Applications of Higher-Order Model
Checking to Program Verification

Hiroshi Unno
University of Tsukuba

(Joint work with Naoki Kobayashi, Ryosuke
Sato, Tachio Terauchi, and Takuya Kuwahara)

Success Story:
Software Model Checkers for C

Prove Properties of Program Executions
Program: Specification:

b TERMINATOR,

SLAM, BLAST,

Concurrenc Safet 7
| y MAGIC, ... ? . Y TNT, T2,
Recursive Procedures Termination

Heap Data Structures Non-termination
T2, .. LTL, CTL, fair CTL, CTL*

p on HOMC + CDPS 2

2016/9/20

Challenge: How To Construct
Software Model Checker for OCaml?

Prove Properties of Program Executions

Program: Specification:
Higher-order Functions Safety
Exception Handling Termination
Algebraic Data Structures Non-termination
Objects & Dyn. Dispatch LTL, CTL, fair CTL, CTL*

General References

2016/9/20 Workshop on HOMC + CDPS

This Tutorial: Software Model Checker
MoCHi for OCaml based on HOMC

Prove Properties of Program Executions

Program: Specification:
 Higher-order Functions Safety
e Exception Handling Termination
e Algebraic Data Non-termination

Structures w-regular properties

This Tutorial: Software Model Checker
MoCHi for OCaml based on HOMC

Prove Properties of Program Executions

Program: Specification:
 Higher-order Functions Safety
e Exception Handling Termination
e Algebraic Data Non-termination

Structures w-regular properties

Tool Demonstration of MoCHi

e Web interface available from:
http://www-kb.is.s.u-
tokyo.ac.jp/~ryosuke/mochi/

http://www-kb.is.s.u-tokyo.ac.jp/%7Eryosuke/mochi/

Overall Flow of Safety Verification

A~ + recursion

OCaml Program
| \ + algebraic data types

Function Encoding [Sato+ '13]

v

Predicate Abstraction
+ CEGAR [Kobayashi+ '11]

+ exceptions
+ integers + booleans

Higher-order Integer Program N)
| A™ + recursion
+ integers + booleans

! A™ + recursion
Higher-order Boolean Program <| + booleans
y

Higher-Order Model Checking
(TRecS, HorSat, C-SHORe, Preface,...)

ﬁ Sound and complete!

Overall Flow of Safety Verification

A~ + recursion

OCaml Program
| \ + algebraic data types

Function Encoding [Sato+ '13]

v

Predicate Abstraction
+ CEGAR [Kobayashi+ '11]

+ exceptions
+ integers + booleans

Higher-order Integer Program N)
| A™ + recursion
+ integers + booleans

! A™ + recursion
Higher-order Boolean Program <| + booleans
y

Higher-Order Model Checking
(TRecS, HorSat, C-SHORe, Preface,...)

ﬁ Sound and complete!

2016/9/20 Workshop on HOMC + CDPS

Higher-Order Model Checking

* A generalization of ordinary model checking:

— Model the target system as a recursion scheme
and check if it satisfies the given specification

Model Checking Verification Target

Finite state model checking Simple loops
Pushdown model checking First-order recursive functions

Higher-order model checking Higher-order recursive functions

2016/9/20 Workshop on HOMC + CDPS 9

Higher-Order Recursion Scheme (HORS)

e Grammar for generating a possibly infinite tree
g)

Order-0 scheme S »a
S >a c B c B

B-o>b
B>b S ﬂ LA

c b
S>a —HS>a -HS>a .7 clx
/N /N /\ /\\
c B ¢ b ¢ b b
| | .
TOA g
/\
c B C |:I)

Higher-Order Recursion Scheme (HORS)

 Grammar for generating a possibly infinite tree

N
Order-1 scheme A x —>/a\
x A(b x)
S > Ac)/\

Ax—>ax (A (b x)) c:b/a\(l
5 5Ac—oa —>a - ... | b/\“

/\\ /7 \ C | b/\
c Abc)c 4 b

/\ |

b A(b(b c)) c]

I
c i
c

Higher-Order Model Checking

A @\

Given
. C a
G: arecursion scheme P
A: atree automaton, tl) /a\
Tree(G) € L(A)? c b /a\
_ / | B
b |
e.g. | b
- Does every finite path end with “c”? C |
- Does “@” occur eventually whenever “b” occurs? I?
('« Decidable but n-EXPTIME-complete c

