
Negations
in Refinement Type Systems

T. Tsukada (U. Tokyo)

22nd Sep. 2016
IMS, Singapore

This Talk
About refinement intersection type systems that refute
judgements of other type systems.

Background
Refinement intersection type systems are the basis for

• model checkers of higher-order model checking
(cf. [Kobayashi 09] [Broadbent&Kobayashi 11] [Ramsay+ 14]),

• software model-checker for higher-order
programs (cf. MoCHi [Kobayashi+ 11]).

In those type systems,

• a derivation gives a witness of derivability,
• but nothing witnesses that a given derivation is

not derivable.

Motivation
A witness of underivability would be useful for

• a compact representation of an error trace

• an efficient model-checker in collaboration with
the affirmative system

• cf. [Ramsay+ 14] [Godefroid+ 10]

• development of a type system proving safety
• In some cases (e.g. [T&Kobayashi 14]), a type system

proving failure is easier to be developed.

Contribution
Development of type systems refuting derivability in
some type systems such as

• a basic type system for the 𝜆𝜆-calculus
• a type system for call-by-value reachability

Theoretical study of the development

Outline
• Reviewing a refinement intersection type system

for higher-order model checking

• Negative type system

• Extensions

• Discussions

Target language: CbN 𝜆𝜆→-calculus
A simply typed calculus equipped with 𝛽𝛽𝛽𝛽-equivalence.

Kinds (i.e. simple types):

Terms:

Typing rules:

Refinement types
Types are parameterised by kinds and ground type sets:

We use the following syntax for types:

Alternative definition
Let 𝐴𝐴 be a kind.
The set Ty𝑄𝑄(𝐴𝐴) of types that refines 𝐴𝐴 is given by

where is the refinement relation:

Subtyping
The subtyping relation is defined by induction on kinds.

Type Environments
A (finite) map from variables to sets of types

(or intersection types).

Typing rules

Fact: Invariance under 𝛽𝛽𝛽𝛽-equivalence
Suppose that 𝑀𝑀 =𝛽𝛽𝛽𝛽 𝑁𝑁. Then

• This fact will not be used in the sequel.

Convention: Subtyping closure
In what follows, sets of types are assumed to be closed
under the subtyping relation.

The rule for variables becomes simpler.

Outline
• Reviewing a refinement intersection type system

• Negative type system

• Extensions

• Discussions

Negative Types
Negative types are those constructed from the negative
ground types :

Typing rules are the same as the affirmative system.

Goal and approach
Giving an anti-monotone bijections on prime types

such that, for every term ,

This implies that

We shall first study this relation.

(In)consistency cf. [Salvati & Walukiewicz 2011]

(Intuitively) and are consistent if

and inconsistent otherwise.

Inference rules

(In)consistency cf. [Salvati & Walukiewicz 2011]

(Intuitively) and are consistent if

and inconsistent otherwise.

Inference rules

Assume
Take 𝑑𝑑 s.t.
Then , contradiction

Negation is weakest inconsistent type
Recall that

• [Inconsistent]
We have

• [Weakest]
Assume that . Then

Negation is weakest inconsistent type
Recall that

• [Inconsistent]
We have

• [Weakest]
Assume that . Then

Does it exist?

Definition of the negation
Define the two anti-monotone bijections on types

as follows:

Definition of the negation
Define the two anti-monotone bijections on types

as follows:

Weakest inconsistent prime type

Strongest consistent intersection type

Negation

Natural

Natural

Natural

… …

Definition of the negation
Define the two anti-monotone bijections on types

as follows:

Weakest inconsistent prime type

Strongest consistent intersection type

is weakest inconsistent type

a) inconsisnt
Strongest
consistent

Weakest
inconsistent

b) weakest Assume
Then and . So

Strongest
consistent

Weakest
inconsistent

Main Theorem
Theorem

• if and only if ,
where

• Let . Then

Proof) By mutual induction on the structure of the term.

Main Theorem
Theorem

• if and only if ,
where

• Let . Then

Proof) By mutual induction on the structure of the term.

