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Partial geometric designs

I 1-designs :
NJ = rJ and JN = kJ

I 2− (v , k , λ)-designs :

NJ = rJ, JN = kJ and NNt = (r − λ)I + λJ

I partial geometric designs :

JN = kJ, NJ = rJ and NNtN = (β − α)N + αJ

(Bose et. al. 1978, Neumaier 1980)
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Partial geometric designs

I s(x ,B) := the number of flags (y ,C ) such that y ∈ B and x ∈ C :

s(x ,B) =

{
α if x /∈ B,
β if x ∈ B,

∀(x ,B) ∈ P × B.

I λx ,y := the number of blocks containing both the points x and y
(λx ,x = r)

s(x ,B) =
∑
y∈B

λx ,y

I For a 2− (v , k, λ)-design

s(x ,B) =

{
kλ if x /∈ B,
r + (k − 1)λ if x ∈ B,

∀(x ,B) ∈ P × B.
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Directed strongly regular graphs

I A directed strongly regular graph (dsrg) is a (0,1) matrix A with 0’s
on the diagonal such that the linear span of I , A and J is closed
under matrix multiplication.

I Integral parameters v , k, t, λ, µ of a dsrg is defined by:

AJ = JA = kJ, A2 = tI + λA + µ(J − I − A).

I The directed graph with as vertices the flags of this design and with
adjacency (x ,B)→ (y ,C ) when the flags are distinct and x is in C is
a dsrg with t = λ+ 1. Brouwer et. al. 2012

I Similarly, the directed graph with as vertices the antiflags of this
design, with the same adjacency, is a dsrg with t = µ. Brouwer et.
al. 2012
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PGD to DSRG

(v , k , t, λ, µ) = (8, 3, 2, 1, 1) (v , k , t, λ, µ) = (8, 4, 3, 1, 3)
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Partial geometric difference sets

I Let S be a k-subset of a group G .

I ζ(g):= the number of ordered pairs (s, t) ∈ S × S such that
st−1 = g .

I S is called a partial geometric difference set in G with parameters
(v , k;α, β) if there exist constants α and β such that, for each x ∈ G ,

∑
y∈S

ζ(xy−1) =

{
α if x /∈ S ,
β if x ∈ S
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S = {−1, i , j , k} in Q8

Example

ζ(i ∗ −i) = 4

ζ(i ∗ −1) = 2

ζ(i ∗ −j) = 2

ζ(i ∗ −k) = 2

β = 4 + 2 + 2 + 2 = 10.

ζ(1 ∗ −1) = 0

ζ(1 ∗ −i) = 2

ζ(1 ∗ −j) = 2

ζ(1 ∗ −k) = 2

α = 0 + 2 + 2 + 2 = 6.

-1 i j k

-1 1 i j k
i -i 1 -k j
j -j k 1 -i
k -k -j i 1

1 -1 - i -j -k
-i i -1 k -j
-j j -k -1 i
-k k j -i -1
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Some results on partial geometric difference sets

I Development of a partial geometric difference set S is a partial
geometric design whose full automorphism group has a subgroup
isomorphic to G . Olmez 2014

I G acts transitively on the block set and the point set of the design
(G ,Dev(S)). Olmez 2014

I S is a partial geometric difference set with parameters (v , k ;α, β) in
G if and only if the equation

SS−1S = (β − α)S + αG

holds in ZG . Olmez 2014

I S is a partial geometric difference set in an abelian group G with
parameters (v , k;α, β) if and only if |χ(S)| =

√
β − α or χ(S) = 0

for every non-principal character χ of G . Olmez 2014

19 / 46



Construction A

I s := odd integer

I Cm := the class of elements of Zs
2 having exactly m ones as

components.

I S := the set union of classes Cm with m ≡ 0, 1 mod 4.

I χ(S2) is either 0 or 2s−1 for any non-principal character. Olmez 2014

I When s is even S is a difference set. Menon 1960
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Construction B

I D := a Hadamard difference set in Zs
2.

I S = (D, 0)
⋃

(Zs
2 \ D, 1) a subset of Zs+1

2

I χ(S2) is either 0 or 2s for any non-principal character of Zs+1
2 .

I For instance (16, 6, 2)-Hadamard difference set yields a partial
geometric difference set with parameters (32, 16; 120, 136)
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Boolean Functions

I For a Boolean function f , we can define a function F := (−1)f from
Zs
2 to the set {−1, 1}. The Fourier transform of F is defined as

follows:

F̂ (x) =
∑
y∈Zs

2

(−1)x ·yF (y)

where x · y is the inner product of two vectors x , y ∈ Zs
2.
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Bent Functions

I The nonlinearity Nf of f can be expressed as

Nf = 2s−1 − 1

2
max{|F̂ (x)| : x ∈ Zs

2}.

