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Success Story:
Software Model Checkers for C

Program:

Concurrency
Recursive Procedures
Heap Data Structures

Specification:

Safety
Termination

Non-termination
LTL, CTL, fair CTL, CTL*
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𝑃𝑃 ⊨ Ψ
Prove Properties of Program Executions

SLAM, BLAST, 
MAGIC, …

TERMINATOR, 
…

TNT, T2,
…

T2, …



Challenge: How To Construct
Software Model Checker for OCaml?

Program:

• Higher-order Functions
• Exception Handling
• Algebraic Data Structures
• Objects & Dyn. Dispatch
• General References

Specification:

Safety
Termination

Non-termination
LTL, CTL, fair CTL, CTL*
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𝑃𝑃 ⊨ Ψ
Prove Properties of Program Executions



This Tutorial: Software Model Checker 
MoCHi for OCaml based on HOMC

Program:

• Higher-order Functions
• Exception Handling
• Algebraic Data 

Structures

Specification:

Safety
Termination

Non-termination
𝜔𝜔-regular properties
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𝑃𝑃 ⊨ Ψ
Prove Properties of Program Executions



Tool Demonstration of MoCHi

• Web interface available from:
http://www-kb.is.s.u-
tokyo.ac.jp/~ryosuke/mochi/
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http://www-kb.is.s.u-tokyo.ac.jp/%7Eryosuke/mochi/


Overall Flow of Safety Verification
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Higher-order Integer Program

Predicate Abstraction
+ CEGAR [Kobayashi+ ’11]

Higher-Order Model Checking
(TRecS, HorSat, C-SHORe, Preface,…)

Higher-order Boolean Program
𝜆𝜆→ + recursion

+ booleans

Sound and complete!

𝜆𝜆→ + recursion
+ integers + booleans

Function Encoding [Sato+ ’13]

OCaml Program 𝜆𝜆→ + recursion
+ algebraic data types

+ exceptions
+ integers + booleans

Workshop on HOMC + CDPS
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Higher-Order Model Checking

• A generalization of ordinary model checking：
– Model the target system as a recursion scheme 

and check if it satisfies the given specification
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Model Checking Verification Target
Finite state model checking Simple loops
Pushdown model checking First-order recursive functions
Higher-order model checking Higher-order recursive functions



Higher-Order Recursion Scheme (HORS)
• Grammar for generating a possibly infinite tree

Order-0 scheme
S  → a  c  B
B → b  S

→ a

c B c b

→ a

S

c b

→ a

a

c B

→ ... →
c b

a

c b

a

c b

a

S

S  → a  
c  B

B → b
S 
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Higher-Order Recursion Scheme (HORS)

• Grammar for generating a possibly infinite tree

Order-1 scheme
S  → A c
A x → a x (A (b x))

→A c

c A(b c)

→ a → ... →

c a

→ a

b A(b(b c))

c

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

S

A x → a
x A(b x) 
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Higher-Order Model Checking

e.g. 
- Does every finite path end with “c”?
- Does “a” occur eventually whenever “b” occurs?

Given
𝑮𝑮: a recursion scheme
𝑨𝑨: a tree automaton,

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝑮𝑮 ∈ 𝑳𝑳(𝑨𝑨)?
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• Decidable but n-EXPTIME-complete
(for order-n recursion scheme) [Ong ’06]

• Practical higher-order model checkers
have been developed [Kobayashi ’09,…]

c a
a

b
c

a
b
b
c

a
b
b
b
c

...



HORS as a Programming Language

Recursion schemes
≈

Simply-typed λ-calculus 

+ recursion 

+ tree constructors (but no destructors)

(+ finite data domains such as booleans)
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From Program Verification to
Higher-Order Model Checking [Kobayashi ’09]

Program 
Transformation

Higher-order
boolean
program

+
specification
(on events or 
output)

HORS
(describing all 

event sequences
or outputs)

+
Tree automaton
recognizing valid
event sequences

or outputs

Model
Checking
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Example: From Program Verification to
Higher-Order Model Checking

let rec f(x) = 
if ∗ then close(x) 
else (read(x); f(x))

in
let y = open “foo”
in

f (y)

F x k → + (c k) (r (F x k))
S → F d 
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Is the file “foo”
accessed according 

to read* close?

