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» 1-designs :
NJ=rJ and JN = kJ
» 2 — (v, k,\)-designs :

NJ=rJ, JN=kJ and NN* = (r—A)+\J

» partial geometric designs :
IN=kJ, NJ=rJ and NN'N = (8 —a)N+ aJ

(Bose et. al. 1978, Neumaier 1980)



Partial geometric designs

» s(x, B) := the number of flags (y, C) such that y € B and x € C:

o ifx¢B,
s(x,B)—{ﬁ fxcB V(x,B) € P x B.



Partial geometric designs

» s(x, B) := the number of flags (y, C) such that y € B and x € C:
o ifx¢B,
s(x,B)—{ﬁ fxcB V(x,B) € P x B.

» )\, = the number of blocks containing both the points x and y
(Acx=1)

s(x,B) = Z Ax.y

yeB



Partial geometric designs

» s(x, B) := the number of flags (y, C) such that y € B and x € C:
o ifx¢B,
s(x,B)—{ﬂ fxcB V(x,B) € P x B.

» )\, = the number of blocks containing both the points x and y
(Acx=1)

s(x,B) = Z Ax.y

yeB
» For a2 —(v,k,\)-design

K\ if x ¢ B,

S(X’B):{r+(k—1))\ fxcB. V(x,B) € P x B.
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» A directed strongly regular graph (dsrg) is a (0,1) matrix A with Q's
on the diagonal such that the linear span of /, A and J is closed
under matrix multiplication.
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Directed strongly regular graphs

» A directed strongly regular graph (dsrg) is a (0,1) matrix A with Q's
on the diagonal such that the linear span of /, A and J is closed
under matrix multiplication.

» Integral parameters v, k, t, A, u of a dsrg is defined by:

AJ=JA=kJ, A2 =tl+ A+ pu(J—1-A).

» The directed graph with as vertices the flags of this design and with
adjacency (x, B) — (y, C) when the flags are distinct and x is in C is
a dsrg with t = A + 1. Brouwer et. al. 2012

» Similarly, the directed graph with as vertices the antiflags of this
design, with the same adjacency, is a dsrg with t = . Brouwer et.
al. 2012
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PGD to DSRG

f L

P P2 La

P3 Py
Ly

(v, k,t, A\, u) =(8,3,2,1,1) (v, k,t, A\, u) =(8,4,3,1,3)

(P3.L1)

(Pr.L1) (P3.La)

(Pa.L1)

(P3.Ls) @1.L3) (Py.Ly) (Pr.Lg)

(Ps.Ly) (P.L3) (Ps.L3) (P3.L3)

(Pyly) ———— (Pr.I) (Pp.Ly) e (P2.L))
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Partial geometric difference sets

> Let S be a k-subset of a group G.

» ((g):= the number of ordered pairs (s,t) € S x S such that
stl = g.
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Partial geometric difference sets

> Let S be a k-subset of a group G.

» ((g):= the number of ordered pairs (s,t) € S x S such that
stl = g.

» S is called a partial geometric difference set in G with parameters
(v, k; o, B) if there exist constants « and 3 such that, for each x € G,

_ a ifx¢s,
o= {5 128

yeS
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S={—1,i,j,k} in Qg

|
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C(1x—k)=2

a=0+2+2+2=6.




Some results on partial geometric difference sets

» Development of a partial geometric difference set S is a partial
geometric design whose full automorphism group has a subgroup
isomorphic to G. Olmez 2014

» G acts transitively on the block set and the point set of the design
(G, Dev(S)). Olmez 2014

» S is a partial geometric difference set with parameters (v, k; «, 3) in
G if and only if the equation

SS7IS=(B—a)S+ag

holds in ZG. Olmez 2014

» S is a partial geometric difference set in an abelian group G with

parameters (v, k; «, ) if and only if [x(S)| = VB —a or x(S)=0
for every non-principal character x of G. Olmez 2014
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Construction A

» s := odd integer

» Cp := the class of elements of 7Z35 having exactly m ones as
components.

» S := the set union of classes C,, with m=0,1 mod 4.