(for order-n recursion scheme) [Ong’06]
* Practical higher-order model checkers
_ have been developed [Kobayashi’09,...] Y

HORS as a Programming Language

Recursion schemes

N/
N/

Simply-typed A-calculus
+ recursion
+ tree constructors (but no destructors)

(+ finite data domains such as booleans)

From Program Verification to
Higher-Order Model Checking [kobayashi’09]

Higher-order HORS
bool (describing all
oolean event sequences
rogram
prog Program or outputs) Model
+ — , — + —)
specification Transformation Tree automaton Checking
recognizing valid

(on events or
event sequences
output) or outputs

2016/9/20 Workshop on HOMC + CDPS 14

Example: Fr

continuation parameter,
expressing how “foo” is accessed

Higher-\af’cerﬂl\e call returns y

let rec f(x) =

in

let y = open "foo"

in

if * then close(x) Y5 > F d %
else (read(x):; f(x NN

f (y)

Fxk— +(ck)(r(F xKk))

—

Is the file “foo”

accessed according

to read™ close?

+
/ "\
CPS] |C "
o +
Transformation! *x
C r
| I
+
* N
C r
|
*
4)

|s each path of the tree

>

labeled by r*c?

Workshop on HOI\/I(.\ /

Example: Fr

continuation parameter,
expressing how “foo” is accessed

Higher-\af’cerﬂl\e call returns y

let rec f(x) =

in

let y = open "foo"

in

if * then close(x) Y5 —» F d %
else (read(x); f(x NN

f (y)

Fxk—o +(ck)(r(FxKk))

—

Is the file “foo”

accessed according

to read™ close?

+
/ "\
CPS] |C "
o .
Transformation! * I
C r
| I
+
* N
C r
|
*
4)

|s each path of the tree

>

labeled by r*c?

Workshop on HOI\/I(.\ /

Example: Fr

continuation parameter,
expressing how “foo” is accessed

Higher-\af’cerﬂl\e call returns y

let rec f(x) =

in

let y = open "foo"

in

if * then close(x) YS > F d %
else (read(x):; f(x NN

f (y)

Fxk—o +(ck)(r(FxKk))

—

Is the file “foo”

accessed according

to read™ close?

+
/ "\
CPS] |C "
o +
Transformation! *x
C r
| I
+
* N
C r
|
*
4)

|s each path of the tree

>

labeled by r*c?

Workshop on HOI\/I(.\ /

Example: Fr

continuation parameter,
expressing how “foo” is accessed

Higher-\af’cerﬂl\e call returns y

let rec f(x) =

in

let y = open "foo"

in

if * then close(x) Y5 > F d %
else (read(x); f(x NN

f (y)

Fxk—o +(ck)(r(F xKk))

—

Is the file “foo”

accessed according

to read™ close?

+
/ "\
CPS] |C "
o +
Transformation! *x
C r
| I
+
* N
C r
|
*
4)

|s each path of the tree

>

labeled by r*c?

Workshop on HOI\/I(.\ /

Program Verification based on

Higher-Order Model Checking [kobayashi’09]

Higher-order
boolean
program

+
Specification

ﬁ

Program
Transformation

HORS
+

Tree
automaton

Model
Checking

2016/9

Sound, complete, and automatic for:
- Simply-typed A-calculus + recursion
+ tree constructors (but no destructors)
+ finite data domains (e.g. booleans)
(but not for infinite data domains!)
- A large class of verification problems:
resource usage verification, reachability, flow analysis, ...

Overall Flow of Safety Verification

A~ + recursion

OCaml Program
| \ + algebraic data types

Function Encoding [Sato+ '13]

v

Predicate Abstraction
+ CEGAR [Kobayashi+’11]

+ exceptions
+ integers + booleans

Higher-order Integer Program N)
| A™ + recursion
+ integers + booleans

! A™ + recursion
Higher-order Boolean Program <| + booleans
y

Higher-Order Model Checking
(TRecS, HorSat, C-SHORe, Preface,...)

ﬁ Sound and complete!