For a closed term 𝑀𝑀,

Main Theorem
Theorem

• if and only if ,
where

• Let . Then

Proof) By mutual induction on the structure of the term.under a certain condition

Remark
Only prime type judgements have negations

Negation of an intersection type judgement needs
meta-level union

Prime type

Intersection type

Outline
• Reviewing a refinement intersection type system

• Negation of the type system

• Extensions

• Additional constants (e.g. recursion)
• Categorical formalisation

• Discussions

𝜆𝜆→ + constants

It is easy to handle additional constants
provided that we have an affirmative type system

Affirmative side Negative side

The set of prime
types for 𝑐𝑐

Example: recursion
Target language:

Affirmative side

coinductive

Negative side

Example: recursion
Target language:

Affirmative side

coinductive

Negative side Equivalent to the inductive
version of the above rule

Outline
• Reviewing a refinement intersection type system

• Negation of the type system

• Extensions

• Additional constants (e.g. recursion)
• Categorical formalisation

• Discussions

Semantics of terms via type system
Syntax Semantics

Category ScottL𝑢𝑢
Definition The category ScottL𝒖𝒖 is given by:

Object Poset (𝐴𝐴,≤𝐴𝐴).

Morphism An upward-closed relation

Composition Let . Then

Interpretation of CbN 𝜆𝜆→in ScottL𝑢𝑢
Fact ScottL𝑢𝑢 is a cartesian closed category.

Interpretation of kinds is given by:

Hence .

Fact (see e.g. [Terui 2012])

Negation Functor on ScottL𝑢𝑢
The functor 𝜑𝜑: ScottL𝑢𝑢 → ScottL𝑢𝑢 is defined by:

Lemma 𝜑𝜑 is an isomorphism on ScottL𝑢𝑢.

If R ∈ 𝑢𝑢 𝐴𝐴 𝑜𝑜𝑜𝑜 × 𝐵𝐵 and 𝐴𝐴 = ∅, then

which is essentially the complement of 𝑅𝑅.

Applications

• A type system witnessing call-by-value reachability
[T&Kobayashi 14] is the Kleisli category of a monad

Then

is also a monad. We can lift the negation to

A type system proving unreachability

Applications

• A type system for higher-order model checking
[Kobayashi&Ong 09] is coKleisli category of a comonad

Then

is also a monad. We can lift the negation to

Essentially the same as [Kobayashi&Ong 09]

[Grellois&Melliès 14]

Outline
• Reviewing a refinement intersection type system

• Negative type system

• Extensions

• Discussions

Automata complementation
Corresponds to negation of a 2nd-order judgement.

Boolean Closedness of Types
Let 𝐴𝐴 be a kind and 𝐵𝐵𝐴𝐴 be the set of all Böhm trees of
type 𝐴𝐴. A language is a subset of 𝐵𝐵𝐴𝐴.

Definition A language 𝐿𝐿 ⊆ 𝐵𝐵𝐴𝐴 is type-definable if
there exists a type 𝜏𝜏 such that

in the type system for higher-order model checking
[Kobayashi&Ong 09] [T&Ong 14].

Corollary The class of type-definable languages are
closed under Boolean operations on sets.

Related Work
"Krivine machines and higher-order schemes"
[Salvati&Walkiewicz 12]

• The notion of consistency and inconsistency can
be found in their work (called complementarity
for the former and the latter has no name).

• This talk is partially inspired by their work.

Conclusion
Negation is a definable operation in the refinement
intersection type system for the call-by-name 𝜆𝜆→.

This observation leads to the construction of negative
type systems for other refinement type systems, e.g.,

• call-by-name 𝜆𝜆→ + recursion
• the type system for HOMC
• a type system for a call-by-value language

Application to verification needs some work.

	Negations�in Refinement Type Systems
	This Talk
	Background
	Motivation
	Contribution
	Outline
	Target language: CbN 𝜆 → -calculus
	Refinement types
	Alternative definition
	Subtyping
	Type Environments
	Typing rules
	Fact: Invariance under 𝛽𝜂-equivalence
	Convention: Subtyping closure
	Outline
	Negative Types
	Goal and approach
	(In)consistency cf. [Salvati & Walukiewicz 2011]
	(In)consistency cf. [Salvati & Walukiewicz 2011]
	Negation is weakest inconsistent type
	Negation is weakest inconsistent type
	Definition of the negation
	Definition of the negation
	Negation
	Natural
	Natural
	Natural
	Definition of the negation
	 is weakest inconsistent type
	Main Theorem
	Main Theorem
	Main Theorem
	Remark
	Outline
	 𝜆 → + constants
	Example: recursion
	Example: recursion
	Outline
	Semantics of terms via type system
	Category ScottL 𝑢
	Interpretation of CbN 𝜆 → in ScottL 𝑢
	Negation Functor on ScottL 𝑢
	Applications
	Applications
	Outline
	Automata complementation
	Boolean Closedness of Types
	Related Work
	Conclusion