Is each path of the tree
labeled by 𝑟𝑟∗𝑐𝑐?

CPS 
Transformation!

c
+

+

c
+

c
...

r

r

r







continuation parameter, 
expressing how “foo” is accessed 

after the call returns
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Program Verification based on
Higher-Order Model Checking [Kobayashi ’09]

Program 
Transformation

Higher-order 
boolean
program

+
Specification

HORS
+

Tree 
automaton

Model
Checking
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Sound, complete, and automatic for:
- Simply-typed 𝜆𝜆-calculus + recursion 

+ tree constructors (but no destructors)
+ finite data domains (e.g. booleans)
(but not for infinite data domains!)

- A large class of verification problems:
resource usage verification, reachability, flow analysis, ...



Overall Flow of Safety Verification
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Higher-order Integer Program

Predicate Abstraction
+ CEGAR [Kobayashi+ ’11]

Higher-Order Model Checking
(TRecS, HorSat, C-SHORe, Preface,…)

Higher-order Boolean Program
𝜆𝜆→ + recursion

+ booleans

Sound and complete!

𝜆𝜆→ + recursion
+ integers + booleans

Function Encoding [Sato+ ’13]

OCaml Program 𝜆𝜆→ + recursion
+ algebraic data types

+ exceptions
+ integers + booleans
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Predicate Abstraction [Graf & Saidi ’97]
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let f x = x+1

let f b = if b then true else rndbool

Program

Predicate 
Abstraction

Boolean 
Program

Predicates

b=true ⇔ 𝑃𝑃 𝑥𝑥

𝑃𝑃 𝑥𝑥 ⇒ 𝑄𝑄 𝑥𝑥 + 1

𝑃𝑃 ≡ 𝜆𝜆𝑥𝑥. 𝑥𝑥 ≥ 0 𝑄𝑄 ≡ 𝜆𝜆𝜆𝜆. 𝜆𝜆 ≥ 0

Workshop on HOMC + CDPS

¬𝑃𝑃 𝑥𝑥 ⇏ 𝑄𝑄 𝑥𝑥 + 1
¬𝑃𝑃 𝑥𝑥 ⇏ ¬𝑄𝑄 𝑥𝑥 + 1



CEGAR [Clarke et al. ’00]
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Program

Predicate
Abstraction

Boolean 
Program

Model Checking

safe

Error Trace Feasibility 
Check

Predicate 
Discovery

New 
Predicates

unsafe

OK

NG

feasible

infeasible

CEGAR
Loop
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CEGAR [Clarke et al. ’00]

2016/9/20 23

Program

Predicate
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Challenges in Higher-Order Setting
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• Model Checking
– How to precisely analyze higher-order control flows?
⇒ Higher-order model checking!

• Predicate Abstraction
– How to ensure consistency of abstraction?

• Predicate Discovery
– How to find new predicates that can eliminate an 

infeasible error trace from the abstraction?

Workshop on HOMC + CDPS



Challenges in Higher-Order Setting

2016/9/20 25

• Predicate Abstraction
– How to ensure consistency of abstraction?

let sum n k = if n≤0 then k 0
else sum (n-1) (𝜆𝜆x’.k (x’+n))

let main m = sum m (𝜆𝜆x.assert(x≥m))

𝜆𝜆x.x≥m
𝜆𝜆x.x≥n

Workshop on HOMC + CDPS

𝜆𝜆x’.x’≥n-1



Our Solution: Abstraction Types

• Specify which predicates should be used for 
abstraction of each expression

• int 𝑃𝑃1, … , 𝑃𝑃𝑛𝑛
Int. exps. that should be abstracted by 𝑃𝑃1, … , 𝑃𝑃𝑛𝑛
e.g., 3 ∶ int 𝜆𝜆𝑥𝑥. 𝑥𝑥 > 0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒? ↝ true, false

• 𝑥𝑥 ∶ int 𝑃𝑃1, … , 𝑃𝑃𝑛𝑛 → int 𝑄𝑄1, … , 𝑄𝑄𝑚𝑚
Assuming that argument 𝑥𝑥 is abstracted by 𝑃𝑃1, … , 𝑃𝑃𝑛𝑛 ,
abstract the return value by 𝑄𝑄1, … , 𝑄𝑄𝑚𝑚
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Example: Abstraction Types
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sum: (n:int[]) → (int[𝜆𝜆x.x≥n] → ⋆) → ⋆

let sum n k = if n≤0 then k 0
else sum (n-1) (𝜆𝜆x’.k (x’+n))

let main m = sum m (𝜆𝜆x.assert(x≥m))

no predicates for n predicate for 
abstracting the 1st

argument of k

Unit type

𝜆𝜆x.x≥m

𝜆𝜆x’.x’≥n-1

𝜆𝜆x.x≥n

Workshop on HOMC + CDPS



Example: Predicate Abstraction
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let sum n k = if n≤0 then k 0
else sum (n-1) (𝜆𝜆x’.k (x’+n))

let main m = sum m (𝜆𝜆x.assert(x≥m))

sum: (n:int[]) → (int[𝜆𝜆x.x≥n] → ⋆) → ⋆

let sum () k =
if * then k true

else sum () (𝜆𝜆b’.k (if b’ then true else rndbool))
let main () = sum () (𝜆𝜆b. assert(b))

Successfully model checked!

𝜆𝜆x’.x’≥n-1

n>0

𝜆𝜆x.x≥n

x’≥n-1 ∧ n>0 ⇒ x’+n≥n

Workshop on HOMC + CDPS



Type-Directed Predicate Abstraction
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Abstraction Type Environment

HO Int Expression Abstraction Type

HO Bool Expression

Predicate Abstraction Rule for Function Applications

Γ ⊢ 𝑀𝑀 ∶ 𝜏𝜏 ↝ 𝑡𝑡

Γ ⊢ 𝑀𝑀 ∶ 𝜏𝜏′ → 𝜏𝜏 ↝ 𝑠𝑠 Γ ⊢ 𝑁𝑁 ∶ 𝜏𝜏′ ↝ 𝑡𝑡
Γ ⊢ 𝑀𝑀 𝑁𝑁 ∶ 𝜏𝜏 ↝ 𝑠𝑠 𝑡𝑡
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Challenges in Higher-Order Setting
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• Predicate Discovery
– How to find new predicates that can eliminate an 

infeasible error trace from the abstraction?

Workshop on HOMC + CDPS



Challenges in Higher-Order Setting
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• Predicate Discovery
– How to find abstraction types that can eliminate 

an infeasible error trace from the abstraction?

Workshop on HOMC + CDPS



Our Solution
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• Reduction to refinement type inference of
a straightline higher-order program (SHP)

Infeasible 
Error Trace

Refinement Type 
Inference

[U. & Kobayashi ’09]

Straightline
Higher-Order 

Program (SHP)

Refinement
Types

Abstraction 
Types

Workshop on HOMC + CDPS



Refinement Types [Xi & Pfenning ’98, ’99]

• 𝑥𝑥 ∶ int | 𝑥𝑥 ≥ 0
Non-negative integers

• 𝑥𝑥 ∶ int → {𝑟𝑟 ∶ int | 𝑟𝑟 ≥ 𝑥𝑥}
Functions that take an integer 𝑥𝑥 and
return an integer 𝑟𝑟 not less than 𝑥𝑥
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FOL formulas (e.g. QFLIA)
for type refinement

Soundness of refinement type system ⊢𝑅𝑅𝑅𝑅𝑅𝑅:
𝑃𝑃 is safe (i.e., 𝑃𝑃 −→∗ assert false)
if 𝑃𝑃 is well-typed (i.e., ∃𝛤𝛤. 𝛤𝛤 ⊢𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃)



Example: Abstraction Type Finding (1/2)
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let sum n k = if n≤0 then k 0
else sum (n-1) (𝜆𝜆x’.k (x’+n))

let main m = sum m (𝜆𝜆x.assert(x≥m))

