
Zhenhua Duan
Xidian University, China

Verifying Temporal Properties via
Dynamic Program Execution

 Background & Motivation
 MSVL and Compiler
 PPTL
 Unified Program Verification
 Tool Demo
 Conclusion and Future Work

Main Points

We focus on Software model checking in code-level
(1) Rechability analysis of bad things

Suitable for only safety property verification
Two well known ways: CEGAR and bounded model
checking
Tools: SLAM, BLAST, CPAChecker and CBMC …

Background & Motivation

int* a;
int i=0;
…
if(a==0) goto Err;
i= *a; //de-referencing a
…
Err:

However, verifiation of other
temporal properties such as

liveness etc. cannot be supported!

(2) Model checking temporal properties without
executing code (static)
Considering all possible behaviors makes small
programs have large state-space
Tools: Ultmate LTLAutomizer, T2, ...
Difficult to verify programs in large scale
Poor in accuracy with lots of false positives

Background & Motivation

(3) Model checking temporal properties at run-time
Extracting events while executing systems
A monitor is designed in advance to check whether
the trace violates the desired property
Tools: Java PathExplorer, RiTHM, …
Interaction between systems and monitors incurs
extra overhead

Background & Motivation

Verifying full-regular (temporal) properties of
programs via dynamic program execution

Background & Motivation

Our approach:

Executing both the program and property

Approach Overview
Background & Motivation

KLEE
IR

M_and_M’.exe

MSVL
Program

M

MSVL
Compiler

Verification
cases

PPTL
formula

¬P

MSVL
Program

M

Trans
MSVL

Program

M’

MSVL
Program

M and M’

MSVL Compiler

Verification
Results

 Modeling Simulation and Verification Language (MSVL)
is an executing subset of Projection Temporal Logic
(PTL) with framing technique

Data Types:
(unsigned) int, float, (unsigned) char, string, array,
pointer, struct, union

Syntax ：
 Arithmetic expression

 Boolean expression

Modeling Simulation and Verification Language

Two kinds of functions in MSVL programs
 External functions

C standard library functions (strcat, strcmp, strlen, strcpy …)

 MSVL functions
 MSVL standard library functions (int getline(int len,char s[]){…})
 MSVL user-defined functions (void f(int x1, x2,…,xn){…})

Two kinds of function calls in MSVL programs
 Black-box call (extern f(e1,e2,…,en))
 White-box call (only for MSVL functions: f(e1,e2,…,en))

Modeling Simulation and Verification Language

Elementary Statements in MSVL

Projection Temporal Logic

MSVL

Present components Future components

Normal form of MSVL programs

Conjunction of state statements An internal program where variables
may refer to the previous states

A program

Execution of MSVL programs is based on
transforming programs into normal forms

Syntax analysis

Preprocessing

Semantic analysis

IR generation

IR optimizing

Object code
generation

Lexical analysis

Symbol
table

managing

Error
handling

MSVL Program

Object code

MSVL
Frontend

LLVM Backend

MSVL Compiler

Developed based
on

LLVM

MSVL Compiler

Case Studies

Dining philosophers problem

LTL2BA
A program for translating LTL formulas to Büchi automata

Simple CPU
An adder including dereference, decode and execution

Propositional Projection Temporal Loigc (PPTL)

 Syntax

 Semantics
An interval σ is a non-empty sequence of states,
which can be finite or infinite.

Propositional Projection Temporal Logic

 An interpretation is a triple I = (σ, i, j), where σ is an interval, i
is an integer, and j an integer or ω.

