Constructions of partial geometric difference sets

Oktay Olmez

Department of Mathematics
Ankara University

New Directions in Combinatorics
May 24, 2016
Singapore

Partial geometric designs

Partial geometric designs

- 1-designs :

$$
N J=r J \text { and } J N=k J
$$

Partial geometric designs

- 1-designs :

$$
N J=r J \text { and } J N=k J
$$

- $2-(v, k, \lambda)$-designs :

$$
N J=r J, \quad J N=k J \text { and } N N^{t}=(r-\lambda) I+\lambda J
$$

Partial geometric designs

- 1-designs :

$$
N J=r J \text { and } J N=k J
$$

- $2-(v, k, \lambda)$-designs :

$$
N J=r J, \quad J N=k J \text { and } N N^{t}=(r-\lambda) I+\lambda J
$$

- partial geometric designs :

$$
J N=k J, \quad N J=r J \text { and } N N^{t} N=(\beta-\alpha) N+\alpha J
$$

(Bose et. al. 1978, Neumaier 1980)

Partial geometric designs

- $s(x, B):=$ the number of flags (y, C) such that $y \in B$ and $x \in C$:

$$
s(x, B)=\left\{\begin{array}{rl}
\alpha & \text { if } x \notin B, \\
\beta & \text { if } x \in B,
\end{array} \quad \forall(x, B) \in P \times \mathcal{B}\right.
$$

Partial geometric designs

- $s(x, B):=$ the number of flags (y, C) such that $y \in B$ and $x \in C$:

$$
s(x, B)=\left\{\begin{array}{rl}
\alpha & \text { if } x \notin B, \\
\beta & \text { if } x \in B,
\end{array} \quad \forall(x, B) \in P \times \mathcal{B}\right.
$$

- $\lambda_{x, y}:=$ the number of blocks containing both the points x and y $\left(\lambda_{x, x}=r\right)$

$$
s(x, B)=\sum_{y \in B} \lambda_{x, y}
$$

Partial geometric designs

$\Delta s(x, B):=$ the number of flags (y, C) such that $y \in B$ and $x \in C$:

$$
s(x, B)=\left\{\begin{array}{rl}
\alpha & \text { if } x \notin B, \\
\beta & \text { if } x \in B,
\end{array} \quad \forall(x, B) \in P \times \mathcal{B}\right.
$$

- $\lambda_{x, y}:=$ the number of blocks containing both the points x and y $\left(\lambda_{x, x}=r\right)$

$$
s(x, B)=\sum_{y \in B} \lambda_{x, y}
$$

- For a $2-(v, k, \lambda)$-design

$$
s(x, B)=\left\{\begin{array}{ll}
k \lambda & \text { if } x \notin B, \quad \forall(x, B) \in P \times \mathcal{B} . \\
r+(k-1) \lambda & \text { if } x \in B,
\end{array} \quad .\right.
$$

Directed strongly regular graphs

Directed strongly regular graphs

- A directed strongly regular graph (dsrg) is a $(0,1)$ matrix A with 0 's on the diagonal such that the linear span of I, A and J is closed under matrix multiplication.

Directed strongly regular graphs

- A directed strongly regular graph (dsrg) is a $(0,1)$ matrix A with 0 's on the diagonal such that the linear span of I, A and J is closed under matrix multiplication.
- Integral parameters v, k, t, λ, μ of a dsrg is defined by:

$$
A J=J A=k J, \quad A^{2}=t I+\lambda A+\mu(J-I-A) .
$$

Directed strongly regular graphs

- A directed strongly regular graph (dsrg) is a $(0,1)$ matrix A with 0 's on the diagonal such that the linear span of I, A and J is closed under matrix multiplication.
- Integral parameters v, k, t, λ, μ of a dsrg is defined by:

$$
A J=J A=k J, \quad A^{2}=t I+\lambda A+\mu(J-I-A)
$$

- The directed graph with as vertices the flags of this design and with adjacency $(x, B) \rightarrow(y, C)$ when the flags are distinct and x is in C is a dsrg with $t=\lambda+1$. Brouwer et. al. 2012
- Similarly, the directed graph with as vertices the antiflags of this design, with the same adjacency, is a dsrg with $t=\mu$. Brouwer et. al. 2012

PGD to DSRG

PGD to DSRG

$(v, k, t, \lambda, \mu)=(8,3,2,1,1)$

PGD to DSRG

Partial geometric difference sets

- Let S be a k-subset of a group G.
- $\zeta(g):=$ the number of ordered pairs $(s, t) \in S \times S$ such that $s t^{-1}=g$.