Infeasible error trace:
main m → sum m (𝜆𝜆x.assert(x≥m)) 
→ if m≤0 then (𝜆𝜆x.assert(x ≥m)) 0 else …
→ (𝜆𝜆x.assert(x≥m)) 0
→ assert(0≥m)
→ fail

m≤0

0<m
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Example: Abstraction Type Finding (2/2)

2016/9/20 35

Refinement Type of SHP:
sum: (n:int) → ({x:int|x≥n} → ⋆) → ⋆

[U. & Kobayashi ’09]

Abstraction Type:
sum: (n:int[]) → (int[𝜆𝜆x.x≥n] → ⋆) → ⋆

Straightline Higher-Order Program (SHP):
let sum n k = assume(n≤0); k 0
let main m = sum m (𝜆𝜆x.assume(x<m); fail)

let sum n k = if n≤0 then k 0
else sum (n-1) (𝜆𝜆x’.k (x’+n))

let main m = sum m (𝜆𝜆x.assert(x≥m))

main m →∗ if m≤0… →∗
m≤0 assert(0≥m) →0<m fail
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Refinement Type Inference
[U. & Kobayashi ’09]
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Constraint 
GenerationSHP

Horn 
Clause

Constraints

Constraint 
Solving

Refinement 
Types
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Example: Constraint Generation
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Straightline Higher-Order Program (SHP):
let sum n k = assume(n≤0); k 0
let main m = sum m (𝜆𝜆x.assume(x<m); fail)

Refinement Type Templates:
sum: (n:{n:int|P(n)}) →

({x:int|Q(n,x)} → ⋆) → ⋆

Horn Clause Constraints:
⊤ ⇒ P(m)

P(n) ∧ n≤0 ∧ x=0 ⇒ Q(n,x)
P(m) ∧ Q(m,x) ∧ x<m ⇒ ⊥

Workshop on HOMC + CDPS



Example: Constraint Solving (1/2)
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Horn Clause Constraints:
⊤ ⇒ P(m)

P(n) ∧ n≤0 ∧ x=0 ⇒ Q(n,x)
P(m) ∧ Q(m,x) ∧ x<m ⇒ ⊥

Horn Clause Constraints with P eliminated:
n≤0 ∧ x=0 ⇒ Q(n,x)

Q(m,x) ⇒ x≥m

Solution: Q(n,x) ≡ x≥n

Interpolating Prover

Workshop on HOMC + CDPS

Horn Clause Constraints with P eliminated:
n≤0 ∧ x=0 ⇒ Q(n,x)

Q(n,x) ⇒ (n=m ⇒x≥m)



Interpolating Prover

• Input: 𝜙𝜙1, 𝜙𝜙2 such that 𝜙𝜙1 ⇒ 𝜙𝜙2

• Output: an interpolant 𝜙𝜙 of 𝜙𝜙1, 𝜙𝜙2 such that:
1. 𝜙𝜙1 ⇒ 𝜙𝜙
2. 𝜙𝜙 ⇒ 𝜙𝜙2
3. 𝐹𝐹𝐹𝐹 𝜙𝜙 ⊆ 𝐹𝐹𝐹𝐹 𝜙𝜙1 ∩ 𝐹𝐹𝐹𝐹 𝜙𝜙2

• Example: x≥n is an interpolant of:
n≤0 ∧ x=0 and n=m ⇒x≥m
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Example: Constraint Solving (2/2)
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Horn Clause Constraints:
⊤ ⇒ P(m)

P(n) ∧ n≤0 ∧ x=0 ⇒ Q(n,x)
P(m) ∧ Q(m,x) ∧ x<m ⇒ ⊥

Horn Clauses with P1 substituted:
⊤ ⇒ P(m)

P(n) ⇒ (n≤0 ∧ x=0 ⇒ x≥n)

Solution: P(n) ≡ ⊤

Interpolating Prover

Substitute Q(n,x) with x≥n

Workshop on HOMC + CDPS



Example: Refinement Type Inference
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Straightline Higher-Order Program (SHP):
let sum n k = assume(n≤0); k 0
let main m = sum m (𝜆𝜆x.assume(x<m); fail)

Refinement Type Templates:
sum: (n:{n:int|P(n)}) →

({x:int|Q(n,x)} → ⋆) → ⋆

Refinement Types of SHP:
sum: (n:{n:int|⊤}) →

({x:int|x≥n} → ⋆) → ⋆

Workshop on HOMC + CDPS



Overall Flow of Safety Verification
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Higher-order Integer Program

Predicate Abstraction
+ CEGAR [Kobayashi+ ’11]

Higher-Order Model Checking
(TRecS, HorSat, C-SHORe, Preface,…)

Higher-order Boolean Program
𝜆𝜆→ + recursion

+ booleans

Sound and complete!