2016/9/20 Workshop on HOMC + CDPS

20

Predicate Abstraction [Graf & Saidi '97]

P:/lx.xZO Q=Ay.y=0

Predicate
Abstraction

: ﬂP(X)#Q(X-Fl)
(_@—P(x) # a0(x + 1)

2016/9/20

Boolean
Program

b=true © P(x) /
= \

let f b =

if b then true else rvndboo,

P(x)=0(x+1)

Workshop on HOMC + CDPS 21

CEGAR [Clarke et al. ’00]}

Predicate
Abstraction

Boolean
Program

Model Checking

lOK

safe

New
Predicates

CEGAR
Loop

RG>

Predicate
Discovery

A

infeasible

Feasibility
Check

l feasible

unsafe

CEGAR [Clarke et al. ’00]

Predicate
Abstraction

Boolean
Program

Model Checking

l OK
safe

2016/9/20

New
Predicates

CEGAR
Loop

RG>

Workshop on HOMC + CDPS

Predicate
Discovery

A

infeasible

Feasibility
Check

l feasible

unsafe

23

Challenges in Higher-Order Setting

e Model Checking

— How to precisely analyze higher-order control flows?
= Higher-order model checking!

e Predicate Abstraction
— How to ensure consistency of abstraction?

 Predicate Discovery

— How to find new predicates that can eliminate an
infeasible error trace from the abstraction?

Challenges in Higher-Order Setting

* Predicate Abstraction

— How to ensure consistency of abstraction?

let sum n

let main m = sum m

if n<0 then k O

Ax X >n-1

se sum (n-1) (Ax (x+ng)\

(Ax wssert(x>m))

AX.X=>n

AN

AX.XZ=m

2016/9/20 Workshop on HOMC + CDPS

25

Our Solution: Abstraction Types

e Specify which predicates should be used for
abstraction of each expression

e int|Py, ..., B,]
Int. exps. that should be abstracted by Py, ..., P,
e.g., 3 :int[Ax.x > 0,even? | ~» (true, false)

o (x :int|Py,...,P,]) = int|Q4, ..., Q,,]
Assuming that argument x is abstracted by Py, ..., B,,
abstract the return value by Q4, ..., Q.

Example: Abstraction Types

let sum n k = if n<0 then k O A&X'Zn—l
else sum (n-1) (Ax".k [x'+n))
NN

let main m = su Ax.assert(x=>
nran m m 7\ (x=m)) AX.X=h
Ax.xz‘m
sum: (n:int[]) - (int[Ax.x=n] — *) -
/. A\ \
no predicates for n predicate for Unit type

abstracting the 15t
argument of k

2016/9/20 Workshop on HOMC + CDPS 27

Example: Predicate Abstraction
AX' .x'=n-1

let sum n k = if n<0 then k O_V

else sum (n-1) (Ax".k (x +n)%:, n>0
let main m = sum m (Ax.assert(x=m))S >

AX.X=>N

sum: (n:int[]) = (intf[Ax.x=n] - x) > %

A 4

let sum () k = x'>n-1An>0 = x'+n>n

if * then k true
else sum () (Ab".k [if bme else rnd.,.,.)))
let main () = sum () (1b. assert(b))

Successfully model checked!

2016/9/20 pn HOMC + CDPS 28

Type-Directed Predicate Abstraction

HO Int Expression

Abstraction Type

—<

TFM:T~~t

1

2N

Abstraction Type Environment

HO Bool Expression

FT-M:7' > 17~~5

FTFN:7T ~¢t

'FMN:T~st

Predicate Abstraction Rule for Function Applications

Challenges in Higher-Order Setting

* Predicate Discovery

— How to find new predicates that can eliminate an
infeasible error trace from the abstraction?

Challenges in Higher-Order Setting

* Predicate Discovery

— How to find abstraction types that can eliminate
an infeasible error trace from the abstraction?

