A Multi Estimations Approach for Computing Backbones of Hard and Dense Propositional Formulae

Yueling Zhang¹ Min Zhang¹ Geguang Pu¹ Fu Song² Jianwen Li^{1,3}

¹Shanghai Key Laboratory of Trustworthy Computing / East China Normal University ² Shanghai Tech University ³ Rice University

ylzhang@sei.ecnu.edu.cn

August 22, 2016

Yueling Zhang¹, Min Zhang¹, Geguang Pu¹,

Backbones Computing

Backbones

2 Motivations

3 Multi Estimations Based Backbones Extracting

- Non-Backbone Estimation
- Backbone Estimation HDBS

Results

- SAT Comp. Benchmark
- MSS Formulae

Conclusion

Definition (Model)

Models of a propositional formula Φ are truth assignments that make the formula to TRUE.

Definition (Backbones)

Backbones of a propositional formula $\boldsymbol{\Phi}$ are literals that are true in every model

Definition (Satisfied Literal)

Given a model λ , a clause $\phi \in \Phi$. A literal $l \in \phi$ is called a satisfied literal iff $l \in \lambda$.

- Conjunction Normal Form
- Clause
- Literal

$$\begin{array}{c|c} Clause & Literal & Literal \\ \downarrow & \downarrow & \downarrow \\ (a \lor \neg b \lor c) \land (a \lor b \lor \neg c) \land (a \lor b \lor \neg c) \land (a \lor b \lor c) \end{array}$$

 $\mathsf{CNF:} (a \lor \neg b \lor c) \land (a \lor b \lor \neg c) \land (a \lor \neg b \lor \neg c) \land (a \lor b \lor c)$ Model Table:

а	b	С
1	0	0
1	0	1
1	1	0
1	1	1

Given a model $a \wedge b \wedge c$, Literal a, c is called the satisfied literals of clause $(a \vee \neg b \vee c)$.

- Upper bound for number of models
- Product configuration

gas engine ∨ electric engine electric engine → automatic ¬ automatic ∨¬ manual electric engine Backbones: *automatic*, ¬*manual*

- Iterative SAT Testing
 - $\Phi \wedge$ / is SAT, / is not a backbone
 - $\Phi \wedge I$ is UNSAT, the negation of I is a backbone.
- Upper Bound Estimation
 - $\Phi \land \phi$ is SAT, using $\phi \cup \lambda$ to remove non-backbones
 - $\Phi \land \phi$ is UNSAT, Backbones estimation terminates.
- Core Based SAT Testing
 - Φ is SAT under the assumption of $\phi, \phi \subseteq \neg \lambda$, none of the literals in λ is backbones.
 - Φ is UNSAT under the assumption of ϕ , if the core length is 1, the negation of core is a backbone.

- Non-Backbones under-approximation, $\overline{\mathsf{BL}}_u$
- Backbones estimation, HDBS
- Iterative test literals in HDBS

Algorithm 1 Under-approximation of Non-Backbones

- 1: $\Psi = \overline{\mathsf{BL}}_u(\Phi) = \emptyset$
- 2: $(b, \lambda) = SAT(\Phi)$
- 3: **if** b == 0 **then**
- 4: return $lit(\Phi)$
- 5: end if
- 6: for $\phi \in \Phi$ do
- 7: $\Psi = \Psi \cup \{\phi \in \Phi \mid \exists x_1, x_2, x_1 \neq x_2, \lambda(x_1), \lambda(x_2) \models \phi\}$
- 8: $\overline{\mathrm{BL}}_{u}(\Phi) = \overline{\mathrm{BL}}_{u}(\Phi) \cup \{x \in \mathrm{lit}(\Phi) \mid \forall \phi \in \Phi : \lambda(x) \models \phi \Longrightarrow \phi \in \Psi\}$
- 9: end for
- 10: return $\overline{\mathsf{BL}}_u(\Phi)$

Theorem

If a literal $I \in \overline{BL}_u$, I is not a backbone of the given formula.

Yueling Zhang¹, Min Zhang¹, Geguang Pu¹,

- A clause is put into Ψ iff there exists at least two satisfy literals
- A literal is put into $\overline{\mathsf{BL}}_u$ iff it only satisfy clauses in Ψ .
- Heuristic strategies
 - DFS, choose a chain of literals and change the assignment of them one by one.
 - literal-clause coverage
 - literal weight given by configuration or SAT solvers