 The satisfaction relation is inductively defined as follows:
 I |= p iff si[p] = true, and p∈Prop is an atomic proposition

 I |= ○P iff i < j and (σ, i+1, j) |= P

 I |= ¬P iff I |≠ P
 I |= P∨Q iff I |= P or I |= Q

p

P

Propositional Projection Temporal Logic

 I |= (P1 , P2 , …,Pm) prj P, if there exist integers r0 ≤r1 ≤··· ≤ rm ≤ j such
that (σ, rl-1, rl) |= Pl , 1 ≤ l≤ m, and (σ’, 0, |σ’|) |= P for one of the
following σ’:

(a) rm < j and σ’= σ↓(r0 , … , rm) ·σ(rm+1 , … , j) , or
(b) rm = j and σ’= σ↓(r0 ,… , rh) for some 0 ≤ h ≤ m

<s0,s1,s2,s3,s4>↓(0,0,2,2,2,3)=<s0,s2,s3>

(P1, P2, P3) prj P

P1 P2 P3

P

Propositional Projection Temporal Logic

Derived formulas

Normal Form of PPTL formulas
 A PPTL formula P is in normal form if,

 Pfj is a PPTL formula without disjuct being the main operator
 Pei and Pcj are true or state formulas of the form:

Theorem: Any PPTL formula can be equivalently
transformed into its normal form.

labeled normal form graphs (LNFG) are constructed based on
normal form of PPTL formulas

 LNFG of a PPTL formula is a 4-tuple

 CL : non-empty finite set of nodes

 EL: set of directed edges among CL

 V0 : set of initial (root) nodes

 : , 1 ≤ i ≤ k, set of nodes with li being the label.

Labeled Normal Form Graph

Inf(π): set of nodes which infinitely often occur in path π

A path is acceptable if it is finite, or infinite and all the nodes in
Inf(π) do not share a same label.

 Example

Labeled Normal Form Graph

LNFG of □(○q)∧□((p;q)∨q)

n0

n1 n2

q p
NF(n0) =

∧○() ∨

∧○()

n0: □(○q)∧□((p;q)∨q)

n1: q∧□(○q)∧□((p;q)∨q)

n2: q∧□(○q)∧(true;q)∧□((p;q)∨q)

q q∧□(○q)∧□((p;q)∨q)

p q∧□(○q)∧(true;q)∧□((p;q)∨q)

 Example

Labeled Normal Form Graph

LNFG of □(○q)∧□((p;q)∨q)

n0

n1 n2

q p
NF(n1) =

∧○() ∨

∧○()

n0: □(○q)∧□((p;q)∨q)

n1: q∧□(○q)∧□((p;q)∨q)

n2: q∧□(○q)∧(true;q)∧□((p;q)∨q)

q q∧□(○q)∧□((p;q)∨q)

p∧q q∧□(○q)∧(true;q)∧□((p;q)∨q)
p∧q

q

 Example
LNFG of □(○q)∧□((p;q)∨q)

n0

n1 n2

q p

n0: □(○q)∧□((p;q)∨q)

n1: q∧□(○q)∧□((p;q)∨q)

n2: q∧□(○q)∧(fin(l1);q)∧□((p;q)∨q)

p∧q

q

Rewrite n2 with fin label

l1

Labeled Normal Form Graph

 Example
LNFG of □(○q)∧□((p;q)∨q)

n0

n1 n2

q p NF(n2) =

∧○() ∨

∧○()

q q∧□(○q)∧□((p;q)∨q)

q q∧□(○q)∧(fin(l1);q)∧□((p;q)∨q)

p∧q

q

Rewrite n2 with fin label

l1
q

q

Labeled Normal Form Graph

n0: □(○q)∧□((p;q)∨q)

n1: q∧□(○q)∧□((p;q)∨q)

n2: q∧□(○q)∧(fin(l1);q)∧□((p;q)∨q)

 Example
 LNFG of □(○q)∧□((p;q)∨q)

 CL = {n0, n1, n2}
 EL = {

}
 V0 = {n0}


n0

n1 n2

q p
p∧q

q l1
q

q

<n0, q, n1>, <n0, p, n2>,
<n1, q, n1>, <n1, p∧q, n2>,
<n2, q, n1>, <n2, q, n2>

Labeled Normal Form Graph

 Example
 LNFG of □(○q)∧□((p;q)∨q)