Our Solution

e Reduction to refinement type inference of
a straightline higher-order program (SHP)

Infeasible Abstraction
Error Trace Types
Straightline Refinement Type RefinIment

Higher-Order — Inference

Program (SHP) [U. & Kobayashi’09] Types

2016/9/20 Workshop on HOMC + CDPS 32

Refinement Types [xi & Pfenning '98, '99]

e {x:int|x = 0}— FOL formulas (e.g. QFLIA)
B for type refinement

Non-negative integers

. (x:int)—>{r:int|r2x%
Functions that take an integer x and
return an integer r not less than x

Soundness of refinement type system kg, ¢:

P is safe (i.e., P —/~" assert false)
if P is well-typed (i.e., II'.T" Fgr P)

Example: Abstraction Type Finding (1/2)

let sum n k = if n<O then k O
else sum (n-1) (Ax".k (x'+n))
let main m = sum m (Ax.assert(x=m))

2016/9/20

Infeasible error trace:
main m — sum m (Ax.assert(x=m))

— assert(0O>m)

~r— falil

i — if m<0 then (1x.assert(x =m)) O else ...
m=0 =— (Ax.assert(x=m)) O

Workshop on HOMC + CDPS

34

Example: Abstraction Type Finding (2/2)

let sum n k = if n<0 then k O
else sum (n-1) (Ax".k (x'+n))
let main m = sum m (Ax.assert(x=m))

l main m -* if m<0.. »* ., assert(0=m) —,_. fail

Straightline Higher-Order Program (SHP):
let sum n k = assume(n<0); k O
let main m = sum m (Ax.assume(x<m); fail)

l [U. & Kobayashi "09]

Abstraction Type:
sum: (n:int[]) = (int[Ax.x=n] - %) >

2016/9/20 Workshop on HOMC + CDPS 35

Refinement Type Inference
[U. & Kobayashi '09]

SHP —>

Constraint
Generation

>

Horn
Clause
Constraints

-

Constraint
Solving

—>

Refinement
Types

Example: Constraint Generation

Straightline Higher-Order Program (SHP):
let sum n k = assume(n<0); k O |
let main m = sum m (Ax.assume(x<m); fail)

Refinement Type Templates:
sum: (n:{n:int|P(n)}) -

({x:int|Q(n,x)} - *) >

\ 4
Horn Clause Constraints:

T = P(m)
P(n) A n<0 A x=0 = Q(n,x)
P(m) A Q(m,x) Ax<m = 1L

2016/9/20 Workshop on HOMC + CDPS

37

Example: Constraint Solving (1/2)

Horn Clause Constraints:
T = P(m)
P(n) A n<0 A x=0 = Q(n,x)
Pm) A Q(m,x) Ax<m = L

!

Horn Clause Constraints with P eliminated:
n<0 A x=0 = Q(n,x)
Q(n,x) = (n=m =x=m)

2016/9/20

l Interpolating Prover

Solution: Q(n,X) = x=n

Workshop on HOMC + CDPS

38

Interpolating Prover

o |nput: ¢1, ¢2 such that ¢1 = (,bz

e Qutput: aninterpolant ¢ of ¢, ¢, such that:
1. p1 >
2. Q= ¢y
3. FV(¢) € FV(¢1) NFV(¢,)
e Example: Xx=n is an interpolant of:
n<0 A x=0 and n=m =x>m

2016/9/20 Workshop on HOMC + CDPS 39

Example: Constraint Solving (2/2)

Horn Clause Constraints:
T = P(m)
P(n) A n<0 A x=0 = Q(n,x)
Pm) A Q(m,x) Ax<m = L

l Substitute Q(n,x) with x=>n

Horn Clauses with P1 substituted:
T = P(m)
P(n) = (n<0 A x=0 = x=>n)

l Interpolating Prover

Solution: P(n) = T

2016/9/20 Workshop on HOMC + CDPS 40

Example: Refinement Type Inference

Straightline Higher-Order Program (SHP):
let sum n k = assume(n<0); k O |
let main m = sum m (Ax.assume(x<m); fail)

Refinement Type Templates:
sum: (n:{n:int|P(n)}) -

({x:int|Q(n,x)} - *) >

v
Refinement Types of SHP:

sum: (ni{n:int|T}) -
({x:int|x=n} - *) - *

2016/9/20 Workshop on HOMC + CDPS

41

Overall Flow of Safety Verification

A~ + recursion

OCaml Program
| \ + algebraic data types

Function Encoding [Sato+’13]

v

Predicate Abstraction
+ CEGAR [Kobayashi+ '11]

+ exceptions
+ integers + booleans

Higher-order Integer Program N)
| A™ + recursion
+ integers + booleans

! A™ + recursion
Higher-order Boolean Program <| + booleans
y

Higher-Order Model Checking
(TRecS, HorSat, C-SHORe, Preface,...)

