Applications of Higher-Order Model Checking to Program Verification

Hiroshi Unno University of Tsukuba (Joint work with Naoki Kobayashi, Ryosuke

Sato, Tachio Terauchi, and Takuya Kuwahara)

Challenge: How To Construct Software Model Checker for OCaml?

Prove Properties of Program Executions

- Higher-order Functions
- Exception Handling
- Algebraic Data Structures
- Objects & Dyn. Dispatch
- General References

Safety Termination Non-termination LTL, CTL, fair CTL, CTL*

Tool Demonstration of MoCHi

 Web interface available from: <u>http://www-kb.is.s.u-</u> <u>tokyo.ac.jp/~ryosuke/mochi/</u>

Higher-Order Model Checking

- A generalization of ordinary model checking :
 - Model the target system as a recursion scheme and check if it satisfies the given specification

Model Checking	Verification Target
Finite state model checking	Simple loops
Pushdown model checking	First-order recursive functions
Higher-order model checking	Higher-order recursive functions

Higher-Order Recursion Scheme (HORS)

Grammar for generating a possibly infinite tree

Workshop on HOMC + CDPS

Higher-Order Recursion Scheme (HORS)

• Grammar for generating a possibly infinite tree

Higher-Order Model Checking

Given

- **G**: a recursion scheme
- *A*: a tree automaton,

 $Tree(G) \in L(A)$?

e.g.

- Does every finite path end with "c"?
- Does "a" occur eventually whenever "b" occurs?
- Decidable but n-EXPTIME-complete (for order-n recursion scheme) [Ong '06]
- Practical higher-order model checkers have been developed [Kobayashi '09,...]

HORS as a Programming Language

Recursion schemes

 \approx

Simply-typed λ -calculus

+ recursion

+ tree constructors (but no destructors)

(+ finite data domains such as booleans)

From Program Verification to Higher-Order Model Checking [Kobayashi '09]

Program Verification based on Higher-Order Model Checking [Kobayashi '09]

Sound, complete, and automatic for:

- Simply-typed λ -calculus + recursion
 - + tree constructors (but no destructors)
 - + finite data domains (e.g. booleans) (but not for infinite data domains!)

 A large class of verification problems: resource usage verification, reachability, flow analysis, ...

Predicate Abstraction [Graf & Saidi '97]

Challenges in Higher-Order Setting

- Model Checking
 - How to precisely analyze higher-order control flows?
 - ⇒ Higher-order model checking!
- Predicate Abstraction
 - How to ensure consistency of abstraction?
- Predicate Discovery
 - How to find new predicates that can eliminate an infeasible error trace from the abstraction?

Challenges in Higher-Order Setting

- Predicate Abstraction
 - How to ensure consistency of abstraction?

Our Solution: Abstraction Types

- Specify which predicates should be used for abstraction of each expression
- $\operatorname{int}[P_1, \dots, P_n]$ Int. exps. that should be abstracted by P_1, \dots, P_n e.g., $3 : \operatorname{int}[\lambda x. x > 0, even?] \sim (true, false)$
- $(x : int[P_1, ..., P_n]) \rightarrow int[Q_1, ..., Q_m]$ Assuming that argument x is abstracted by $P_1, ..., P_n$, abstract the return value by $Q_1, ..., Q_m$

Example: Abstraction Types

Type-Directed Predicate Abstraction

Challenges in Higher-Order Setting

- Predicate Discovery
 - How to find new predicates that can eliminate an infeasible error trace from the abstraction?

Challenges in Higher-Order Setting

- Predicate Discovery
 - How to find abstraction types that can eliminate an infeasible error trace from the abstraction?

Our Solution

 Reduction to refinement type inference of a straightline higher-order program (SHP)

Refinement Types [Xi & Pfenning '98, '99]

- $\{x : int \mid x \ge 0\}$ Non-negative integers FOL formulas (e.g. QFLIA) for type refinement
- $(x:int) \rightarrow \{r:int \mid r \ge x\}$

Functions that take an integer x and return an integer r not less than x

Soundness of refinement type system \vdash_{Ref} : *P* is safe (i.e., *P* \longrightarrow^* assert false) if *P* is well-typed (i.e., $\exists \Gamma . \Gamma \vdash_{Ref} P$)

Example: Abstraction Type Finding (1/2)

