Constructions of partial geometric difference sets

Oktay Olmez

Department of Mathematics Ankara University

New Directions in Combinatorics May 24, 2016 Singapore

▶ 1-designs :

$$NJ = rJ$$
 and $JN = kJ$

▶ 1-designs :

$$NJ = rJ$$
 and $JN = kJ$

▶ $2 - (v, k, \lambda)$ -designs :

$$NJ = rJ$$
, $JN = kJ$ and $NN^t = (r - \lambda)I + \lambda J$

1-designs :

$$NJ = rJ$$
 and $JN = kJ$

▶ $2 - (v, k, \lambda)$ -designs :

$$NJ = rJ$$
, $JN = kJ$ and $NN^t = (r - \lambda)I + \lambda J$

partial geometric designs :

JN = kJ, NJ = rJ and $NN^tN = (\beta - \alpha)N + \alpha J$

(Bose et. al. 1978, Neumaier 1980)

▶ s(x,B) := the number of flags (y, C) such that $y \in B$ and $x \in C$:

$$s(x,B) = \left\{egin{array}{cc} lpha & ext{if } x \notin B, \ eta & ext{if } x \in B, \end{array} & orall (x,B) \in P imes \mathcal{B}. \end{array}
ight.$$

▶ s(x,B) := the number of flags (y, C) such that $y \in B$ and $x \in C$:

$$s(x,B) = \left\{ egin{array}{ccc} lpha & ext{if } x \notin B, \ eta & ext{if } x \in B, \end{array} & orall (x,B) \in P imes \mathcal{B}. \end{array}
ight.$$

λ_{x,y} := the number of blocks containing both the points x and y (λ_{x,x} = r)

$$s(x,B) = \sum_{y \in B} \lambda_{x,y}$$

▶ s(x,B) := the number of flags (y, C) such that $y \in B$ and $x \in C$:

$$s(x,B) = \left\{ egin{array}{ccc} lpha & ext{if } x \notin B, \ eta & ext{if } x \in B, \end{array} & orall (x,B) \in P imes \mathcal{B}. \end{array}
ight.$$

λ_{x,y} := the number of blocks containing both the points x and y (λ_{x,x} = r)

$$s(x,B) = \sum_{y \in B} \lambda_{x,y}$$

For a $2 - (v, k, \lambda)$ -design

$$s(x,B) = \left\{egin{array}{cc} k\lambda & ext{if } x \notin B, \ r+(k-1)\lambda & ext{if } x \in B, \end{array} \ orall (x,B) \in P imes \mathcal{B}. \end{array}
ight.$$

► A directed strongly regular graph (dsrg) is a (0,1) matrix A with 0's on the diagonal such that the linear span of I, A and J is closed under matrix multiplication.

Directed strongly regular graphs

- A directed strongly regular graph (dsrg) is a (0,1) matrix A with 0's on the diagonal such that the linear span of I, A and J is closed under matrix multiplication.
- Integral parameters v, k, t, λ, μ of a dsrg is defined by:

$$AJ = JA = kJ,$$
 $A^2 = tI + \lambda A + \mu(J - I - A).$

- ► A directed strongly regular graph (dsrg) is a (0,1) matrix A with 0's on the diagonal such that the linear span of I, A and J is closed under matrix multiplication.
- Integral parameters v, k, t, λ, μ of a dsrg is defined by:

$$AJ = JA = kJ,$$
 $A^2 = tI + \lambda A + \mu(J - I - A).$

- ► The directed graph with as vertices the flags of this design and with adjacency $(x, B) \rightarrow (y, C)$ when the flags are distinct and x is in C is a dsrg with $t = \lambda + 1$. Brouwer et. al. 2012
- Similarly, the directed graph with as vertices the antiflags of this design, with the same adjacency, is a dsrg with t = μ. Brouwer et. al. 2012

PGD to DSRG

$$(v, k, t, \lambda, \mu) = (8, 3, 2, 1, 1)$$

- ▶ Let *S* be a *k*-subset of a group *G*.
- ζ(g):= the number of ordered pairs (s, t) ∈ S × S such that
 st⁻¹ = g.