ﬁ Sound and complete!

2016/9/20 Workshop on HOMC + CDPS

42

Function Encoding of Lists

* Encode a list as a pair (len, f) such that:
— |lenis the length of the list

— f is a function from an index i to the i-th element

e e.g,[3:1;4]is encoded as (3, f) where:
£(0)=3, f(1)=1, f(2)=4, and undefined otherwise

et nil = (O, funi-> 1)

etconsa(len,)=(len+1, funi->ifi=0thenaelsel (i-1))
et hd (len, |) = assert (len + 0); | O

et tl (len, 1) = assert (len # 0); (len -1, funi -> | (i + 1))

et is_nil (len,l)=1len=0

Function Encoding of
Algebraic Data Structures

 Encode an algebraic data structure as a
function from the path of a node to its label

type btree = Leaf of int | Node of btree * btree

Node A function f such that:
S f r] = Node
st T D f[1]=Leaf f[2]=Node
3 Leaf Leaf f[1:1]=3
| | f [2:1] = Leaf f [2:2]= Leaf
1 4 f[2.1:1]=1 f[2:2.1]=4

2016/9/20 Workshop on HOMC + CDPS 44

Function Encoding of Exceptions

exception NotPos

let rec fact n =
if n <0 then
raise NotPos
else
Try
n X fact (n-1)
with NotPos -> 1

2016/9/20

CPS
Trans.

Workshop on HOMC + CDPS

type exc = NotPos

let rec fact n k exn =
if n <0 then
exn NotPos
else
fact (n-1)
(funr ->k (n x r))
(fun NotPos -> k 1)

45

Summary: Safety Verification by MoCHi

e For finite-data HO programs: sound, complete, and fully-
automatic verification by reduction to HO model checking
[Kobayashi '09]

e Forinfinite-data HO programs: sound and automatic (but
incomplete) verification by a combination of:

— HO model checking
— predicate abstraction & discovery [Kobayashi+ 11, U.+’09, "15]
— program transformation [Sato+ '13]

Necessarily incomplete but often more precise than other
approaches

Sometimes relatively complete modulo certain assumptions
— relatively complete refinement type system [U.+ '13]

— relatively complete predicate discovery [Terauchi & U. "15]

This Tutorial: Software Model Checker
MoCHi for OCaml based on HOMC

Prove Properties of Program Executions

OCaml Program: Specification:
 Higher-order Functions Safety
e Exception Handling Termination
e Algebraic Data Non-termination

Structures w-regular properties

Termination Verification

e Automatically prove that a program
terminates for every input (and non-
determinism)

------ gy (rrminaing

h |
| if n<2 then 1 |
| else |
| fib(n-1) + fib(n-2) i
|]let main () = fib * |

2016/9/20 Workshop on HOMC + CDPS 48

Tool Demonstration of MoCHi

 \Web interface available from:
http://www.kb.is.s.u-
tokyo.ac.jp/~kuwahara/termination/

http://www.kb.is.s.u-tokyo.ac.jp/%7Ekuwahara/termination/

15t Naive Approach to Termination
Verification of HO Functional Programs

e Abstract to a finite data HO program,
and apply HO model checking

 Problem: many terminating programs are turned into
non-terminating ones by abstraction

e.g. f(x) =if x<O then 1 else 1+f(x-1) terminating
- f(b,.,) = if b, then 1 else 1+f(*) non-terminating

Termination Verification
for Imperative Programs

e Binary Reachability Analysis [Cook+ '06]

— Theorem [Podelski & Rybalchenko '04]:
P is terminating iff
T* is disjunctively well-founded (dwf)
e T: the transition relation of P
e dwf: a finite union of well-founded relations

Example: Binary Reachability Analysis

T: x = *; T S {(s, s’) | s.pc <s’.pc}

2: while(x>0){ U {(s, s’) | s.pc > s’.pc}
3: X==; U {(s, s’) | s.x>s’.x = 0}
4: }

Terminating!

