)consistency   cf. [Salvati & Walukiewicz 2011]

(Intuitively)                    and                   are consistent if

and inconsistent otherwise.

Inference rules



(In)consistency   cf. [Salvati & Walukiewicz 2011]

(Intuitively)                    and                   are consistent if

and inconsistent otherwise.

Inference rules

Assume 
Take 𝑑𝑑 s.t.
Then                                   , contradiction 



Negation is weakest inconsistent type
Recall that

• [Inconsistent]
We have

• [Weakest]
Assume that              .  Then 



Negation is weakest inconsistent type
Recall that

• [Inconsistent]
We have

• [Weakest]
Assume that              .  Then 

Does it exist?



Definition of the negation
Define the two anti-monotone bijections on types

as follows:



Definition of the negation
Define the two anti-monotone bijections on types

as follows:

Weakest inconsistent prime type

Strongest consistent intersection type



Negation



Natural



Natural



Natural

… …



Definition of the negation
Define the two anti-monotone bijections on types

as follows:

Weakest inconsistent prime type

Strongest consistent intersection type



is weakest inconsistent type

a) inconsisnt
Strongest 
consistent

Weakest 
inconsistent

b) weakest Assume
Then              and            .  So

Strongest 
consistent

Weakest 
inconsistent



Main Theorem
Theorem

• if and only if                        ,
where 

• Let                                      .  Then

Proof) By mutual induction on the structure of the term.



Main Theorem
Theorem

• if and only if                        ,
where 

• Let                                      .  Then

Proof) By mutual induction on the structure of the term.

For a closed term 𝑀𝑀,



Main Theorem
Theorem

• if and only if                        ,
where 

• Let                                      .  Then

Proof) By mutual induction on the structure of the term.under a certain condition



Remark
Only prime type judgements have negations

Negation of an intersection type judgement needs 
meta-level union

Prime type

Intersection type



Outline
• Reviewing a refinement intersection type system

• Negation of the type system

• Extensions

• Additional constants (e.g. recursion)
• Categorical formalisation

• Discussions



𝜆𝜆→ + constants

It is easy to handle additional constants
provided that we have an affirmative type system

Affirmative side Negative side

The set of prime 
types for 𝑐𝑐



Example: recursion
Target language:

Affirmative side

coinductive

Negative side



Example: recursion
Target language:

Affirmative side

coinductive

Negative side Equivalent to the inductive 
version of the above rule



Outline
• Reviewing a refinement intersection type system

• Negation of the type system

• Extensions

• Additional constants (e.g. recursion)
• Categorical formalisation

• Discussions



Semantics of terms via type system
Syntax Semantics



Category ScottL𝑢𝑢
Definition The category ScottL𝒖𝒖 is given by:

Object Poset (𝐴𝐴,≤𝐴𝐴).

Morphism An upward-closed relation

Composition Let .  Then



Interpretation of CbN 𝜆𝜆→in ScottL𝑢𝑢
Fact ScottL𝑢𝑢 is a cartesian closed category.

Interpretation of kinds is given by:

Hence                             .

Fact (see e.g. [Terui 2012])



Negation Functor on ScottL𝑢𝑢
The functor 𝜑𝜑: ScottL𝑢𝑢 → ScottL𝑢𝑢 is defined by:

Lemma 𝜑𝜑 is an isomorphism on ScottL𝑢𝑢.

If R ∈ 𝑢𝑢 𝐴𝐴 𝑜𝑜𝑜𝑜 × 𝐵𝐵 and 𝐴𝐴 = ∅, then

which is essentially the complement of 𝑅𝑅.



Applications

• A type system witnessing call-by-value reachability
[T&Kobayashi 14] is the Kleisli category of a monad

Then

is also a monad.  We can lift the negation to

A type system proving unreachability



Applications

• A type system for higher-order model checking
[Kobayashi&Ong 09] is coKleisli category of a comonad

Then

is also a monad.  We can lift the negation to

Essentially the same as [Kobayashi&Ong 09]

[Grellois&Melliès 14]



Outline
• Reviewing a refinement intersection type system

• Negative type system

• Extensions

• Discussions



Automata complementation
Corresponds to negation of a 2nd-order judgement.



Boolean Closedness of Types
Let 𝐴𝐴 be a kind and 𝐵𝐵𝐴𝐴 be the set of all Böhm trees of 
type 𝐴𝐴.  A language is a subset of 𝐵𝐵𝐴𝐴.

Definition A language 𝐿𝐿 ⊆ 𝐵𝐵𝐴𝐴 is type-definable if 
there exists a type 𝜏𝜏 such that

in the type system for higher-order model checking 
[Kobayashi&Ong 09] [T&Ong 14].

Corollary The class of type-definable languages are 
closed under Boolean operations on sets.



Related Work
"Krivine machines and higher-order schemes" 
[Salvati&Walkiewicz 12]

• The notion of consistency and inconsistency can 
be found in their work (called complementarity
for the former and the latter has no name).

• This talk is partially inspired by their work.



Conclusion
Negation is a definable operation in the refinement 
intersection type system for the call-by-name 𝜆𝜆→.

This observation leads to the construction of negative 
type systems for other refinement type systems, e.g.,

• call-by-name 𝜆𝜆→ + recursion
• the type system for HOMC
• a type system for a call-by-value language

Application to verification needs some work.
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