Linear similarity of graphs

Peter Sin
University of Florida

New Directions in Combinatorics Workshop, National University Singapore, May 26th, 2016.

Outline

Introduction

Paley and Peisert graphs

Matrix similarity over rings of algebraic integers

ℓ-local similarity, for $\ell \neq p$
p-local similarity

Jacobi sums

Matrix invariants

Γ simple graph, A its $0-1$ adjacency matrix.
A is symmetric so similar (by orthogonal matrices) to a diagonal matrix

A is integral, so is equivalent (by unimodular matrices) to its Smith Normal Form

$$
E=U A V
$$

Matrix invariants

Γ simple graph, A its $0-1$ adjacency matrix.
A is symmetric so similar (by orthogonal matrices) to a diagonal matrix

$$
D=P A P^{-1}
$$

A is integral, so is equivalent (by unimodular matrices) to its Smith Normal Form

Matrix invariants

Γ simple graph, A its $0-1$ adjacency matrix.
A is symmetric so similar (by orthogonal matrices) to a diagonal matrix

$$
D=P A P^{-1}
$$

A is integral, so is equivalent (by unimodular matrices) to its Smith Normal Form

$$
E=U A V
$$

If Γ^{\prime} is another graph, we can ask if A and A^{\prime} are both similar (graphs cospectral) and equivalent.

Many examples exist, e.g. the saltire pair.

- But there may be some $c \in \mathbb{Z}$ such that $A+c l$ and $A^{\prime}+c l$ are not equivalent.

If Γ^{\prime} is another graph, we can ask if A and A^{\prime} are both similar (graphs cospectral) and equivalent.
Many examples exist, e.g. the saltire pair.

- But there may be some $c \in \mathbb{Z}$ such that $A+c l$ and $A^{\prime}+c l$ are not equivalent.

If Γ^{\prime} is another graph, we can ask if A and A^{\prime} are both similar (graphs cospectral) and equivalent.
Many examples exist, e.g. the saltire pair.

- But there may be some $c \in \mathbb{Z}$ such that $A+c l$ and $A^{\prime}+c l$ are not equivalent.

Example from T. Hall on MathOverflow

```
http://mathoverflow.net/questions/52169/
adjacency-matrices-of-graphs/
```


Hall showed that the adjacency matrices A and A^{\prime} are similar by a unimodular integral matrix.

```
Hence for any integers a,b, aA + bl and aA' + bl are both
equivalent and similar.
```

But $A+J$ is not equivalent to $A^{\prime}+J$, where J is the matrix
whose entries are all equal to 1 .

These integral combinations are called generalized adjacency matrices and include the adjacency matrix of the complementary graph, the ($-1,1,0$)-adjacency matrix, and (for regular graphs) the Laplacian matrices.

Hall showed that the adjacency matrices A and A^{\prime} are similar by a unimodular integral matrix.
Hence for any integers $a, b, a A+b l$ and $a A^{\prime}+b l$ are both equivalent and similar.

> But $A+J$ is not equivalent to $A^{\prime}+J$, where J is the matrix whose entries are all equal to 1 .

> These integral combinations are called generalized adjacency matrices and include the adjacency matrix of the complementary graph, the ($-1,1,0$)-adjacency matrix, and (for regular graphs) the Laplacian matrices.

Hall showed that the adjacency matrices A and A^{\prime} are similar by a unimodular integral matrix.
Hence for any integers $a, b, a A+b l$ and $a A^{\prime}+b l$ are both equivalent and similar.
But $A+J$ is not equivalent to $A^{\prime}+J$, where J is the matrix whose entries are all equal to 1 .

> These integral combinations are called generalized adjacency matrices and include the adjacency matrix of the complementary graph, the ($-1,1,0$)-adjacency matrix, and (for regular graphs) the Laplacian matrices.

Hall showed that the adjacency matrices A and A^{\prime} are similar by a unimodular integral matrix.
Hence for any integers $a, b, a A+b l$ and $a A^{\prime}+b l$ are both equivalent and similar.
But $A+J$ is not equivalent to $A^{\prime}+J$, where J is the matrix whose entries are all equal to 1 .

Question
Do there exist nonisomorphic graphs Γ and Γ^{\prime} such that for all
$a, b, c \in \mathbb{Z}$, the matrices $a A+b l+c J$ and $a A^{\prime}+b l+c J$ are
similar and equivalent?
These integral combinations are called generalized
adjacency matrices and include the adjacency matrix of
the complementary graph, the ($-1,1,0$)-adjacency matrix,
and (for regular graphs) the Laplacian matrices.

Hall showed that the adjacency matrices A and A^{\prime} are similar by a unimodular integral matrix.
Hence for any integers $a, b, a A+b l$ and $a A^{\prime}+b l$ are both equivalent and similar.
But $A+J$ is not equivalent to $A^{\prime}+J$, where J is the matrix whose entries are all equal to 1 .

Question
Do there exist nonisomorphic graphs Γ and Γ^{\prime} such that for all $a, b, c \in \mathbb{Z}$, the matrices $a A+b l+c J$ and $a A^{\prime}+b l+c J$ are similar and equivalent?