- Let S be a k-subset of a group G.
- ► $\zeta(g)$:= the number of ordered pairs $(s, t) \in S \times S$ such that $st^{-1} = g$.
- S is called a partial geometric difference set in G with parameters (v, k; α, β) if there exist constants α and β such that, for each x ∈ G,

$$\sum_{y \in S} \zeta(xy^{-1}) = \begin{cases} \alpha & \text{if } x \notin S, \\ \beta & \text{if } x \in S \end{cases}$$

$S = \{-1, i, j, k\}$ in \mathbb{Q}_8

Example

$$\zeta(i*-i) = 4$$

$$\zeta(i*-1) = 2$$

$$\zeta(i*-j) = 2$$

$$\zeta(i*-k) = 2$$

$$\beta = 4 + 2 + 2 + 2 = 10$$

$$\zeta(1*-1) = 0$$

$$\zeta(1*-i) = 2$$

$$\zeta(1*-j) = 2$$

$$\zeta(1*-k) = 2$$

$$\alpha = 0 + 2 + 2 + 2 = 6.$$

	-1	i	j	k
-1	1	i	j	k
i	-i	1	-k	j
j	-j	k	1	-i
k	-k	-j	i	1
1	-1	- i	-j	-k
-i	i	-1	k	-j
-j	j	-k	-1	i
-k	k	j	-i	-1

18/4

Some results on partial geometric difference sets

- Development of a partial geometric difference set S is a partial geometric design whose full automorphism group has a subgroup isomorphic to G. Olmez 2014
- ► G acts transitively on the block set and the point set of the design (G, Dev(S)). Olmez 2014
- S is a partial geometric difference set with parameters (v, k; α, β) in
 G if and only if the equation

$$\mathcal{SS}^{-1}\mathcal{S} = (\beta - \alpha)\mathcal{S} + \alpha\mathcal{G}$$

holds in $\mathbb{Z}G$. Olmez 2014

▶ *S* is a partial geometric difference set in an abelian group *G* with parameters $(v, k; \alpha, \beta)$ if and only if $|\chi(S)| = \sqrt{\beta - \alpha}$ or $\chi(S) = 0$ for every non-principal character χ of *G*. **Olmez 2014**

- ▶ s := odd integer
- ► C_m := the class of elements of Z^s₂ having exactly m ones as components.
- ▶ S := the set union of classes C_m with $m \equiv 0, 1 \mod 4$.
- $\chi(S^2)$ is either 0 or 2^{s-1} for any non-principal character. **Olmez 2014**

- ▶ s := odd integer
- ► C_m := the class of elements of Z^s₂ having exactly m ones as components.
- ▶ S := the set union of classes C_m with $m \equiv 0, 1 \mod 4$.
- > $\chi(S^2)$ is either 0 or 2^{s-1} for any non-principal character. **Olmez 2014**
- When s is even S is a difference set. Menon 1960

- D := a Hadamard difference set in \mathbb{Z}_2^s .
- ▶ $S = (D,0) \bigcup (\mathbb{Z}_2^s \setminus D, 1)$ a subset of \mathbb{Z}_2^{s+1}
- $\chi(S^2)$ is either 0 or 2^s for any non-principal character of \mathbb{Z}_2^{s+1} .

- D := a Hadamard difference set in \mathbb{Z}_2^s .
- ▶ $S = (D, 0) \bigcup (\mathbb{Z}_2^s \setminus D, 1)$ a subset of \mathbb{Z}_2^{s+1}
- $\chi(S^2)$ is either 0 or 2^s for any non-principal character of \mathbb{Z}_2^{s+1} .
- ► For instance (16, 6, 2)-Hadamard difference set yields a partial geometric difference set with parameters (32, 16; 120, 136)

For a Boolean function *f*, we can define a function *F* := (−1)^{*f*} from Z^s₂ to the set {−1,1}. The Fourier transform of *F* is defined as follows:

$$\widehat{F}(x) = \sum_{y \in \mathbb{Z}_2^s} (-1)^{x \cdot y} F(y)$$

where $x \cdot y$ is the inner product of two vectors $x, y \in \mathbb{Z}_2^s$.

▶ The nonlinearity N_f of f can be expressed as

$$N_f = 2^{s-1} - \frac{1}{2} \max\{|\widehat{F}(x)| : x \in \mathbb{Z}_2^s\}.$$

A function f is called a **bent** function if |F̂(x)| = 2^{s/2} for all x ∈ Z₂^s. A bent function has an optimal nonlinearity. ▶ The nonlinearity N_f of f can be expressed as

$$N_f = 2^{s-1} - \frac{1}{2} \max\{|\widehat{F}(x)| : x \in \mathbb{Z}_2^s\}.$$

- A function f is called a **bent** function if |F̂(x)| = 2^{s/2} for all x ∈ Z₂^s. A bent function has an optimal nonlinearity.
- ▶ Having a difference set with parameters

$$(2^{s}, 2^{s-1} \pm 2^{(s-2)/2}, 2^{s-2} \pm 2^{(s-2)/2})$$

in \mathbb{Z}_2^s is equivalent to having a bent function from \mathbb{Z}_2^s to $\mathbb{Z}_2.$ Dillon 1974

The link between Boolean functions and partial geometric difference sets

▶ Plateaued functions are introduced as Boolean functions from \mathbb{Z}_2^s to \mathbb{Z}_2 which either are bent or have a Fourier spectrum with three values 0 and $\pm 2^t$ for some integer $t \ge \frac{s}{2}$. **Zheng and Zhang 1999**

- ▶ Plateaued functions are introduced as Boolean functions from \mathbb{Z}_2^s to \mathbb{Z}_2 which either are bent or have a Fourier spectrum with three values 0 and $\pm 2^t$ for some integer $t \geq \frac{s}{2}$. **Zheng and Zhang 1999**
- Well-known examples are semibent, nearbent and partially-bent functions. It is known that these functions provide some suitable candidates that can be used in cryptosystems.