Partial geometric difference sets

- Let S be a k-subset of a group G.
- $\zeta(g):=$ the number of ordered pairs $(s, t) \in S \times S$ such that $s t^{-1}=g$.
- S is called a partial geometric difference set in G with parameters $(v, k ; \alpha, \beta)$ if there exist constants α and β such that, for each $x \in G$,

$$
\sum_{y \in S} \zeta\left(x y^{-1}\right)= \begin{cases}\alpha & \text { if } x \notin S \\ \beta & \text { if } x \in S\end{cases}
$$

$S=\{-1, i, j, k\}$ in \mathbb{Q}_{8}

Example

$$
\begin{aligned}
& \zeta(i *-i)=4 \\
& \zeta(i *-1)=2 \\
& \zeta(i *-j)=2 \\
& \zeta(i *-k)=2 \\
& \beta=4+2+2+2=10 \text {. } \\
& \zeta(1 *-1)=0 \\
& \zeta(1 *-i)=2 \\
& \zeta(1 *-j)=2 \\
& \zeta(1 *-k)=2 \\
& \alpha=0+2+2+2=6 .
\end{aligned}
$$

Some results on partial geometric difference sets

- Development of a partial geometric difference set S is a partial geometric design whose full automorphism group has a subgroup isomorphic to G. Olmez 2014
- G acts transitively on the block set and the point set of the design (G, Dev(S)). Olmez 2014
- S is a partial geometric difference set with parameters $(v, k ; \alpha, \beta)$ in G if and only if the equation

$$
\mathcal{S S}^{-1} \mathcal{S}=(\beta-\alpha) \mathcal{S}+\alpha \mathcal{G}
$$

holds in \mathbb{Z}. Olmez 2014

- S is a partial geometric difference set in an abelian group G with parameters $(v, k ; \alpha, \beta)$ if and only if $|\chi(S)|=\sqrt{\beta-\alpha}$ or $\chi(S)=0$ for every non-principal character χ of G. Olmez 2014

Construction A

- $s:=$ odd integer
- $C_{m}:=$ the class of elements of \mathbb{Z}_{2}^{s} having exactly m ones as components.
- $S:=$ the set union of classes C_{m} with $m \equiv 0,1 \bmod 4$.
- $\chi\left(\mathcal{S}^{2}\right)$ is either 0 or 2^{s-1} for any non-principal character. Olmez 2014

Construction A

- $s:=$ odd integer
- $C_{m}:=$ the class of elements of \mathbb{Z}_{2}^{s} having exactly m ones as components.
- $S:=$ the set union of classes C_{m} with $m \equiv 0,1 \bmod 4$.
- $\chi\left(\mathcal{S}^{2}\right)$ is either 0 or 2^{s-1} for any non-principal character. Olmez 2014
- When s is even S is a difference set. Menon 1960

Construction B

- $D:=$ a Hadamard difference set in \mathbb{Z}_{2}^{s}.
- $S=(D, 0) \bigcup\left(\mathbb{Z}_{2}^{s} \backslash D, 1\right)$ a subset of \mathbb{Z}_{2}^{s+1}
- $\chi\left(\mathcal{S}^{2}\right)$ is either 0 or 2^{s} for any non-principal character of \mathbb{Z}_{2}^{s+1}.

Construction B

- $D:=$ a Hadamard difference set in \mathbb{Z}_{2}^{s}.
- $S=(D, 0) \bigcup\left(\mathbb{Z}_{2}^{s} \backslash D, 1\right)$ a subset of \mathbb{Z}_{2}^{s+1}
- $\chi\left(\mathcal{S}^{2}\right)$ is either 0 or 2^{s} for any non-principal character of \mathbb{Z}_{2}^{s+1}.
- For instance $(16,6,2)$-Hadamard difference set yields a partial geometric difference set with parameters (32, 16; 120, 136)

Boolean Functions

- For a Boolean function f, we can define a function $F:=(-1)^{f}$ from \mathbb{Z}_{2}^{s} to the set $\{-1,1\}$. The Fourier transform of F is defined as follows:

$$
\widehat{F}(x)=\sum_{y \in \mathbb{Z}_{2}^{s}}(-1)^{x \cdot y} F(y)
$$

where $x \cdot y$ is the inner product of two vectors $x, y \in \mathbb{Z}_{2}^{s}$.