> x(S?) is either 0 or 25~ for any non-principal character. Olmez 2014
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Construction A

» s := odd integer

» Cp := the class of elements of 7Z35 having exactly m ones as
components.

» S := the set union of classes C,, with m=0,1 mod 4.
> x(S?) is either 0 or 25~ for any non-principal character. Olmez 2014
» When s is even S is a difference set. Menon 1960
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Construction B

» D := a Hadamard difference set in Z3.
» S=(D,0)J(Z5\ D,1) a subset of Z5™*
> X(S?) is either 0 or 2° for any non-principal character of Z5™.
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Construction B

» D := a Hadamard difference set in Z3.
» S=(D,0)J(Z5\ D,1) a subset of Z5™*
> X(S?) is either 0 or 2° for any non-principal character of Z5™.

» For instance (16, 6,2)-Hadamard difference set yields a partial
geometric difference set with parameters (32, 16; 120, 136)

22 / AA



Boolean Functions

» For a Boolean function f, we can define a function F := (—1)f from
Z3 to the set {—1,1}. The Fourier transform of F is defined as

follows:

Fx)= D> (-17F(y)

yEZ;

where x - y is the inner product of two vectors x,y € Z3.

24 / AG



Bent Functions

» The nonlinearity N¢ of f can be expressed as
s—1 1 r s
Nf =2 —Emax{\F(x)\ i x € L3},

» A function f is called a bent function if |I?(x)| = 25/2 for all x € Z5.
A bent function has an optimal nonlinearity.
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Bent Functions

» The nonlinearity N¢ of f can be expressed as
s—1 1 r s
Nf =2 —Emax{\F(x)\ i x € L3},

» A function f is called a bent function if ]I?(x)| = 25/2 for all x € Z5.
A bent function has an optimal nonlinearity.

» Having a difference set with parameters
(257 2571 :t 2(572)/27 2572 j: 2(572)/2)

in Z3 is equivalent to having a bent function from Z3 to Z,. Dillon
1974
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The link between Boolean functions and partial geometric

difference sets

» Plateaued functions are introduced as Boolean functions from Z3 to
Zy which either are bent or have a Fourier spectrum with three values
0 and +2° for some integer t > 5. Zheng and Zhang 1999
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The link between Boolean functions and partial geometric

difference sets

» Plateaued functions are introduced as Boolean functions from Z3 to
Zy which either are bent or have a Fourier spectrum with three values
0 and +2° for some integer t > 5. Zheng and Zhang 1999

» Well-known examples are semibent, nearbent and partially-bent
funtions. It is known that these functions provide some suitable
candidates that can be used in cryptosystems.

» The existence of a partial geometric difference set in Z35 with
parameters (v = 2°, k; a, 3) satisfying 3 — o = 22t=2 for some integer
t and k € {2571, 2571 4 2t71} is equivalent to the existence of a
plateaued function f with Fourier spectrum of {0, +2¢}. Olmez 2015
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Construction C

» s := odd integer

» Replace Z35 by Fps and the dot product x - y by the absolute trace
function Tr(xy).

» Gold function: '
g(x)=x** ged(i,s) =1

> f(x):Tr(lg(x)) is a plateaued function with Fourier spectrum of
{0,4£2°7 }. Gold 1968
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Construction C

» s := odd integer

» Replace Z35 by Fps and the dot product x - y by the absolute trace
function Tr(xy).

» Gold function: '
g(x)=x** ged(i,s) =1
> f(x)=Tr(g(x)) is a plateaued function with Fourier spectrum of
{0,£2°%" }. Gold 1968

» These functions yield partial geometric difference sets with parameters
(V =25 k= 25—1. a = 225—3 o 25—2 B — 25—1 4 225—3 o 25—2)

21 / AA



p-arry bent functions

2im

> (p=er.
» f := a function from the field F,n to F.
» The Walsh transform of f

Z Cf(x +Tr(,u,x)’ = Fpn
x€EF pn
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p-arry bent functions

2im

> (p=er.
» f := a function from the field F,n to F.
» The Walsh transform of f

Z Cf(x +Tr(,u,x)’ = Fpn
x€EF pn

» A function from Fpn to Fj, is called a p-ary bent function if every
Walsh coefficient has magnitude p2.