𝜆𝜆→ + recursion
+ integers + booleans

Function Encoding [Sato+ ’13]

OCaml Program 𝜆𝜆→ + recursion
+ algebraic data types

+ exceptions
+ integers + booleans
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Function Encoding of Lists

• Encode a list as a pair (len, f) such that:
– len is the length of the list
– f is a function from an index 𝑖𝑖 to the 𝑖𝑖-th element

• e.g., [3;1;4] is encoded as (3, f) where:
f(0)=3, f(1)=1, f(2)=4, and undefined otherwise
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let nil = (0, fun i -> ⊥)
let cons a (len, l) = (len + 1, fun i -> if i = 0 then a else l (i - 1))
let hd (len, l) = assert (len ≠ 0); l 0
let tl (len, l) = assert (len ≠ 0); (len - 1, fun i -> l (i + 1))
let is_nil (len, l) = len = 0
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Function Encoding of
Algebraic Data Structures

• Encode an algebraic data structure as a 
function from the path of a node to its label
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type btree = Leaf of int | Node of btree * btree

Node

Leaf Node

Leaf Leaf3

1 4

A function f such that:
f [] = Node
f [1] = Leaf f [2] = Node
f [1;1] = 3
f [2;1] = Leaf f [2;2] = Leaf
f [2;1;1] = 1 f [2;2;1] = 4
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Function Encoding of Exceptions
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exception NotPos

let rec fact n =
if n ≤ 0 then
raise NotPos

else
try
n × fact (n-1)

with NotPos -> 1

type exc = NotPos

let rec fact n k exn =
if n ≤ 0 then
exn NotPos

else
fact (n-1)
(fun r -> k (n × r))
(fun NotPos -> k 1)

CPS
Trans.

Workshop on HOMC + CDPS



Summary: Safety Verification by MoCHi

• For finite-data HO programs: sound, complete, and fully-
automatic verification by reduction to HO model checking 
[Kobayashi ’09]

• For infinite-data HO programs: sound and automatic (but 
incomplete) verification by a combination of:
– HO model checking
– predicate abstraction & discovery [Kobayashi+ ’11, U.+ ’09, ’15] 
– program transformation [Sato+ ’13]

Necessarily incomplete but often more precise than other 
approaches
Sometimes relatively complete modulo certain assumptions
– relatively complete refinement type system [U.+ ’13]
– relatively complete predicate discovery [Terauchi & U. ’15]
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This Tutorial: Software Model Checker 
MoCHi for OCaml based on HOMC

OCaml Program:

• Higher-order Functions
• Exception Handling
• Algebraic Data 

Structures

Specification:

Safety
Termination

Non-termination
𝜔𝜔-regular properties
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𝑃𝑃 ⊨ Ψ
Prove Properties of Program Executions



Termination Verification

• Automatically prove that a program 
terminates for every input (and non-
determinism)
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let rec fib n =

if n<2 then 1

else

fib(n-1) + fib(n-2)

let main () = fib *

Input Terminating

Unknown



Tool Demonstration of MoCHi

• Web interface available from:
http://www.kb.is.s.u-
tokyo.ac.jp/~kuwahara/termination/
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1st Naïve Approach to Termination 
Verification of HO Functional Programs
• Abstract to a finite data HO program,

and apply HO model checking

• Problem: many terminating programs are turned into 
non-terminating ones by abstraction

e.g.  f(x) = if x<0 then 1 else 1+f(x-1)    terminating
 f(bx<0) = if bx<0 then 1 else 1+f(*)    non-terminating
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Termination Verification
for Imperative Programs

• Binary Reachability Analysis [Cook+ ’06]
– Theorem [Podelski & Rybalchenko ’04]:

𝑃𝑃 is terminating iff
𝑇𝑇+ is disjunctively well-founded (dwf)

• 𝑇𝑇: the transition relation of 𝑃𝑃
• dwf: a finite union of well-founded relations
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Example: Binary Reachability Analysis 
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1: x = *;

2: while(x>0){

3:   x--;

4: }

pc=1

x=2

pc=2

x=2

pc=3

x=2

pc=2

x=1

𝑻𝑻+ ⊆ {(s, s’) | s.pc < s’.pc}
∪ {(s, s’) | s.pc > s’.pc}
∪ {(s, s’) | s.x > s’.x ≧ 0}

pc=3

x=1

pc=2

x=0

pc=4

x=0

Terminating!



2nd Naïve Approach to Termination 
Verification of HO Functional Programs

• Check that →+ is dwf by [Cook+ ’06]
→ : the one-step reduction relation of the HO program 𝑃𝑃

• Problem: [Cook+ ’06] needs to reason about 
change in calling context / call stack
– Theorem [Berardi+’14, Yokoyama’14]:

[Cook+ ’06] can only prove termination of primitive 
recursive functions (when usable wf relations have 
height at most 𝜔𝜔)
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Verification of HO Functional Programs

• Check that →+ is dwf by [Cook+ ’06]
→ : the one-step reduction relation of the HO program 𝑃𝑃

• Problem: [Cook+ ’06] needs to reason about 
change in calling context / call stack
– Theorem [Berardi+’14, Yokoyama’14]:

[Cook+ ’06] can only prove termination of primitive 
recursive functions (when usable wf relations have 
height at most 𝜔𝜔)
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let rec ack m n =
if m = 0 then n + 1
else if n = 0 then ack (m-1) 1
else ack (m-1) (ack m (n-1))

let main m n = if m > 0 && n > 0 then ack m n
Terminates but transition relation is quite complex



Our Solution: Binary Reachability 
Analysis Generalized to HO [Kuwahara+ ’14]

• Theorem [Kuwahara+ ’14]:
HO functional program 𝑃𝑃 is terminating iff 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃

+ is dwf
– The calling relation 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃 of 𝑃𝑃:

𝑓𝑓 �𝑒𝑒, 𝑔𝑔 �𝑤𝑤 ∣ 𝑔𝑔 �𝑤𝑤 is called from 𝑓𝑓 �𝑒𝑒 in an execution of 𝑃𝑃
– 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃

+ = 𝑓𝑓 �𝑒𝑒, 𝑔𝑔 �𝑤𝑤 ∣ 𝑚𝑚𝐶𝐶𝑖𝑖𝑒𝑒() →∗ 𝐸𝐸 𝑓𝑓 �𝑒𝑒 , 𝑓𝑓 �𝑒𝑒 →+ 𝐸𝐸′ 𝑔𝑔 �𝑤𝑤
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Example: Generalized Binary 
Reachability Analysis
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let rec fib n =

if n<2 then 1

else fib (n-1)

+ fib (n-2)

let main()=fib(rand())

Call={(fib(n),fib(n-1))|n>1}
∪{(fib(n),fib(n-2))|n>1}
⊆{(fib m,fib n) | m>n≥0}

main()

fib3

fib2fib1

fib1fib0

(Tree representation)



Reduce Binary Reachability 
to Plain Reachability

• Goal: check 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃 ⊆ 𝑊𝑊 for some dwf 𝑊𝑊
• Approach: reduction to a safety verification problem 

by program transformation
– To each function 𝑓𝑓, add an extra argument to record the 

argument of an ancestor call to 𝑓𝑓
– Assert that 𝑊𝑊 holds when 𝑓𝑓 is called

fib n =
if n<2 then n
else fib(n-1)+fib(n-2)

main() = fib(rand())

W = {(m,n) | m>n≥0}

fib m n =
assert(m>n≥0);
let m’= if * then m else n in
if n<2 then n
else fib m’ (n-1)+fib m’ (n-2)

main() = fib ⊥ (rand())
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This Tutorial: Software Model Checker 
MoCHi for OCaml based on HOMC

OCaml Program:

• Higher-order Functions
• Exception Handling
• Algebraic Data 

Structures

Specification:

Safety
Termination

Non-termination
𝜔𝜔-regular properties
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𝑃𝑃 ⊨ Ψ
Prove Properties of Program Executions



Automata-Theoretic Approach [Vardi’91]

• Input:
– Program 𝑃𝑃
– 𝜔𝜔-regular temporal property Ψ

1. Construct 𝜔𝜔-automaton 𝐴𝐴¬Ψ (with a fairness 
acceptance condition) that recognizes 𝐿𝐿 ¬Ψ

2. Construct product program 𝑃𝑃 × 𝐴𝐴¬Ψ
3. Verify that 𝑃𝑃 × 𝐴𝐴¬Ψ is fair terminating

(i.e., no infinite execution trace that is fair)
Theorem: 𝑃𝑃 ⊨ Ψ iff 𝑃𝑃 × 𝐴𝐴¬Ψ is fair terminating
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Definition: Fair Termination of 𝑃𝑃

• Fairness Constraint: 𝐶𝐶 = 𝐴𝐴1, 𝐵𝐵1 , … , 𝐴𝐴𝑛𝑛, 𝐵𝐵𝑛𝑛

• Infinite sequence 𝜋𝜋 is fair wrt 𝐶𝐶 if  ∀ 𝐴𝐴, 𝐵𝐵 ∈ 𝐶𝐶,
– 𝐴𝐴 occurs only finitely often in 𝜋𝜋 or
– 𝐵𝐵 occurs infinitely often in 𝜋𝜋

• 𝑃𝑃 is fair terminating wrt 𝐶𝐶 if 𝑃𝑃 has
no infinite execution trace that is fair wrt 𝐶𝐶
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Fair Termination Verification for
Imperative Programs [Cook+ ’07]

• Theorem:
𝑃𝑃 is fair terminating wrt 𝐶𝐶 iff 𝑇𝑇+↾𝐶𝐶 is dwf
– 𝑇𝑇: transition relation of 𝑃𝑃
– fair transitive closure 𝑅𝑅+↾𝐶𝐶 of 𝑅𝑅 is defined by:

𝑅𝑅+↾𝐶𝐶 = 𝑠𝑠1, 𝑠𝑠𝑛𝑛
∀1 ≤ 𝑖𝑖 < 𝑒𝑒. 𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑖𝑖+1 ∈ 𝑅𝑅,
𝑠𝑠1 ⋯ 𝑠𝑠𝑛𝑛 is fair wrt 𝐶𝐶, 𝑒𝑒 ≥ 2

(Intuitively means the subset of 𝑅𝑅+ that is fair wrt 𝐶𝐶)
• Finite sequence 𝑠𝑠1 ⋯ 𝑠𝑠𝑛𝑛 is fair wrt 𝐶𝐶 if ∀ 𝐴𝐴, 𝐵𝐵 ∈ 𝐶𝐶,

𝐴𝐴 does not occur in 𝑠𝑠1 ⋯ 𝑠𝑠𝑛𝑛 or 𝐵𝐵 occurs in 𝑠𝑠1 ⋯ 𝑠𝑠𝑛𝑛
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1st Naïve Approach to Fair Termination 
Verification of HO Functional Programs

• Check that →+↾𝐶𝐶 is dwf
→ : the one-step reduction relation of the HO program 𝑃𝑃

• Suffers from the same problem as the 1st naïve 
approach to plain termination verification of HO 
functional programs:
– [Cook+ ’07] needs to reason about change in calling 

context / call stack
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2nd Naïve Approach to Fair Termination 
Verification of HO Functional Programs
• Check that 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃

+↾𝐶𝐶 is dwf
• Unsound: There is a case that 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃

+↾𝐶𝐶 is dwf
but 𝑃𝑃 is not fair-terminating wrt 𝐶𝐶
– For example, 

f x = if x ≤ 0 then () else (f 0; f 1)
𝐶𝐶 = true, 𝑓𝑓 0

(fair wrt 𝐶𝐶 iff f 0 is called infinitely often)