Bent Functions

- The nonlinearity N_{f} of f can be expressed as

$$
N_{f}=2^{s-1}-\frac{1}{2} \max \left\{|\widehat{F}(x)|: x \in \mathbb{Z}_{2}^{s}\right\} .
$$

- A function f is called a bent function if $|\widehat{F}(x)|=2^{s / 2}$ for all $x \in \mathbb{Z}_{2}^{s}$. A bent function has an optimal nonlinearity.

Bent Functions

- The nonlinearity N_{f} of f can be expressed as

$$
N_{f}=2^{s-1}-\frac{1}{2} \max \left\{|\widehat{F}(x)|: x \in \mathbb{Z}_{2}^{s}\right\}
$$

- A function f is called a bent function if $|\widehat{F}(x)|=2^{s / 2}$ for all $x \in \mathbb{Z}_{2}^{s}$.

A bent function has an optimal nonlinearity.

- Having a difference set with parameters

$$
\left(2^{s}, 2^{s-1} \pm 2^{(s-2) / 2}, 2^{s-2} \pm 2^{(s-2) / 2}\right)
$$

in \mathbb{Z}_{2}^{s} is equivalent to having a bent function from \mathbb{Z}_{2}^{s} to \mathbb{Z}_{2}. Dillon 1974

The link between Boolean functions and partial geometric difference sets

- Plateaued functions are introduced as Boolean functions from \mathbb{Z}_{2}^{s} to \mathbb{Z}_{2} which either are bent or have a Fourier spectrum with three values 0 and $\pm 2^{t}$ for some integer $t \geq \frac{s}{2}$. Zheng and Zhang 1999

The link between Boolean functions and partial geometric difference sets

- Plateaued functions are introduced as Boolean functions from \mathbb{Z}_{2}^{s} to \mathbb{Z}_{2} which either are bent or have a Fourier spectrum with three values 0 and $\pm 2^{t}$ for some integer $t \geq \frac{s}{2}$. Zheng and Zhang 1999
- Well-known examples are semibent, nearbent and partially-bent funtions. It is known that these functions provide some suitable candidates that can be used in cryptosystems.

The link between Boolean functions and partial geometric difference sets

- Plateaued functions are introduced as Boolean functions from \mathbb{Z}_{2}^{s} to \mathbb{Z}_{2} which either are bent or have a Fourier spectrum with three values 0 and $\pm 2^{t}$ for some integer $t \geq \frac{s}{2}$. Zheng and Zhang 1999
- Well-known examples are semibent, nearbent and partially-bent funtions. It is known that these functions provide some suitable candidates that can be used in cryptosystems.
- The existence of a partial geometric difference set in \mathbb{Z}_{2}^{s} with parameters ($v=2^{s}, k ; \alpha, \beta$) satisfying $\beta-\alpha=2^{2 t-2}$ for some integer t and $k \in\left\{2^{s-1}, 2^{s-1} \pm 2^{t-1}\right\}$ is equivalent to the existence of a plateaued function f with Fourier spectrum of $\left\{0, \pm 2^{t}\right\}$. Olmez 2015

Construction C

- $s:=$ odd integer
- Replace \mathbb{Z}_{2}^{s} by $\mathbb{F}_{2^{s}}$ and the dot product $x \cdot y$ by the absolute trace function $\operatorname{Tr}(x y)$.
- Gold function:

$$
g(x)=x^{2^{i}+1} \quad \operatorname{gcd}(i, s)=1
$$

- $f(x)=\operatorname{Tr}(g(x))$ is a plateaued function with Fourier spectrum of $\left\{0, \pm 2^{\frac{s+1}{2}}\right\}$. Gold 1968