 CL = {n0, n1, n2}
 EL = {

}
 V0 = {n0}


 Path π =< n0 , q, n1, p∧q, (n2, q)ω>
 Nodes that occur infinitely often have the same label l1
 Unacceptable

q p
p∧q

q l1
q

q

<n0, q, n1>, <n0, p, n2>,
<n1, q, n1>, <n1, p∧q, n2>,
<n2, q, n1>, <n2, q, n2>

n0

n1 n2

Labeled Normal Form Graph

 Example
 LNFG of □(○q)∧□((p;q)∨q)

 CL = {n0, n1, n2}
 EL = {

}
 V0 = {n0}


 Path π =< n0 , q, n1, p∧q, (n2, q)ω>
 Nodes that occur infinitely often have the same label l1
 Unacceptable

 Path π =< n0 , p, (n2, q, n1, p∧q)ω>
 Nodes that occur infinitely often do not have a same label
 Acceptable

Labeled Normal Form Graph

q p
p∧q

q l1
q

q

<n0, q, n1>, <n0, p, n2>,
<n1, q, n1>, <n1, p∧q, n2>,
<n2, q, n1>, <n2, q, n2>

p

n0

n2n1

Use a unique integer to represent each
of nodes in the LNFG

From PPTL to MSVL

1
q p

p q∧

q
q q

2 3

1

2 3

q p
p q∧

q
q q

Global Variable CuNode：presenting the node explored at the current state.
The first node to be explored is a root node (CuNode <==1)

Program pattern

From PPTL to MSVL

l1

2 3

q p
p q∧

q
q q

For each node i, the following program pattern is created: if(CuNode=i)then{ M }
M is another program pattern w.r.t all the edges starting from i

1

From PPTL to MSVL

l1

Program pattern

3

q p
p q∧

q
q q

For each node i, the following program pattern is created: if(CuNode=i)then{ M }
M is another program pattern w.r.t all the edges starting from i

1

2

From PPTL to MSVL
Program pattern

l1

3

q p
p q∧

q
q

For each node i, the following program pattern is created: if(CuNode=i)then{ M }
M is another program pattern w.r.t all the edges starting from i

From PPTL to MSVL
Program pattern

l1

1

q

2

For each node i, the following program pattern is created: if(CuNode=i)then{ M }
M is another program pattern w.r.t all the edges starting from i

From PPTL to MSVL
Program pattern

3

q p
p q∧

q
ql1

1

q

2

1

2 3

q p
p q∧

q
q q

For each edge from i to j with the label being p, program
if(p) then{CuNode:=j}else{false} is produced

From PPTL to MSVL

l1

Program pattern

For each edge from i to j with the label being p, program
if(p) then{CuNode:=j}else{false} is produced

From PPTL to MSVL
Program pattern

1

2 3

q p
p q∧

q
q ql1

For each edge from i to j with the label being p, program
if(p) then{CuNode:=j}else{false} is produced

From PPTL to MSVL
Program pattern

1

2 3

q p
p q∧

q
q ql1

N

S

EW

Verification as Dynamic Program Execution

frame(EW,SN,f) and
(char EW and char SN and int f<==0
while(!f)
{

EW<==‘g’ and SN<==‘r’ and skip;
EW<==‘y’ and SN<==‘r’ and skip;
EW<==‘r’ and SN<==‘g’ and skip;
EW<==‘r’ and SN<==‘y’ and
(f<==0 and skip or f<==1 and empty)

})

Example: Traffic Light

EW=‘g’
SN=‘r’

EW=‘y’
SN=‘r’

EW=‘r’
SN=‘g’

EW=‘r’
SN=‘y’

1 2 3 4
EW=‘r’
SN=y’