>
R ={(x,f(x)):x € Fpn}

is a (p", p, p", p"~1)-relative difference set in H = Fpn x F,,
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p-arry bent functions

>
4
| 4

2im
f := a function from the field F,n to F.

The Walsh transform of f

Z Cf(x +Tr(,u,x)’ e Fpn
x€EF pn

A function from [F,n to I, is called a p-ary bent function if every
Walsh coefficient has magnitude p2.

R ={(x,f(x)):x € Fpn}
isa (p", p,p", p"1)-relative difference set in H = Fpr x Fp

Any non-principal character x of the additive group of Fpn x [Fj,
satisfies |x(R)|?> = p" or 0. This observation reveals that the relative
difference set R is indeed a partial geometric difference set.

2AE /AR



Weakly regular bent functions

» weakly regular bent function:= if there exists some function
*
. ]Fpn — ]Fp

such that We(x) = yp”/zg“;*(x).

4
f(x) = Tr(ax?)

26 / AA



Weakly regular tenrary bent functions

» f := a bent function from the field F3»s to F3 satisfying
f(—x) = f(x) and f(0) = 0.
>
Di={xe€Fsp:f(x)=1i}, i=0,1,2

» The sets Dy \ {0}, D1 and D, are all partial difference sets if and only
if £ is weakly regular. Tan et. al. 2010
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Construction D

» f := a bent function from the field F32s+1 to F3 satisfying
f(—x) = f(x) and f(0) = 0.

» if f is weakly regular the sets Dy, D; and Dy are all partial geometric
difference sets. Olmez 2016
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An example of construction D
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An example of construction D

» f(x) = Tr(yP(x)) from a planar function P and -y # 0.( all mappings
x — P(x + a) — P(x) are bijective for all a # 0)

> Let s =1 and f(x) = Tr(x?).
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An example of construction D

» f(x) = Tr(yP(x)) from a planar function P and -y # 0.( all mappings
x — P(x + a) — P(x) are bijective for all a # 0)

> Let s =1 and f(x) = Tr(x?).

| Sets [v]k]o]P ]
Dy 27| 9 | 24 | 33
Dy 27| 6 6 15
D, 27 |12 ] 60 | 69
DiuD, | 27 | 18 | 210 | 219
DouUD; | 27 | 21 | 336 | 345
DouUD; | 27 | 15 | 120 | 129

Al /AR



p-ary partially-bent functions

» The derivative of f in the direction of a is defined by
D.f(x) = f(x + a) — f(x).

» A function f is called partially-bent if the derivative D,f is either
balanced or constant for any a.
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p-ary partially-bent functions

» The derivative of f in the direction of a is defined by
D.f(x) = f(x + a) — f(x).

» A function f is called partially-bent if the derivative D,f is either
balanced or constant for any a.

» ac [Fpnis called a linear structure of f if D,f(x) is constant.

» [ := the set of linear structures of f.

AR / AR



Construction E

» Let f be a partially bent function with s-dimensional linear subspace
[+ and f(0) =0.

> S={(x,f(x)): x € Fpn} is a partial geometric difference set in
G = Fpn x Fp with parameters v = p™1, k = p", a = (p" — p°)p
and B — (pn _ ps)pn—l + pn+s_

n—1
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Construction E

» Let f be a partially bent function with s-dimensional linear subspace
[+ and f(0) =0.

> S={(x,f(x)): x € Fpn} is a partial geometric difference set in
G = Fpn x Fp with parameters v = p™1, k = p", a = (p" — p°)p
and B — (pn _ ps)pn—l + pn—i—s.

A={(a,f(a)):acTl¢f}and B={(a,y):aclsyecF,}

Q (x,y) € G\ B can be represented in the form s; — s5, 51,5 € S in
exactly p"~1 ways.

@ (x,y) € B\ A has no representation in the form s; — s, 51,5 € S.

n—1

@ (x,y) € A can be represented in the form s; — s, 51,5 € S in exactly
p" ways.

AR | AR
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