2016/9/20 Workshop on HOMC + CDPS 52

2"d Naive Approach to Termination
Verification of HO Functional Programs

e Check that »% is dwf by [Cook+ ’'06]
— : the one-step reduction relation of the HO program P

 Problem: [Cook+ ’06] needs to reason about
change in calling context / call stack

— Theorem [Berardi+’14, Yokoyama’14]:
[Cook+ ’06] can only prove termination of primitive
recursive functions (when usable wf relations have
height at most w)

27d Najve Approach to Termination

let recack mn =

fm=0thenn+1

else if n =0 then ack (m-1) 1

else ack (m-1) (ack m (n-1))
{letmainmn=ifm>0&&n>0thenackmn
Terminates but transition relation is quite complex

— Theorem [Berardi+’14, Yokoyama’14]:
[Cook+ ’06] can only prove termination of primitive
recursive functions (when usable wf relations have
height at most w)

Our Solution: Binary Reachability
Analysis Generalized to HO [Kuwahara+ '14]

e Theorem [Kuwahara+ '14]:
HO functional program P is terminating iff Cally is dwf

— The calling relation Callp of P:
{(fD,gw) | g is called from f¥ in an execution of P}

— Call} ={(f?,gW) | main() »* E[f¥], f¥ >* E'[gW]}

Example: Generalized Binary
Reachability Analysis

Let rec fib n =
if n<2 then 1 (Tree representation)

else fib (n-1)

+ fib (n-2)
Llet main(O=fib(rand())

Call={(fib(n),fib(n-1)) | n>1
U {(flb(n),flb(n 2)) |n>1}

2016/9/20 Workshop on HOMC + CDPS 56

Reduce Binary Reachability
to Plain Reachability

e Goal: check Callp € W for some dwf W

 Approach: reduction to a safety verification problem
by program transformation

— To each function f, add an extra argument to record the
argument of an ancestor call to f

— Assert that W holds when f is called

/fib n= \ /fib mn = \
if n<2 then n assert(m>n=>0);
else fib(n-1)+fib(n-2) = let m’=if * then melse nin
main() = fib(rand()) if n<2 then n
else fib m’ (n-1)+fib m’ (n-2)

W= {(m,n) | m>n>0} Y, @ain() = fib L (rand()) ﬁ/

2016/95720 Workshop on HOMCTCDPS

This Tutorial: Software Model Checker
MoCHi for OCaml based on HOMC

Prove Properties of Program Executions

OCaml Program: Specification:
 Higher-order Functions Safety
e Exception Handling Termination
e Algebraic Data Non-termination

Structures w-regular properties

Automata-Theoretic Approach [Vardi’91]

* |nput:
— Program P
— w-regular temporal property ¥

1. Construct w-automaton A_y (with a fairness
acceptance condition) that recognizes L(—¥)

2. Construct product program P X A_y

3. Verify that P X A_y is fair terminating
(i.e., no infinite execution trace that is fair)

Theorem: P E Wiff P X A_y is fair terminating

Definition: Fair Termination of P

e Fairness Constraint: C = {(44,B1), ..., (4., B,)}

* Infinite sequence mis fairwrt C if V(4,B) € C,
— A occurs only finitely often in T or

— B occurs infinitely often in

e Pis fair terminating wrt C if P has
no infinite execution trace that is fair wrt C

Fair Termination Verification for
Imperative Programs [Cook+ '07]

e Theorem:
P is fair terminating wrt C iff T*'C is dwf

— T': transition relation of P

— fair transitive closure R*'C of R is defined by:
Vi<i<n.(s;,Si+1) ER }
+IC _— 2l+1)
R {(Sl’sn) S+ Sy isfairwrt C,n = 2
(Intuitively means the subset of R* that is fair wrt C)

* Finite sequence s; -+ s, isfairwrt C if V(4,B) € C,
A does not occur in s; --+ S, or B occursin sq **- Sy,

15t Naive Approach to Fair Termination
Verification of HO Functional Programs

e Check that =*'C is dwf

— : the one-step reduction relation of the HO program P

o Suffers from the same problem as the 15 naive
approach to plain termination verification of HO
functional programes:

— [Cook+ '07] needs to reason about change in calling
context / call stack

2"d Naive Approach to Fair Termination
Verification of HO Functional Programs

e Check that Call}'¢ is dwf
+IC

* Unsound: There is a case that Callp' "~ is dwf

but P is not fair-terminating wrt C
— For example, fn
fx=ifx<0then () else (f0O; f 1) fo/\fl
C = {(true, f 0)}

(fair wrt C iff f O is called infinitely often) f 0 f1
0

[20 0, f1-"f1-5"70;f1-5F .