5

Verification as Dynamic Program Execution

frame(EW,SN,f) and
(char EW and char SN and int f<==0
while(!f)
{

EW<==‘g’ and SN<==‘r’ and skip;
EW<==‘y’ and SN<==‘r’ and skip;
EW<==‘r’ and SN<==‘g’ and skip;
EW<==‘r’ and SN<==‘y’ and
(f<==0 and skip or f<==1 and empty)

})

Example: Traffic Light

EW=‘g’
SN=‘r’

EW=‘y’
SN=‘r’

EW=‘r’
SN=‘g’

EW=‘r’
SN=‘y’

1 2 3 4
EW=‘r’
SN=y’

5

N

S

EW

Verification as Dynamic Program Execution

frame(EW,SN,f) and
(char EW and char SN and int f<==0
while(!f)
{

EW<==‘g’ and SN<==‘r’ and skip;
EW<==‘y’ and SN<==‘r’ and skip;
EW<==‘r’ and SN<==‘g’ and skip;
EW<==‘r’ and SN<==‘y’ and
(f<==0 and skip or f<==1 and empty)

})

Example: Traffic Light

EW=‘g’
SN=‘r’

EW=‘y’
SN=‘r’

EW=‘r’
SN=‘g’

EW=‘r’
SN=‘y’

1 2 3 4
EW=‘r’
SN=y’

5

N

S

EW

Verification as Dynamic Program Execution

frame(EW,SN,f) and
(char EW and char SN and int f<==0
while(!f)
{

EW<==‘g’ and SN<==‘r’ and skip;
EW<==‘y’ and SN<==‘r’ and skip;
EW<==‘r’ and SN<==‘g’ and skip;
EW<==‘r’ and SN<==‘y’ and
(f<==0 and skip or f<==1 and empty)

})

Example: Traffic Light

EW=‘g’
SN=‘r’

EW=‘y’
SN=‘r’

EW=‘r’
SN=‘g’

EW=‘r’
SN=‘y’

1 2 3 4
EW=‘r’
SN=y’

5

N

S

EW

CuNode<==1 and
while(more)
{ if(CuNode=1)then{

CuNode:=2 or
if((EW=‘g’ and SN=‘g’) or (EW=‘y’ and SN=‘y’))
then{CuNode:=3}else{false} or CuNode:=4 }

else
{ if(CuNode=2)then{ L={l1} and (CuNode:=2 or

if(EW=‘g’ and SN=‘g’) then{Node:=3}else {false})}
else{

if(CuNode=3)then{CuNode:=3}
else{

if(CuNode=4) then{ L={l2} and (CuNode:=4 or
if(EW=‘y’ and SN=‘y’) then {CuNode:=3}else{false})

}else{false}}}}
};
if(CuNode=1) then{…}
else { if(CuNode=2)then{…}

else{ if(CuNode=3)then{…}
else{ if(CuNode=4)then{…}else{false}}}

}

frame(EW,SN,f) and
(char EW and char SN and int f<==0 and

while(!f)
{

EW<==‘g’ and SN<==‘r’ and skip;
EW<==‘y’ and SN<==‘r’ and skip;
EW<==‘r’ and SN<==‘g’ and skip;
EW<==‘r’ and SN<==‘y’ and
(f<==0 and skip or f<==1 and empty)

})

Verification as Dynamic Program Execution

Program M
Whether M violates P? MSVL Program

Desired Property P

P¬

M

and

frame(EW,SN,f) and
(char EW and char SN and int f<==0 and

while(!f)
{

EW<==‘g’ and SN<==‘r’ and skip;
EW<==‘y’ and SN<==‘r’ and skip;
EW<==‘r’ and SN<==‘g’ and skip;
EW<==‘r’ and SN<==‘y’ and
(f<==0 and skip or f<==1 and empty)

})