Hall showed that the adjacency matrices A and A^{\prime} are similar by a unimodular integral matrix.
Hence for any integers $a, b, a A+b l$ and $a A^{\prime}+b l$ are both equivalent and similar.
But $A+J$ is not equivalent to $A^{\prime}+J$, where J is the matrix whose entries are all equal to 1 .

Question

Do there exist nonisomorphic graphs Γ and Γ^{\prime} such that for all $a, b, c \in \mathbb{Z}$, the matrices $a A+b l+c J$ and $a A^{\prime}+b l+c J$ are similar and equivalent?

These integral combinations are called generalized adjacency matrices and include the adjacency matrix of the complementary graph, the $(-1,1,0)$-adjacency matrix, and (for regular graphs) the Laplacian matrices.

Strongly regular graphs

The adjacency matrix A of a strongly regular graph $\operatorname{SRG}(v, k, \lambda, \mu)$ satisfies

$$
A^{2}+(\mu-\lambda) A+(\mu-k) I=\mu J
$$

Thus if Γ and Γ^{\prime} are SRGs with the same parameters, and $\mu \neq 0$, any invertible matrix C transforming A to A^{\prime} must fix J and conjugate $a A+b I+c J$ to $a A^{\prime}+b I+c J$.

Strongly regular graphs

The adjacency matrix A of a strongly regular graph $\operatorname{SRG}(v, k, \lambda, \mu)$ satisfies

$$
A^{2}+(\mu-\lambda) A+(\mu-k) I=\mu J
$$

Thus if Γ and Γ^{\prime} are SRGs with the same parameters, and $\mu \neq 0$, any invertible matrix C transforming A to A^{\prime} must fix J and conjugate $a A+b I+c J$ to $a A^{\prime}+b I+c J$.

A family of examples

The rest of this talk is to give an infinite sequence of pairs of graphs such that for all integers a, b, c, the matrices $a A+b I+c J$ and $a A^{\prime}+b I+c J$ are both similar and equivalent.

A family of examples

The rest of this talk is to give an infinite sequence of pairs of graphs such that for all integers a, b, c, the matrices $a A+b I+c J$ and $a A^{\prime}+b I+c J$ are both similar and equivalent. The examples come from Paley graphs and Peisert graphs over fields of order $p^{2}, p \equiv 3(\bmod 4)$.
process of computing critical groups (Smith Normal forms of
Laplacians). Techniques I'll describe for proving equivalence grew out work a paper of Chandler-S-Xiang (2014) computing the critical groups of Paley graphs.

A family of examples

The rest of this talk is to give an infinite sequence of pairs of graphs such that for all integers a, b, c, the matrices $a A+b I+c J$ and $a A^{\prime}+b I+c J$ are both similar and equivalent. The examples come from Paley graphs and Peisert graphs over fields of order $p^{2}, p \equiv 3(\bmod 4)$. I stumbled across them in the process of computing critical groups (Smith Normal forms of Laplacians). Techniques l'll describe for proving equivalence grew out work a paper of Chandler-S-Xiang (2014) computing the critical groups of Paley graphs.

Outline

Introduction

Paley and Peisert graphs

Matrix similarity over rings of algebraic integers
ℓ-local similarity, for $\ell \neq p$
p-local similarity

Jacobi sums

Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs.
Let $q \equiv 1(\bmod 4), S=\mathbb{F}_{q}^{\times 2}$. The Paley graph $\Gamma(q)$ is the Cayley graph based on the group $\left(\mathbb{F}_{q},+\right)$ with generating set S.
Let $q=p^{2 e}, p \equiv 3(\bmod 4)$. and β a generator of \mathbb{F}_{q}^{\times}. Set
$S^{\prime}=\mathbb{F}_{q}^{\times 4} \cup \beta \mathbb{F}_{q}^{\times 4}$. The Peisert graph $\Gamma^{\prime}(q)$ is the Cayley graph based on the group $\left(\mathbb{F}_{q},+\right)$ with generating set S^{\prime} When both are defined $\Gamma(q)$ and $\Gamma^{\prime}(q)$ are strongly regular graphs with the same parameters $\left(q, \frac{(q-1)}{2}, \frac{(q-5)}{4}, \frac{(q-1)}{4}\right)$. Hence they are cospectral.
Peisert (2001) showed that $\Gamma(q) \neq \Gamma^{\prime}(q)$ if $q \neq 9$.

Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs.
Let $q \equiv 1(\bmod 4), S=\mathbb{F}_{q}^{\times 2}$. The Paley $\operatorname{graph} \Gamma(q)$ is the Cayley graph based on the group ($\mathbb{F}_{q},+$) with generating set S.

Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs.
Let $q \equiv 1(\bmod 4), S=\mathbb{F}_{q}^{\times 2}$. The Paley graph $\Gamma(q)$ is the Cayley graph based on the group ($\mathbb{F}_{q},+$) with generating set S.
Let $q=p^{2 e}, p \equiv 3(\bmod 4)$. and β a generator of \mathbb{F}_{q}^{\times}. Set $S^{\prime}=\mathbb{F}_{q}^{\times 4} \cup \beta \mathbb{F}_{q}^{\times 4}$. The Peisert graph $\Gamma^{\prime}(q)$ is the Cayley graph based on the group $\left(\mathbb{F}_{q},+\right.$) with generating set S^{\prime}.
graphs with the same parameters $(q$, Hence they are cospectral.