Our Solution: Fair-Termination Analysis
Generalized to HO Programs [Murase+ ’16]

e Check disjunctive well-foundedness of =%:
((f7,gW) | main() ~* E[f?], fo ~>*'¢ E'[gw]}

— Note that =§ is Call} but »% replaced by —»*'¢

* Theorem:
P is fair-terminating wrt C iff =$ is dwf

How to Check that = is dwf?

* By reduction to a safety verification problem
via program transformation similar to the one
for binary reachability analysis
(see our POPL'16 paper [Murase+'16] for details)

Summary: Plain and Fair Termination
Verification by MoCHi

 Naive combination of HO model checking and
predicate abstraction into HO Boolean
programs is too imprecise

* Generalize binary reachability analysis to the
HO setting by introducing the calling relations

Callp and =4

This Tutorial: Software Model Checker
MoCHi for OCaml based on HOMC

Prove Properties of Program Executions

OCaml Program: Specification:
 Higher-order Functions Safety
e Exception Handling Termination
e Algebraic Data Non-termination

Structures w-regular properties

Verifying Non-Termination
(or Disproving Termination) of HO programs

 Goal: prove that a program is non-terminating
for some input (or for some non-deterministic
choice)

— complementary to termination verification

Our approach [Kuwahara+ '15]

e combine over- and under-approximation

— over-approximate deterministic branches, and
check that all the branches are non-terminating

— under-approximate non-deterministic branches, and
check that one of the branches is non-terminating

A/ spurious path)
I\ introduced by
: over-
approximation

path eliminated
by under-
approximation

-
. - -

computation tree of computation tree of
the original program the abstract program

2016/9/20 Workshop on HOMC + CDPS 69

Our Approach:
Combination of Under-/Over-approximation

- Apred x>OL /\
let x=* /\ /\)

let y=* yOyl yOyl
% f(x+y)) L

Only one of the
branches needs to ‘
/ %\ be non-terminating 5

/* case x>0 */ x>0 x>0

’ ® o e

/* case x>0 */

J Y

Our Approach:

let y=*
_ f(x+y) J

.t
4)
3(/* case ~x>0 */
3(...
/* case -0<y<x */)

=0<y<Xx
. Under-approximation: | |
) case for x>0/ O<y<x
\ is discarded

—

Our Approach:
Combination of Under-/Over-approximation

Apr‘ed x>0]\ /\

f x=0
let x=*

pred: O<y<x] /\
let y=" T% yf?l y =0y~ 1’
_ f(x+y)

- P
4 ™ 3"

3(/* case ~x>0 */ A
(... +5 o
/* case -0<y<x */) 3 /3\

20SysX _ney< Dov<
' Under-approximation: | O—IY—X _)I/_x
) case for ax>0A O<y<x
\ is discarded

—

Our Approach:
Combination of Under-/Over-approximation

(| Apr‘ed: X>O]\ /\
:e'r X="'in_[" pred: Osysx /\ N
eTf}'- pred: x+y>0 y =0 yll y 70 T 1

s+)2 S

_ J 2 .

¥
: . s

3(/* case ~x>0 */ o~
3(/* case -0<y<x */ ~x>0 x>0
> A
... "OSIVSX -OSIySX OS)I/SX
)

N /

Our Approach:
Combination of Under-/Over-approximation

Apr‘ed x>0]\ /\

-
let x=*
pr'ed O<y<x /\ /\)
Ie1'y- r'edx+>0 yOyl yOyl
f(x+ : Y .
- : ; E E

Overapproxumahon R
both branches should .
have an infinite path
é(/* case” (since we don't know 3
se which branch is valid) . /\
V(f true /*case x+y>0 */, -XI>O X|>O
f false /*case —x+y>0 */) = =
| T T~
) _'OSIySX -~0<y<x O<y<x
I |