Example: Constraint Generation

Straightline Higher-Order Program (SHP): let sum n k = assume($n \le 0$); k 0 let main m = sum m ($\lambda x.assume(x < m)$; fail)

Example: Constraint Solving (1/2)

Interpolating Prover

- Input: ϕ_1 , ϕ_2 such that $\phi_1 \Rightarrow \phi_2$
- Output: an *interpolant* ϕ of ϕ_1 , ϕ_2 such that:
 - 1. $\phi_1 \Rightarrow \phi$
 - 2. $\phi \Rightarrow \phi_2$
 - 3. $FV(\phi) \subseteq FV(\phi_1) \cap FV(\phi_2)$
- Example: $x \ge n$ is an interpolant of: $n \le 0 \land x=0$ and $n=m \Rightarrow x \ge m$

Example: Constraint Solving (2/2)

Example: Refinement Type Inference

Straightline Higher-Order Program (SHP): let sum n k = assume($n \le 0$); k 0 let main m = sum m ($\lambda x.assume(x < m)$; fail)

Function Encoding of Lists

• Encode a list as a pair (len, f) such that:

- len is the length of the list

- -f is a function from an index *i* to the *i*-th element
 - e.g., [3;1;4] is encoded as (3, f) where:
 f(0)=3, f(1)=1, f(2)=4, and undefined otherwise

let nil = (0, fun i -> \perp) let cons a (len, l) = (len + 1, fun i -> if i = 0 then a else l (i - 1)) let hd (len, l) = assert (len \neq 0); l 0 let tl (len, l) = assert (len \neq 0); (len - 1, fun i -> l (i + 1)) let is_nil (len, l) = len = 0

Function Encoding of Algebraic Data Structures

 Encode an algebraic data structure as a function from the path of a node to its label

type btree = Leaf of int | Node of btree * btree

Function Encoding of Exceptions

Summary: Safety Verification by MoCHi

- For finite-data HO programs: sound, complete, and fullyautomatic verification by reduction to HO model checking [Kobayashi '09]
- For infinite-data HO programs: sound and automatic (but incomplete) verification by a combination of:
 - HO model checking
 - predicate abstraction & discovery [Kobayashi+ '11, U.+ '09, '15]
 - program transformation [Sato+ '13]

Necessarily incomplete but often more precise than other approaches

Sometimes relatively complete modulo certain assumptions

- relatively complete refinement type system [U.+ '13]
- relatively complete predicate discovery [Terauchi & U. '15]

This Tutorial: Software Model Checker MoCHi for OCaml based on HOMC

Prove Properties of Program Executions

OCaml Program:

Specification:

- Higher-order Functions
- Exception Handling
- Algebraic Data Structures

TerminationNon-termination ω -regular properties

Safety

Termination Verification

 Automatically prove that a program terminates for every input (and nondeterminism)

Tool Demonstration of MoCHi

 Web interface available from: <u>http://www.kb.is.s.u-</u> <u>tokyo.ac.jp/~kuwahara/termination/</u>

1st Naïve Approach to Termination Verification of HO Functional Programs

- Abstract to a finite data HO program, and apply HO model checking
- Problem: many terminating programs are turned into non-terminating ones by abstraction

e.g. f(x) = if x < 0 then 1 else 1+f(x-1) terminating $\rightarrow f(b_{x<0}) = if b_{x<0}$ then 1 else 1+f(*) non-terminating

Termination Verification for Imperative Programs

- Binary Reachability Analysis [Cook+'06]
 - Theorem [Podelski & Rybalchenko '04]:
 P is terminating iff
 - T^+ is disjunctively well-founded (dwf)
 - *T*: the transition relation of *P*
 - dwf: a finite union of well-founded relations

Example: Binary Reachability Analysis

1:
$$x = *;$$

2: while(x>0){
3: $x - -;$
4: }
 $T^+ \subseteq \{(s, s') \mid s.pc < s'.pc\}$
 $\cup \{(s, s') \mid s.x > s'.x \ge 0\}$
 $U \{(s, s') \mid s.x > s'.x \ge 0\}$
Terminating!
 $pc=1$
 $x=2$
 $pc=3$
 $x=2$
 $pc=4$
 $x=1$
 $pc=4$
 $x=0$
 $pc=4$
 $x=0$

2nd Naïve Approach to Termination Verification of HO Functional Programs

• Check that \rightarrow^+ is dwf by [Cook+ '06]