Backbones Estimation

Algorithm 2 Extend non-backbones estimation

1:
$$\overline{\mathsf{BC}} = \mathsf{HDBS}(\Phi) = \emptyset$$

2:
$$\overline{\mathsf{BL}}_e = \overline{\mathsf{BL}}_u$$

3:
$$(b, \lambda) = \mathsf{SAT}(\Phi)$$

- 4: **if** b == 0 **then**
- 5: return $lit(\Phi)$

6: end if

- 7: for $\phi \in \Phi$ do
- 8: $\overline{\mathsf{BC}} = \overline{\mathsf{BC}} \cup \{\phi \in \Phi \mid \exists x \in \phi, x \in \overline{\mathsf{BL}}_u\}$
- 9: $\overline{\mathrm{BL}}_{e}(\Phi) = \overline{\mathrm{BL}}_{e}(\Phi) \cup \{x \in \mathrm{lit}(\Phi) \mid \forall \phi \in \Phi : \lambda(x) \models \phi \Longrightarrow \phi \in \overline{\mathrm{BC}}\}$

10: **end for**

11: for $\overline{\mathsf{BL}}_e$ is updating do

12:
$$\overline{\mathsf{BC}} = \overline{\mathsf{BC}} \cup \{\phi \in \Phi \setminus \overline{\mathsf{BC}} \mid \exists x \in \overline{\mathsf{BL}}_e(\Phi) \lor \exists \neg x \in \overline{\mathsf{BL}}_e, x \in \mathsf{lit}(\phi)\}$$

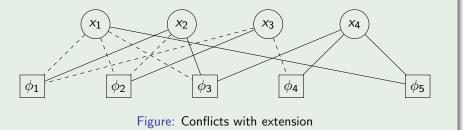
- 13: $\overline{\mathsf{BL}}_e(\Phi) = \overline{\mathsf{BL}}_e(\Phi) \cup \{x \in \mathsf{lit}(\Phi) \mid \forall \phi \in \Phi : \lambda(x) \models \phi \Longrightarrow \phi \in \Psi\}$
- 14: end for
- 15: return $\overline{\mathsf{BL}}_e$

- $\overline{\text{BC}}$ is the extension of Ψ
- $\overline{\mathsf{BL}}_e$ is the extension of $\overline{\mathsf{BL}}_u$
- a clause φ is in BC iff it contains at least one literal *l* ∈ BL_e or its negation ¬*l* ∈ BL_e
- a literal *I* and its negation is in \overline{BL}_e iff *I* only appears in clauses that belongs to \overline{BC} .
- $\overline{\text{BC}}$ and $\overline{\text{BL}}_e$ are updated iteratively.

Formula:

 $(\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_4) \land (x_1 \lor x_4)$ Model: $x_1 \land x_2 \land x_3 \land x_4$ Packbance: x_1

Backbones: x₄



Formula: $(a \lor \neg b) \land (b \lor \neg c) \land (c \lor \neg a)$ Model: $a \land b \land c$ $\overline{\mathsf{BL}}_u$: \emptyset

No backbones! New model: $\neg a \land \neg b \land \neg c$

э

Algorithm 3 Find Model Rotation Chain

- 1: for $x \in HDBS(\Phi)$ do
- 2: k = 1
- 3: $\Phi^0_x = \{x\}$
- 4: end for

5: for
$$\Phi_{l_x}^k \subset \Phi \setminus \overline{\mathrm{BC}}$$
 do
6: $\Phi_x^k = \{\phi \in \Phi \setminus \overline{\mathrm{BC}} \mid \neg \mathrm{lit}(\Phi_x^{k-1}) \in \phi\}$

7: **if**
$$\neg x \in \text{lit}(\Phi_x^k)$$
 then

8:
$$HDBS(\Phi) = HDBS(\Phi) \setminus \{x\}, Break$$

9:
$$k = k + 1$$

- 10: end if
- 11: end for
- 12: return $HDBS(\Phi)$

3

A 1

SAT Comp. Benchmark

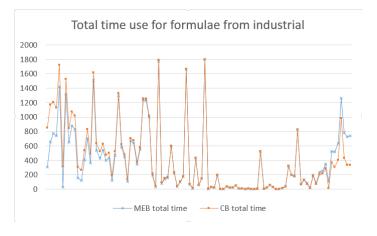


Figure: Total time use for SAT Comp. Benchmark

Yueling Zhang¹, Min Zhang¹, Geguang Pu¹,

Backbones Computing

August 22, 2016 _16 / 20

Definition (Maximal Satisfiable Subset)

Given an unsatisfied propositional formula Φ , $\Phi' \subset \Phi$ is a MSS, iff Φ' is satisfiable and $\Phi' \land \phi$, $\phi \in \Phi \setminus \Phi'$ is unsatisfiable.

- UUF250 family from SATLIB
- Using LBX tool
- Generate hard and dense backbones formulae
- 1065 clauses, 250 variables.

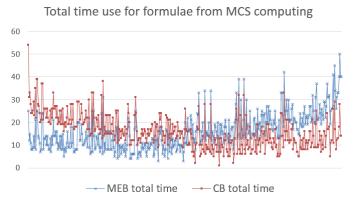


Figure: Total time use for MSS formulae

We present a novel approach to compute backbones of propositional formulae using estimations of backbones and non-backbones. Experiments show that our approach is compatible with the state-of-art approaches on backbones computing.

Thank you

Image: Image:

æ