Construction C

- $s:=$ odd integer
- Replace \mathbb{Z}_{2}^{s} by $\mathbb{F}_{2^{s}}$ and the dot product $x \cdot y$ by the absolute trace function $\operatorname{Tr}(x y)$.
- Gold function:

$$
g(x)=x^{2^{i}+1} \quad \operatorname{gcd}(i, s)=1
$$

- $f(x)=\operatorname{Tr}(g(x))$ is a plateaued function with Fourier spectrum of $\left\{0, \pm 2^{\frac{s+1}{2}}\right\}$. Gold 1968
- These functions yield partial geometric difference sets with parameters $\left(v=2^{s}, k=2^{s-1} ; \alpha=2^{2 s-3}-2^{s-2}, \beta=2^{s-1}+2^{2 s-3}-2^{s-2}\right)$

p-arry bent functions

- $\zeta_{p}=e^{\frac{2 i \pi}{p}}$.
- $f:=$ a function from the field $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p}.
- The Walsh transform of f

$$
W_{f}(\mu)=\sum_{x \in \mathbb{F}_{p^{n}}} \zeta_{p}^{f(x)+\operatorname{Tr}(\mu x)}, \quad \mu \in \mathbb{F}_{p^{n}}
$$

p-arry bent functions

- $\zeta_{p}=e^{\frac{2 i \pi}{p}}$.
- $f:=$ a function from the field $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p}.
- The Walsh transform of f

$$
W_{f}(\mu)=\sum_{x \in \mathbb{F}_{p^{n}}} \zeta_{p}^{f(x)+\operatorname{Tr}(\mu x)}, \quad \mu \in \mathbb{F}_{p^{n}}
$$

- A function from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p} is called a p-ary bent function if every Walsh coefficient has magnitude $p^{\frac{n}{2}}$.

p-arry bent functions

- $\zeta_{p}=e^{\frac{2 i \pi}{p}}$.
- $f:=$ a function from the field $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p}.
- The Walsh transform of f

$$
W_{f}(\mu)=\sum_{x \in \mathbb{F}_{p^{n}}} \zeta_{p}^{f(x)+\operatorname{Tr}(\mu x)}, \quad \mu \in \mathbb{F}_{p^{n}}
$$

- A function from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p} is called a p-ary bent function if every Walsh coefficient has magnitude $p^{\frac{n}{2}}$.

$$
R=\left\{(x, f(x)): x \in \mathbb{F}_{p^{n}}\right\}
$$

is a $\left(p^{n}, p, p^{n}, p^{n-1}\right)$-relative difference set in $H=\mathbb{F}_{p^{n}} \times \mathbb{F}_{p}$

p-arry bent functions

- $\zeta_{p}=e^{\frac{2 i \pi}{p}}$.
- $f:=$ a function from the field $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p}.
- The Walsh transform of f

$$
W_{f}(\mu)=\sum_{x \in \mathbb{F}_{p^{n}}} \zeta_{p}^{f(x)+\operatorname{Tr}(\mu x)}, \quad \mu \in \mathbb{F}_{p^{n}}
$$

- A function from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p} is called a p-ary bent function if every Walsh coefficient has magnitude $p^{\frac{n}{2}}$.

$$
R=\left\{(x, f(x)): x \in \mathbb{F}_{p^{n}}\right\}
$$

is a $\left(p^{n}, p, p^{n}, p^{n-1}\right)$-relative difference set in $H=\mathbb{F}_{p^{n}} \times \mathbb{F}_{p}$

- Any non-principal character χ of the additive group of $\mathbb{F}_{p^{n}} \times \mathbb{F}_{p}$ satisfies $|\chi(R)|^{2}=p^{n}$ or 0 . This observation reveals that the relative difference set R is indeed a partial geometric difference set.