 \rightarrow : the one-step reduction relation of the HO program P

- Problem: [Cook+ '06] needs to reason about change in calling context / call stack
 - Theorem [Berardi+'14, Yokoyama'14]:
 [Cook+ '06] can only prove termination of primitive recursive functions (when usable wf relations have height at most ω)

```
2<sup>nd</sup> Naïve Approach to Termination
let rec ack m n =
 if m = 0 then n + 1
 else if n = 0 then ack (m-1) 1
 else ack (m-1) (ack m (n-1))
let main m n = if m > 0 & a n > 0 then ack m n
Terminates but transition relation is guite complex
```

Theorem [Berardi+'14, Yokoyama'14]:
 [Cook+ '06] can only prove termination of primitive recursive functions (when usable wf relations have height at most ω)

Our Solution: Binary Reachability Analysis Generalized to HO [Kuwahara+'14]

- Theorem [Kuwahara+ '14]: HO functional program P is terminating iff Call⁺_P is dwf
 - The calling relation $Call_P$ of *P*: { $(f\tilde{v}, g\tilde{w}) \mid g\tilde{w}$ is called from $f\tilde{v}$ in an execution of *P*} - $Call^+ = \{(f\tilde{v}, a\tilde{w}) \mid main() \rightarrow^* E[f\tilde{v}] \mid f\tilde{v} \rightarrow^+ E'[a\tilde{w}]\}$
 - $Call_{P}^{+} = \{ (f\tilde{v}, g\tilde{w}) \mid main() \to^{*} E[f\tilde{v}], f\tilde{v} \to^{+} E'[g\tilde{w}] \}$

Example: Generalized Binary Reachability Analysis

Reduce Binary Reachability to Plain Reachability

- Goal: check $Call_P \subseteq W$ for some dwf W
- Approach: reduction to a safety verification problem by program transformation
 - To each function f, add an extra argument to record the argument of an ancestor call to f
 - Assert that W holds when f is called

This Tutorial: Software Model Checker MoCHi for OCaml based on HOMC

Prove Properties of Program Executions

OCaml Program:

Specification:

- Higher-order Functions
- Exception Handling
- Algebraic Data Structures

Safety Termination Non-termination ω-regular properties

Workshop on HOMC + CDPS

Automata-Theoretic Approach [Vardi'91]

- Input:
 - Program P
 - ω -regular temporal property Ψ
- 1. Construct ω -automaton $A_{\neg\Psi}$ (with a fairness acceptance condition) that recognizes $L(\neg\Psi)$
- 2. Construct product program $P \times A_{\neg \Psi}$
- 3. Verify that $P \times A_{\neg \Psi}$ is fair terminating (i.e., no infinite execution trace that is fair)

Theorem: $P \models \Psi$ iff $P \times A_{\neg \Psi}$ is fair terminating

Definition: Fair Termination of P

- Fairness Constraint: $C = \{(A_1, B_1), \dots, (A_n, B_n)\}$
- Infinite sequence π is fair wrt C if $\forall (A, B) \in C$,
 - -A occurs only finitely often in π or
 - B occurs infinitely often in π
- *P* is **fair terminating** wrt *C* if *P* has no infinite execution trace that is fair wrt *C*

Fair Termination Verification for Imperative Programs [Cook+'07]

- Theorem:
 - *P* is fair terminating wrt *C* iff $T^{+ \upharpoonright C}$ is dwf
 - -T: transition relation of P
 - fair transitive closure $R^{+ \upharpoonright C}$ of R is defined by: $R^{+ \upharpoonright C} = \left\{ (s_1, s_n) \mid \begin{array}{l} \forall 1 \leq i < n. (s_i, s_{i+1}) \in R, \\ s_1 \cdots s_n \text{ is fair wrt } C, n \geq 2 \end{array} \right\}$ (Intuitively means the subset of R^+ that is fair wrt C)
 - Finite sequence $s_1 \cdots s_n$ is fair wrt C if $\forall (A, B) \in C$, A does not occur in $s_1 \cdots s_n$ or B occurs in $s_1 \cdots s_n$

1st Naïve Approach to Fair Termination Verification of HO Functional Programs

- Check that $\rightarrow^{+\upharpoonright C}$ is dwf
 - \rightarrow : the one-step reduction relation of the HO program P
- Suffers from the same problem as the 1st naïve approach to plain termination verification of HO functional programs:
 - [Cook+ '07] needs to reason about change in calling context / call stack