4

3

2

1 e1: true
e2: (EW=‘g’∧SN=‘g’)∨(EW=‘y’∧SN=‘y’)
e3: true
e4: (EW=‘g’∧SN=‘g’)∨(EW=‘y’∧SN=‘y’)
e5: true
e6: EW=‘g’∧SN=‘g’
e7: EW=‘g’∧SN=‘g’
e8: true
e9: true
e10: true
e11: EW=‘y’∧SN=‘y’
e12: EW=‘y’∧SN=‘y’

e1
e2

e3 e4

e5

e6

e7 e8
e9

e11
e10

e12

4

3

2

1 e1: true
e2: (EW=‘g’∧SN=‘g’)∨(EW=‘y’∧SN=‘y’)
e3: true
e4: (EW=‘g’∧SN=‘g’)∨(EW=‘y’∧SN=‘y’)
e5: true
e6: EW=‘g’∧SN=‘g’
e7: EW=‘g’∧SN=‘g’
e8: true
e9: true
e10: true
e11: EW=‘y’∧SN=‘y’
e12: EW=‘y’∧SN=‘y’

e1
e2

e3 e4

e5

e6

e7 e8
e9

e11
e10

e12

frame(EW,SN,f) and
(char EW and char SN and int f<==0 and

while(!f)
{

EW<==‘g’ and SN<==‘r’ and skip;
EW<==‘y’ and SN<==‘r’ and skip;
EW<==‘r’ and SN<==‘g’ and skip;
EW<==‘r’ and SN<==‘y’ and
(f<==0 and skip or f<==1 and empty)

})

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

An execution of an MSVL program is sequences of states
σ =< s0, s1, ... >

Finite:

Verification as Dynamic Program Execution

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

1

4

3

2

A finite execution in M A finite path in LNFG of ¬P

A finite execution in M and ¬P

‘r’
‘y’

1 2 3 4

1,1 2,2 3,2 4,2 5,5

5

5

2,2

1,1

3,2

4,2

1,2

2,3

3,3

4,3

1,3

2,4

3,4

4,41,4

5,5

All executions in M and ¬P

An execution of an MSVL program is sequences of states
σ =< s0, s1, ... >

Verification as Dynamic Program Execution

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

1

4

3

2

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

Infinite:

An infinite execution in M An infinite path in LNFG of ¬P

An infinite execution in M and ¬P

‘g’
‘r’

1 2 3 4

‘r’
‘y’

2,2

1,1

3,2

4,2

1,2

2,3

3,3

4,3

1,3

2,4

3,4

4,41,4

5,5

5

5

1,1 2,2 3,3 4,3 1,3 2,3

‘y’
‘r’

All executions in M and ¬P

An execution of an MSVL program is sequences of states
σ =< s0, s1, ... >

Verification as Dynamic Program Execution

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

1

4

3

2

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

Infinite:

An infinite execution in M
An infinite path in LNFG of ¬P

An infinite execution in M and ¬P
‘g’
‘r’

1 2 3 4

‘r’
‘y’

5

1,1 2,2 3,2 4,2 1,2

2,2

1,1

3,2

4,2

1,2

2,3

3,3

4,3

1,3

2,4

3,4

4,41,4

5,5

5

All executions in M and ¬P

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

Feasible Execution: An execution σ =< s0, s1,... > is feasible
if for all i, checki ≡ true, where checki is a boolean variable
representing whether a program state satisfies the
desired state formula at state i.

Finite:

Verification as Dynamic Program Execution

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

1

4

3

21 2 3 4

1,1 2,2 3,2 4,2 5,5

5

5

true
true

check true true falsetrue

EW=‘r’
SN=‘y’

Infeasible

Feasibility checking(finite)

EW=‘r’
∧SN=‘y’

EW=‘g’
∧SN=‘g’ ≡ false EW=‘g’

∧SN=‘g’
EW=‘g’
∧SN=‘g’∧

2,2

1,1

3,2

4,2

1,2

2,3

3,3

4,3

1,3

2,4

3,4

4,41,4

5,5

Verification as Dynamic Program Execution

EW
SN

‘g’
‘r’