- ▶ Plateaued functions are introduced as Boolean functions from \mathbb{Z}_2^s to \mathbb{Z}_2 which either are bent or have a Fourier spectrum with three values 0 and $\pm 2^t$ for some integer $t \geq \frac{s}{2}$. **Zheng and Zhang 1999**
- Well-known examples are semibent, nearbent and partially-bent functions. It is known that these functions provide some suitable candidates that can be used in cryptosystems.
- The existence of a partial geometric difference set in Z₂^s with parameters (v = 2^s, k; α, β) satisfying β − α = 2^{2t−2} for some integer t and k ∈ {2^{s−1}, 2^{s−1} ± 2^{t−1}} is equivalent to the existence of a plateaued function f with Fourier spectrum of {0, ±2^t}. Olmez 2015

- ▶ s := odd integer
- ▶ Replace Z^s₂ by F_{2^s} and the dot product x · y by the absolute trace function Tr(xy).
- Gold function:

$$g(x) = x^{2^{i+1}} gcd(i,s) = 1$$

▶ f(x)=Tr(g(x)) is a plateaued function with Fourier spectrum of $\{0, \pm 2^{\frac{s+1}{2}}\}$. Gold 1968

- ▶ s := odd integer
- ▶ Replace Z^s₂ by F_{2^s} and the dot product x · y by the absolute trace function Tr(xy).
- Gold function:

$$g(x) = x^{2^{i}+1} gcd(i,s) = 1$$

- ▶ f(x)=Tr(g(x)) is a plateaued function with Fourier spectrum of $\{0, \pm 2^{\frac{s+1}{2}}\}$. Gold 1968
- ► These functions yield partial geometric difference sets with parameters (v = 2^s, k = 2^{s-1}; α = 2^{2s-3} 2^{s-2}, β = 2^{s-1} + 2^{2s-3} 2^{s-2})

 $\triangleright \ \zeta_p = e^{\frac{2i\pi}{p}}.$

- f := a function from the field \mathbb{F}_{p^n} to \mathbb{F}_p .
- ► The Walsh transform of *f*

$$W_f(\mu) = \sum_{x \in \mathbb{F}_{p^n}} \zeta_p^{f(x) + Tr(\mu x)}, \quad \mu \in \mathbb{F}_{p^n}$$

 $\triangleright \zeta_p = e^{\frac{2i\pi}{p}}.$

- f := a function from the field \mathbb{F}_{p^n} to \mathbb{F}_p .
- ▶ The Walsh transform of *f*

$$W_f(\mu) = \sum_{x \in \mathbb{F}_{p^n}} \zeta_p^{f(x) + \operatorname{Tr}(\mu x)}, \quad \mu \in \mathbb{F}_{p^n}$$

A function from 𝔽_{pⁿ} to 𝔽_p is called a *p*-ary bent function if every Walsh coefficient has magnitude p^{n/2}.

 $\triangleright \zeta_p = e^{\frac{2i\pi}{p}}.$

- f := a function from the field \mathbb{F}_{p^n} to \mathbb{F}_p .
- ▶ The Walsh transform of *f*

$$W_f(\mu) = \sum_{x \in \mathbb{F}_{p^n}} \zeta_p^{f(x) + \operatorname{Tr}(\mu x)}, \quad \mu \in \mathbb{F}_{p^n}$$

A function from 𝔽_{pⁿ} to 𝔽_p is called a *p*-ary bent function if every Walsh coefficient has magnitude p^{n/2}.

$$R = \{(x, f(x)) : x \in \mathbb{F}_{p^n}\}$$

is a (p^n, p, p^n, p^{n-1}) -relative difference set in $H = \mathbb{F}_{p^n} \times \mathbb{F}_p$

 $\triangleright \zeta_p = e^{\frac{2i\pi}{p}}.$

- f := a function from the field \mathbb{F}_{p^n} to \mathbb{F}_p .
- ► The Walsh transform of *f*

$$W_f(\mu) = \sum_{x \in \mathbb{F}_{p^n}} \zeta_p^{f(x) + \operatorname{Tr}(\mu x)}, \quad \mu \in \mathbb{F}_{p^n}$$