2nd Naïve Approach to Fair Termination Verification of HO Functional Programs

- Check that $Call_P^{+\upharpoonright C}$ is dwf
- Unsound: There is a case that Call^{+↑C} is dwf
 but P is not fair-terminating wrt C

- For example,

$$f x = if x \le 0$$
 then () else (f 0; f 1)
 $C = \{(true, f \ 0)\}$
(fair wrt C iff f 0 is called infinitely often) f 0 f 1
 $f \ 2 \rightarrow^* f \ 0; f \ 1 \rightarrow^* f \ 1 \rightarrow^* f \ 0; f \ 1 \rightarrow^* \dots$

Our Solution: Fair-Termination Analysis Generalized to HO Programs [Murase+ '16]

- Check disjunctive well-foundedness of \rhd_P^C : $\{(f\tilde{v}, g\tilde{w}) \mid main() \rightarrow^* E[f\tilde{v}], f\tilde{v} \rightarrow^{+ \upharpoonright C} E'[g\tilde{w}]\}$ $- \text{Note that } \rhd_P^C \text{ is } Call_P^+ \text{ but } \rightarrow^+ \text{ replaced by } \rightarrow^{+ \upharpoonright C}$
- Theorem:
 - *P* is fair-terminating wrt *C* iff \triangleright_P^C is dwf

How to Check that \triangleright_P^C is dwf?

 By reduction to a safety verification problem via program transformation similar to the one for binary reachability analysis (see our POPL'16 paper [Murase+ '16] for details)

Summary: Plain and Fair Termination Verification by MoCHi

- Naïve combination of HO model checking and predicate abstraction into HO Boolean programs is too imprecise
- Generalize binary reachability analysis to the HO setting by introducing the calling relations $Call_P$ and \rhd_P^C

This Tutorial: Software Model Checker MoCHi for OCaml based on HOMC

Prove Properties of Program Executions

OCaml Program:

Specification:

- Higher-order Functions
- Exception Handling
- Algebraic Data Structures

Safety Termination

Non-termination

Workshop on HOMC + CDPS

Verifying Non-Termination (or Disproving Termination) of HO programs

- Goal: prove that a program is non-terminating for some input (or for some non-deterministic choice)
 - complementary to termination verification

Our approach [Kuwahara+'15]

- combine over- and under-approximation
 - over-approximate deterministic branches, and check that all the branches are non-terminating
 - under-approximate non-deterministic branches, and check that one of the branches is non-terminating

Our Approach: Combination of Under-/Over-approximation pred: x>0 X=0x=1 let x=* in let y=* in y=0 y=1 y=0 y=1 f(x+y) Only one of the branches needs to be non-terminating /* case ¬x>0 */ x>0 ¬X>0 /* case x>0 */

Our Approach: Combination of Under-/Over-approximation pred: x>0 **X=0 X=1** let x=* in pred: 0≤y≤x ,..∕∕ ∖≷.. y=0 y=1 let y=* th pred: x+y>0 y=0 y=1 f(x+y)∃(/* case ¬x>0 */ $\exists (/* case \neg 0 \le y \le x */$ ¬x>0 x>0 _ _ _ ¬0≤y≤x ¬0≤y≤x 0≤y≤x

Our Approach: Combination of Under-/Over-approximation pred: x>0 X=0X=1let x=* in pred: 0≤y≤x let y=* th y=0 y=1 pred: x+y>0 y=0 y=1 f(x+y)Overapproximation: both branches should have an infinite path ∃(/* case (since we don't know ∃ (1 case which branch is valid) ∀**(f true** /*case x+y>0 */, ¬x>0 x>0 ¬0≤́y≤x 0≤y≤x ¬0≤y≤x

Summary: Non-Termination Verification by MoCHi

- Underapproximate non-deterministic computation, and check that one of the branches has a nonterminating path
- Overapproximate deterministic computation, and check that all the branches have non-terminating paths
- Check them by using HO model checking

Conclusions

- HO model checking alone is not enough to construct practical software model checkers for OCaml, Java, ...
- It is often the case that software verification techniques developed for imperative programs cannot be reused in the HO setting

– Types are useful for generalization to HO