‘r’
‘g’

‘r’
‘y’

1

4

3

2

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

Infinite:
‘g’
‘r’

1 2 3 4

‘r’
‘y’

2,2

1,1

3,2

4,2

1,2

2,3

3,3

4,3

1,3

2,4

3,4

4,41,4

5,5

5

5

1,1 2,2 3,3 4,3 1,3 2,3

‘y’
‘r’

true

check true false

Feasibility checking (infinite)

Infeasible

Feasible Execution: An execution σ =< s0, s1,... > is feasible
if for all i, checki ≡ true, where checki is a boolean variable
representing whether a program state satisfies the
desired state formula at state i.

EW=‘g’
∧ SN=‘g’

EW=‘y’
SN=‘r’
EW=‘y’
SN=‘r’

EW=‘y’
∧SN=‘r’

EW=‘g’
∧SN=‘g’ ≡ false∧

Verification as Dynamic Program Execution

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

1

4

3

2

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

Infinite:

Feasibility checking (infinite)
‘g’
‘r’

1 2 3 4

‘r’
‘y’

5

1,1 2,2 3,2 4,2 1,2

check true true truetrue

true

true
true

Feasible

Feasible Execution: An execution σ =< s0, s1,... > is feasible
if for all i, checki ≡ true, where checki is a boolean variable
representing whether a program state satisfies the
desired state formula at state i. 2,2

1,1

3,2

4,2

1,2

2,3

3,3

4,3

1,3

2,4

3,4

4,41,4

5,5

5

Verification as Dynamic Program Execution

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

1

4

3

2

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

Infinite:

Feasibility checking (infinite)
‘g’
‘r’

1 2 3 4

‘r’
‘y’

5

1,1 2,2 3,2 4,2 1,2

check true true truetrue

true

true
true

Feasible

Feasible Execution: An execution σ =< s0, s1,... > is feasible
if for all i, checki ≡ true, where checki is a boolean variable
representing whether a program state satisfies the
desired state formula at state i. 2,2

1,1

3,2

4,2

1,2

2,4

3,4

4,41,4

5

All feasible executions
in M and ¬P

Verification as Dynamic Program Execution

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

1

4

3

2

EW
SN

‘g’
‘r’

‘y’
‘r’

‘r’
‘g’

‘r’
‘y’

Infinite:

‘g’
‘r’

1 2 3 4

‘r’
‘y’

5

1,1 2,2 3,2 4,2 1,2

check true true truetrue

true

true
true

A feasible execution σ =<s0, s1, ...> is acceptable if
(1) σ is finite; or
(2) σ is infinite and no lables are shared by
all the states in Inf (σ)

Whether a feasible path is acceptable?

label {l1} {l1} {l1} {l1}∩ ∩ ∩ = {l1}φ

Unacceptable

l1is shared by all
the states in Inf (σ)

l1 2,2

1,1

3,2

4,2

1,2

2,4

3,4

4,41,4

5

Verification as Dynamic Program Execution

EW
SN

‘g’
‘r’

‘r’
‘g’

‘r’
‘y’

1

4

3

2

EW
SN

‘g’
‘r’

‘g’
‘g’

‘r’
‘g’

‘r’
‘y’

Infinite:
‘g’
‘r’

1 2 3 4

‘r’
‘y’

5

1,1 2,2 3,3 4,3 1,3

check true true truetrue true

true

true

label l1 φ φ φ φ∩ ∩ ∩ = φφ

l1

Suppose the model is modified as follows:

‘g’
‘g’

Acceptable

no label is shared by
all the states in Inf (σ)

A counterexample is found!