A function from 𝔽_{pⁿ} to 𝔽_p is called a *p*-ary bent function if every Walsh coefficient has magnitude p^{n/2}.

$$R = \{(x, f(x)) : x \in \mathbb{F}_{p^n}\}$$

is a (p^n, p, p^n, p^{n-1}) -relative difference set in $H = \mathbb{F}_{p^n} imes \mathbb{F}_p$

Any non-principal character \(\chi\) of the additive group of \(\mathbb{F}_{p^n} \times \mathbb{F}_p\) satisfies \(|\chi(R)|^2 = p^n\) or 0. This observation reveals that the relative difference set \(R\) is indeed a partial geometric difference set.

weakly regular bent function:= if there exists some function

$$f^*: \mathbb{F}_{p^n} \mapsto \mathbb{F}_p$$

such that $W_f(x) = \nu p^{n/2} \zeta_p^{f^*(x)}$.

$$f(x) = Tr(\alpha x^2)$$

▶ f := a bent function from the field $\mathbb{F}_{3^{2s}}$ to \mathbb{F}_3 satisfying f(-x) = f(x) and f(0) = 0.

$$D_i = \{x \in \mathbb{F}_{3^{2s}} : f(x) = i\}, i = 0, 1, 2$$

▶ The sets $D_0 \setminus \{0\}$, D_1 and D_2 are all partial difference sets if and only if *f* is weakly regular. **Tan et. al. 2010**

- ▶ if f is weakly regular the sets D₀, D₁ and D₂ are all partial geometric difference sets. Olmez 2016

An example of construction D

- f(x) = Tr(γP(x)) from a planar function P and γ ≠ 0.(all mappings x → P(x + a) P(x) are bijective for all a ≠ 0)
- Let s = 1 and $f(x) = Tr(x^2)$.

f(x) = Tr(γP(x)) from a planar function P and γ ≠ 0.(all mappings x → P(x + a) - P(x) are bijective for all a ≠ 0)
 Let s = 1 and f(x) = Tr(x²).

Sets	V	k	α	β
<i>D</i> ₀	27	9	24	33
<i>D</i> ₁	27	6	6	15
D ₂	27	12	60	69
$D_1 \cup D_2$	27	18	210	219
$D_0 \cup D_1$	27	21	336	345
$D_0 \cup D_1$	27	15	120	129

▶ The derivative of *f* in the direction of *a* is defined by

$$D_af(x)=f(x+a)-f(x).$$

► A function f is called partially-bent if the derivative D_af is either balanced or constant for any a.

▶ The derivative of *f* in the direction of *a* is defined by

$$D_af(x)=f(x+a)-f(x).$$

- ► A function f is called partially-bent if the derivative D_af is either balanced or constant for any a.
- ▶ $a \in \mathbb{F}_{p^n}$ is called a linear structure of f if $D_a f(x)$ is constant.
- $\Gamma_f :=$ the set of linear structures of f.

- ► Let f be a partially bent function with s-dimensional linear subspace Γ_f and f(0) = 0.
- ► $S = \{(x, f(x)) : x \in \mathbb{F}_{p^n}\}$ is a partial geometric difference set in $G = \mathbb{F}_{p^n} \times \mathbb{F}_p$ with parameters $v = p^{n+1}$, $k = p^n$, $\alpha = (p^n p^s)p^{n-1}$ and $\beta = (p^n p^s)p^{n-1} + p^{n+s}$.

- ► Let f be a partially bent function with s-dimensional linear subspace Γ_f and f(0) = 0.
- ► $S = \{(x, f(x)) : x \in \mathbb{F}_{p^n}\}$ is a partial geometric difference set in $G = \mathbb{F}_{p^n} \times \mathbb{F}_p$ with parameters $v = p^{n+1}$, $k = p^n$, $\alpha = (p^n p^s)p^{n-1}$ and $\beta = (p^n p^s)p^{n-1} + p^{n+s}$.

$$A = \{(a, f(a)) : a \in \Gamma_f\} \text{ and } B = \{(a, y) : a \in \Gamma_f, y \in \mathbb{F}_p\}.$$

- $(x, y) \in G \setminus B$ can be represented in the form $s_1 s_2$, $s_1, s_2 \in S$ in exactly p^{n-1} ways.
- ② $(x, y) \in B \setminus A$ has no representation in the form $s_1 s_2$, $s_1, s_2 \in S$.
- (x, y) ∈ A can be represented in the form $s_1 s_2$, $s_1, s_2 ∈ S$ in exactly p^n ways.

THANK YOU FOR YOUR **ATTENTION! ANY QUESTIONS?**