Weakly regular bent functions

- weakly regular bent function:= if there exists some function

$$
f^{*}: \mathbb{F}_{p^{n}} \mapsto \mathbb{F}_{p}
$$

such that $W_{f}(x)=\nu p^{n / 2} \zeta_{p}^{f^{*}(x)}$.

$$
f(x)=\operatorname{Tr}\left(\alpha x^{2}\right)
$$

Weakly regular tenrary bent functions

- $f:=$ a bent function from the field $\mathbb{F}_{3^{2 s}}$ to \mathbb{F}_{3} satisfying $f(-x)=f(x)$ and $f(0)=0$.

$$
D_{i}=\left\{x \in \mathbb{F}_{3^{2 s}}: f(x)=i\right\}, \quad i=0,1,2
$$

- The sets $D_{0} \backslash\{0\}, D_{1}$ and D_{2} are all partial difference sets if and only if f is weakly regular. Tan et. al. 2010

Construction D

- $f:=$ a bent function from the field $\mathbb{F}_{3^{2 s+1}}$ to \mathbb{F}_{3} satisfying $f(-x)=f(x)$ and $f(0)=0$.
- if f is weakly regular the sets D_{0}, D_{1} and D_{2} are all partial geometric difference sets. Olmez 2016

An example of construction D

An example of construction D

- $f(x)=\operatorname{Tr}(\gamma P(x))$ from a planar function P and $\gamma \neq 0$.(all mappings $x \mapsto P(x+a)-P(x)$ are bijective for all $a \neq 0)$
- Let $s=1$ and $f(x)=\operatorname{Tr}\left(x^{2}\right)$.

An example of construction D

- $f(x)=\operatorname{Tr}(\gamma P(x))$ from a planar function P and $\gamma \neq 0$.(all mappings $x \mapsto P(x+a)-P(x)$ are bijective for all $a \neq 0)$
- Let $s=1$ and $f(x)=\operatorname{Tr}\left(x^{2}\right)$.

Sets	v	k	α	β
D_{0}	27	9	24	33
D_{1}	27	6	6	15
D_{2}	27	12	60	69
$D_{1} \cup D_{2}$	27	18	210	219
$D_{0} \cup D_{1}$	27	21	336	345
$D_{0} \cup D_{1}$	27	15	120	129

p-ary partially-bent functions

- The derivative of f in the direction of a is defined by

$$
D_{a} f(x)=f(x+a)-f(x)
$$

- A function f is called partially-bent if the derivative $D_{a} f$ is either balanced or constant for any a.

p-ary partially-bent functions

- The derivative of f in the direction of a is defined by

$$
D_{a} f(x)=f(x+a)-f(x)
$$

- A function f is called partially-bent if the derivative $D_{a} f$ is either balanced or constant for any a.
- $a \in \mathbb{F}_{p^{n}}$ is called a linear structure of f if $D_{a} f(x)$ is constant.
- $\Gamma_{f}:=$ the set of linear structures of f.

Construction E

- Let f be a partially bent function with s-dimensional linear subspace Γ_{f} and $f(0)=0$.
- $S=\left\{(x, f(x)): x \in \mathbb{F}_{p^{n}}\right\}$ is a partial geometric difference set in $G=\mathbb{F}_{p^{n}} \times \mathbb{F}_{p}$ with parameters $v=p^{n+1}, k=p^{n}, \alpha=\left(p^{n}-p^{s}\right) p^{n-1}$ and $\beta=\left(p^{n}-p^{s}\right) p^{n-1}+p^{n+s}$.

Construction E

- Let f be a partially bent function with s-dimensional linear subspace Γ_{f} and $f(0)=0$.
- $S=\left\{(x, f(x)): x \in \mathbb{F}_{p^{n}}\right\}$ is a partial geometric difference set in $G=\mathbb{F}_{p^{n}} \times \mathbb{F}_{p}$ with parameters $v=p^{n+1}, k=p^{n}, \alpha=\left(p^{n}-p^{s}\right) p^{n-1}$ and $\beta=\left(p^{n}-p^{s}\right) p^{n-1}+p^{n+s}$.
$A=\left\{(a, f(a)): a \in \Gamma_{f}\right\}$ and $B=\left\{(a, y): a \in \Gamma_{f}, y \in \mathbb{F}_{p}\right\}$.
(1) $(x, y) \in G \backslash B$ can be represented in the form $s_{1}-s_{2}, s_{1}, s_{2} \in S$ in exactly p^{n-1} ways.
(2) $(x, y) \in B \backslash A$ has no representation in the form $s_{1}-s_{2}, s_{1}, s_{2} \in S$.
(3) $(x, y) \in A$ can be represented in the form $s_{1}-s_{2}, s_{1}, s_{2} \in S$ in exactly p^{n} ways.

THANK YOU FOR

YOUR ATTENTION!
ANY QUESTIONS?