EW=‘g’
∧ SN=‘g’

2,3

‘g’
‘g’

true

2,2

1,1

3,2

4,2

1,2

2,3

3,3

4,3

1,3

2,4

3,4

4,41,4

5,5

All feasible executions
in M and ¬P

5

MSVL Compiler

UMC4MSVL

LNFG

feasible?M_and_M’.exe

Verification cases

M’
LNFG2MSVLM and M’M_IR

KLEE

MSVL
program M

PPTL
formula

Construct
LNFG

no
no

yes

yes

acceptable?

All cases
are verified

No error
found Error

Implementation

Verifying Programs

Case Studies

Dining philosophers problem
liveness property: every philosopher can eat.

LTL2BA
A software for translating LTL formula to Büchi automata
a Büchi automaton is generated with at most n×2n states
(n is the number of fairness conditions)

Simple CPU
An adder including dereference, decode and execution
If the address signal is true, the address is program counter address

Preprocessing

Syntax analysis

Semantics guided
translation

Post processing

Lexical analysis

C library
function

C program

MSVL program

Existing
corresponding
statement in

MSVL ?
Direct

translation

YES NO

Translating from C to MSVL

Twolf (C Program)

Twolf is selected from
the SPEC CPU 2000
Benchmark. It is used
in the process of
creating the lithography
artwork needed for the
production of microchips.

(C:15,912LOC MSVL:32,843LOC)

Preprocessing

Syntax analysis

Semantic analysis

Semantics guided
translation

Lexical analysis

Verilog/VHDL
program

MSVL
program

IR generation

SHA (Secure Hash Algorithm) is a
cryptographic hash functions
published by the National Institute of
Standards and Technology (NIST) as
a U.S. Federal Information Processing
Standard (FIPS).

Translating from Verilog/VHDL to MSVL

(Verilog:20,397LOC MSVL:44,583LOC)

SHA (Verilog Program)

Generating Verification Cases

execute

solve path
constraints

(SMT solver Z3)

generate
new inputs

Dynamic Symbolic Execution is used to generate verification
cases

MSVL program (IR)

Verification cases

KLEE

end

successful?

record path
constraint

negate a
branch

condition

no

yes

Case Studies

RERS P15 (RERS Benchmark)
A reactive system, where an engine calculates an output
depending on the input and current state, and finally
writes the output to the standard output

Totally, 16807 verification cases are generated with KLEE

Line Coverage: 41.81%
Branch Coverage: 50.70%

Property: 24 will never be output later than 22

Generating Verification Cases

Verification of (small) programs of Benchmark1

All the four tools can successfully output the verification results. However, UMC4MSVL is
more efficient than other three tools.

Verifying Programs

Our method

Verification of larger programs in Benchmark2

Success rate 44% 19% 100% 100%

Avg Time(s) 133.49 49.41 134.49 14.29

Verifying Programs

Our method

Verifying Programs

Verification of real-world programs

All the programs and properties are successfully verified by
UMC4MSVL in 403.2 seconds.
Other three tools fail on these programs.

 We proposed a run-time unified model checking
approach by executing both programs and
properties at the same time.

 We use dynamic symbolic execution technique to
generate verification cases for achieving higher
path coverage.

 However, the proposed approach is incomplete.
In the future:

 Investigate more strategies for generating better
verification cases

 Planning with MSVL Complier
 Bug-fixing guided by counterexamples

Conclusion and Future Research

Thanks!
&

Questions?

	Verifying Temporal Properties via Dynamic Program Execution
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	
	
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36
	幻灯片编号 37
	幻灯片编号 38
	幻灯片编号 39
	幻灯片编号 40
	幻灯片编号 41
	幻灯片编号 42
	幻灯片编号 43
	幻灯片编号 44
	幻灯片编号 45
	幻灯片编号 46
	幻灯片编号 47
	幻灯片编号 48
	幻灯片编号 49
	幻灯片编号 50
	幻灯片编号 51
	幻灯片编号 52
	幻灯片编号 53
	幻灯片编号 54
	幻灯片编号 55
	幻灯片编号 56
	幻灯片编号 57
	幻灯片编号 58
	幻灯片编号 59