\), “ee / /V\ /V\ Y

Summary: Non-Termination
Verification by MoCHi

 Underapproximate non-deterministic computation,
and check that one of the branches has a non-
terminating path

 Overapproximate deterministic computation, and
check that all the branches have non-terminating
paths

 Check them by using HO model checking

Conclusions

e HO model checking alone is not enough to
construct practical software model checkers

for OCaml, Java, ...

e |tis often the case that software verification

techniques developed for imperative
programs cannot be reused in the HO setting

— Types are useful for generalization to HO

	Applications of Higher-Order Model Checking to Program Verification
	Success Story:�Software Model Checkers for C
	Challenge: How To Construct�Software Model Checker for OCaml?
	This Tutorial: Software Model Checker MoCHi for OCaml based on HOMC
	This Tutorial: Software Model Checker MoCHi for OCaml based on HOMC
	Tool Demonstration of MoCHi
	Overall Flow of Safety Verification
	Overall Flow of Safety Verification
	Higher-Order Model Checking
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Model Checking
	HORS as a Programming Language
	From Program Verification to�Higher-Order Model Checking [Kobayashi ’09]
	Example: From Program Verification to�Higher-Order Model Checking
	Example: From Program Verification to�Higher-Order Model Checking
	Example: From Program Verification to�Higher-Order Model Checking
	Example: From Program Verification to�Higher-Order Model Checking
	Program Verification based on�Higher-Order Model Checking [Kobayashi ’09]
	Overall Flow of Safety Verification
	Predicate Abstraction [Graf & Saidi ’97]
	CEGAR [Clarke et al. ’00]
	CEGAR [Clarke et al. ’00]
	Challenges in Higher-Order Setting
	Challenges in Higher-Order Setting
	Our Solution: Abstraction Types
	Example: Abstraction Types
	Example: Predicate Abstraction
	Type-Directed Predicate Abstraction
	Challenges in Higher-Order Setting
	Challenges in Higher-Order Setting
	Our Solution
	Refinement Types [Xi & Pfenning ’98, ’99]
	Example: Abstraction Type Finding (1/2)
	Example: Abstraction Type Finding (2/2)�
	Refinement Type Inference�[U. & Kobayashi ’09]
	Example: Constraint Generation
	Example: Constraint Solving (1/2)
	Interpolating Prover
	Example: Constraint Solving (2/2)
	Example: Refinement Type Inference
	Overall Flow of Safety Verification
	Function Encoding of Lists
	Function Encoding of�Algebraic Data Structures
	Function Encoding of Exceptions
	Summary: Safety Verification by MoCHi
	This Tutorial: Software Model Checker MoCHi for OCaml based on HOMC
	Termination Verification
	Tool Demonstration of MoCHi
	1st Naïve Approach to Termination Verification of HO Functional Programs
	Termination Verification�for Imperative Programs
	Example: Binary Reachability Analysis
	2nd Naïve Approach to Termination Verification of HO Functional Programs
	2nd Naïve Approach to Termination Verification of HO Functional Programs
	Our Solution: Binary Reachability Analysis Generalized to HO [Kuwahara+ ’14]
	Example: Generalized Binary Reachability Analysis
	Reduce Binary Reachability �to Plain Reachability
	This Tutorial: Software Model Checker MoCHi for OCaml based on HOMC
	Automata-Theoretic Approach [Vardi’91]
	Definition: Fair Termination of 𝑃
	Fair Termination Verification for�Imperative Programs [Cook+ ’07]
	1st Naïve Approach to Fair Termination Verification of HO Functional Programs
	2nd Naïve Approach to Fair Termination Verification of HO Functional Programs
	Our Solution: Fair-Termination Analysis Generalized to HO Programs [Murase+ ’16]
	How to Check that ⊳ 𝑃 𝐶 is dwf?
	Summary: Plain and Fair Termination Verification by MoCHi
	This Tutorial: Software Model Checker MoCHi for OCaml based on HOMC
	Verifying Non-Termination�(or Disproving Termination) of HO programs
	Our approach [Kuwahara+ ’15]
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Summary: Non-Termination Verification by MoCHi
	Conclusions