I A function f is called a bent function if |F̂ (x)| = 2s/2 for all x ∈ Zs
2.

A bent function has an optimal nonlinearity.

I Having a difference set with parameters

(2s , 2s−1 ± 2(s−2)/2, 2s−2 ± 2(s−2)/2)

in Zs
2 is equivalent to having a bent function from Zs

2 to Z2. Dillon
1974
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The link between Boolean functions and partial geometric
difference sets

I Plateaued functions are introduced as Boolean functions from Zs
2 to

Z2 which either are bent or have a Fourier spectrum with three values
0 and ±2t for some integer t ≥ s

2 . Zheng and Zhang 1999

I Well-known examples are semibent, nearbent and partially-bent
funtions. It is known that these functions provide some suitable
candidates that can be used in cryptosystems.

I The existence of a partial geometric difference set in Zs
2 with

parameters (v = 2s , k ;α, β) satisfying β − α = 22t−2 for some integer
t and k ∈ {2s−1, 2s−1 ± 2t−1} is equivalent to the existence of a
plateaued function f with Fourier spectrum of {0,±2t}. Olmez 2015
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Construction C

I s := odd integer

I Replace Zs
2 by F2s and the dot product x · y by the absolute trace

function Tr(xy).

I Gold function:
g(x) = x2

i+1 gcd(i , s) = 1

I f(x)=Tr(g(x)) is a plateaued function with Fourier spectrum of

{0,±2
s+1
2 }. Gold 1968

I These functions yield partial geometric difference sets with parameters
(v = 2s , k = 2s−1;α = 22s−3 − 2s−2, β = 2s−1 + 22s−3 − 2s−2)
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p-arry bent functions

I ζp = e
2iπ
p .

I f := a function from the field Fpn to Fp.

I The Walsh transform of f

Wf (µ) =
∑
x∈Fpn

ζ
f (x)+Tr(µx)
p , µ ∈ Fpn

I A function from Fpn to Fp is called a p-ary bent function if every
Walsh coefficient has magnitude p

n
2 .

I
R = {(x , f (x)) : x ∈ Fpn}

is a (pn, p, pn, pn−1)-relative difference set in H = Fpn × Fp

I Any non-principal character χ of the additive group of Fpn × Fp

satisfies |χ(R)|2 = pn or 0. This observation reveals that the relative
difference set R is indeed a partial geometric difference set.
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Weakly regular bent functions

I weakly regular bent function:= if there exists some function

f ∗ : Fpn 7→ Fp

such that Wf (x) = νpn/2ζ
f ∗(x)
p .

I
f (x) = Tr(αx2)
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Weakly regular tenrary bent functions

I f := a bent function from the field F32s to F3 satisfying
f (−x) = f (x) and f (0) = 0.

I
Di = {x ∈ F32s : f (x) = i}, i = 0, 1, 2

I The sets D0 \ {0}, D1 and D2 are all partial difference sets if and only
if f is weakly regular. Tan et. al. 2010
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Construction D

I f := a bent function from the field F32s+1 to F3 satisfying
f (−x) = f (x) and f (0) = 0.

I if f is weakly regular the sets D0, D1 and D2 are all partial geometric
difference sets. Olmez 2016
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An example of construction D

I f (x) = Tr(γP(x)) from a planar function P and γ 6= 0.( all mappings
x 7→ P(x + a)− P(x) are bijective for all a 6= 0)

I Let s = 1 and f (x) = Tr(x2).

Sets v k α β

D0 27 9 24 33

D1 27 6 6 15

D2 27 12 60 69

D1 ∪ D2 27 18 210 219

D0 ∪ D1 27 21 336 345

D0 ∪ D1 27 15 120 129
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p-ary partially-bent functions

I The derivative of f in the direction of a is defined by

Daf (x) = f (x + a)− f (x).

I A function f is called partially-bent if the derivative Daf is either
balanced or constant for any a.

I a ∈ Fpn is called a linear structure of f if Daf (x) is constant.

I Γf := the set of linear structures of f .
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Construction E

I Let f be a partially bent function with s-dimensional linear subspace
Γf and f (0) = 0.

I S = {(x , f (x)) : x ∈ Fpn} is a partial geometric difference set in
G = Fpn × Fp with parameters v = pn+1, k = pn, α = (pn − ps)pn−1

and β = (pn − ps)pn−1 + pn+s .

A = {(a, f (a)) : a ∈ Γf } and B = {(a, y) : a ∈ Γf , y ∈ Fp}.
1 (x , y) ∈ G \ B can be represented in the form s1 − s2, s1, s2 ∈ S in

exactly pn−1 ways.

2 (x , y) ∈ B \ A has no representation in the form s1 − s2, s1, s2 ∈ S .

3 (x , y) ∈ A can be represented in the form s1 − s2, s1, s2 ∈ S in exactly
pn ways.
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