𝑓𝑓 2 →∗ 𝑓𝑓 0; 𝑓𝑓 1 →∗ 𝑓𝑓 1 →∗ 𝑓𝑓 0; 𝑓𝑓 1 →∗ …
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Our Solution: Fair-Termination Analysis 
Generalized to HO Programs [Murase+ ’16]

• Check disjunctive well-foundedness of ⊳𝑃𝑃
𝐶𝐶 :

𝑓𝑓 �𝑒𝑒, 𝑔𝑔 �𝑤𝑤 ∣ 𝑚𝑚𝐶𝐶𝑖𝑖𝑒𝑒() →∗ 𝐸𝐸 𝑓𝑓 �𝑒𝑒 , 𝑓𝑓 �𝑒𝑒 →+↾𝐶𝐶 𝐸𝐸′ 𝑔𝑔 �𝑤𝑤
– Note that ⊳𝑃𝑃

𝐶𝐶 is 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃
+ but →+ replaced by  →+↾𝐶𝐶

• Theorem:
𝑃𝑃 is fair-terminating wrt 𝐶𝐶 iff ⊳𝑃𝑃

𝐶𝐶 is dwf
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How to Check that ⊳𝑃𝑃
𝐶𝐶 is dwf?

• By reduction to a safety verification problem 
via program transformation similar to the one 
for binary reachability analysis
(see our POPL’16 paper [Murase+ ’16] for details)
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Summary: Plain and Fair Termination 
Verification by MoCHi

• Naïve combination of HO model checking and 
predicate abstraction into HO Boolean 
programs is too imprecise

• Generalize binary reachability analysis to the 
HO setting by introducing the calling relations 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃 and ⊳𝑃𝑃

𝐶𝐶
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This Tutorial: Software Model Checker 
MoCHi for OCaml based on HOMC

OCaml Program:

• Higher-order Functions
• Exception Handling
• Algebraic Data 

Structures

Specification:

Safety
Termination

Non-termination
𝜔𝜔-regular properties
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Verifying Non-Termination
(or Disproving Termination) of HO programs

• Goal: prove that a program is non-terminating 
for some input (or for some non-deterministic 
choice)
– complementary to termination verification
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Our approach [Kuwahara+ ’15]

• combine over- and under-approximation
– over-approximate deterministic branches, and 

check that all the branches are non-terminating
– under-approximate non-deterministic branches, and 

check that one of the branches is non-terminating
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… … …

∀

… …
…∃

computation tree of 
the original program

computation tree of 
the abstract program

spurious path 
introduced by 

over-
approximation

path eliminated 
by under-

approximation
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Our Approach:
Combination of Under-/Over-approximation

¬x>0 x>0

∃

y=1

x=0

y=0

x=1

y=1y=0

・
・
・

・
・
・

・
・
・

let x=* in
let y=* in

f(x+y)

pred: x>0

∃( ... 
/* case ¬x>0 */

, ...
/* case x>0 */

)

Only one of the 
branches needs to 
be non-terminating

・
・
・
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・
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Our Approach:
Combination of Under-/Over-approximation

y=1

x=0

y=0

x=1

y=1y=0

・
・
・

・
・
・

・
・
・

let x=* in
let y=* in

f(x+y)

pred: x>0

∃( /* case ¬x>0 */
∃(/* case ¬0≤y≤x */
∀( f true /*case x+y>0 */,

f false /*case ¬x+y>0 */)
)
, ...
)

pred: 0≤y≤x

¬x>0

¬0≤y≤x

x>0

¬0≤y≤x 0≤y≤x

∃ ∃

∃

∀

pred: x+y>0

Overapproximation:
both branches should 
have an infinite path
(since we don’t know 
which branch is valid)

・
・
・

∀ ∀



Summary: Non-Termination 
Verification by MoCHi

• Underapproximate non-deterministic computation, 
and check that one of the branches has a non-
terminating path

• Overapproximate deterministic computation, and 
check that all the branches have non-terminating 
paths

• Check them by using HO model checking
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Conclusions

• HO model checking alone is not enough to 
construct practical software model checkers 
for OCaml, Java, …

• It is often the case that software verification 
techniques developed for imperative 
programs cannot be reused in the HO setting
– Types are useful for generalization to HO
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