Peisert (2001) showed that $\Gamma(q) \not \equiv \Gamma^{\prime}(q)$ if $q \neq 9$.

Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs.
Let $q \equiv 1(\bmod 4), S=\mathbb{F}_{q}^{\times 2}$. The Paley $\operatorname{graph} \Gamma(q)$ is the Cayley graph based on the group ($\mathbb{F}_{q},+$) with generating set S.
Let $q=p^{2 e}, p \equiv 3(\bmod 4)$. and β a generator of \mathbb{F}_{q}^{\times}. Set $S^{\prime}=\mathbb{F}_{q}^{\times 4} \cup \beta \mathbb{F}_{q}^{\times 4}$. The Peisert graph $\Gamma^{\prime}(q)$ is the Cayley graph based on the group ($\mathbb{F}_{q},+$) with generating set S^{\prime}.
When both are defined $\Gamma(q)$ and $\Gamma^{\prime}(q)$ are strongly regular graphs with the same parameters $\left(q, \frac{(q-1)}{2}, \frac{(q-5)}{4}, \frac{(q-1)}{4}\right)$. Hence they are cospectral.

Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs.
Let $q \equiv 1(\bmod 4), S=\mathbb{F}_{q}^{\times 2}$. The Paley $\operatorname{graph} \Gamma(q)$ is the Cayley graph based on the group ($\mathbb{F}_{q},+$) with generating set S.
Let $q=p^{2 e}, p \equiv 3(\bmod 4)$. and β a generator of \mathbb{F}_{q}^{\times}. Set $S^{\prime}=\mathbb{F}_{q}^{\times 4} \cup \beta \mathbb{F}_{q}^{\times 4}$. The Peisert graph $\Gamma^{\prime}(q)$ is the Cayley graph based on the group ($\mathbb{F}_{q},+$) with generating set S^{\prime}.
When both are defined $\Gamma(q)$ and $\Gamma^{\prime}(q)$ are strongly regular graphs with the same parameters $\left(q, \frac{(q-1)}{2}, \frac{(q-5)}{4}, \frac{(q-1)}{4}\right)$. Hence they are cospectral.
Peisert (2001) showed that $\Gamma(q) \nsubseteq \Gamma^{\prime}(q)$ if $q \neq 9$.

Outline

Introduction

Paley and Peisert graphs

Matrix similarity over rings of algebraic integers

ℓ-local similarity, for $\ell \neq p$

p-local similarity

Jacobi sums

Theorem
(Guralnick (1980), Taussky(1979), Dade(1963), Reiner-Zassenhaus (1971)) Let D be the ring of algebraic integers in a number field K. Suppose that B and B^{\prime} are square matrices with entries in D Then the following are equivalent.

Note that the SNF is locally determined.

Theorem
(Guralnick (1980), Taussky(1979), Dade(1963), Reiner-Zassenhaus (1971)) Let D be the ring of algebraic integers in a number field K. Suppose that B and B^{\prime} are square matrices with entries in D Then the following are equivalent.
(i) B and B^{\prime} are similar over D_{P} for every prime ideal P of D.

Note that the SNF is locally determined.

Theorem
(Guralnick (1980), Taussky(1979), Dade(1963), Reiner-Zassenhaus (1971)) Let D be the ring of algebraic integers in a number field K. Suppose that B and B^{\prime} are square matrices with entries in D Then the following are equivalent.
(i) B and B^{\prime} are similar over D_{P} for every prime ideal P of D.
(ii) B and B^{\prime} are similar over some finite integral extension of D.
each prime P of D, there is a prime Q of the ring E of integers of L, with $Q \supseteq P$, such that B and B^{\prime} are similar over the local ring E_{Q}.

Note that the SNF is locally determined.

Theorem

(Guralnick (1980), Taussky(1979), Dade(1963), Reiner-Zassenhaus (1971)) Let D be the ring of algebraic integers in a number field K. Suppose that B and B^{\prime} are square matrices with entries in D Then the following are equivalent.
(i) B and B^{\prime} are similar over D_{P} for every prime ideal P of D.
(ii) B and B^{\prime} are similar over some finite integral extension of D.
(iii) There is a finite extension L of K, such that for each for each prime P of D, there is a prime Q of the ring E of integers of L, with $Q \supseteq P$, such that B and B^{\prime} are similar over the local ring E_{Q}.

Note that the SNF is locally determined.

Theorem

(Guralnick (1980), Taussky(1979), Dade(1963),
Reiner-Zassenhaus (1971)) Let D be the ring of algebraic integers in a number field K. Suppose that B and B^{\prime} are square matrices with entries in D Then the following are equivalent.
(i) B and B^{\prime} are similar over D_{P} for every prime ideal P of D.
(ii) B and B^{\prime} are similar over some finite integral extension of D.
(iii) There is a finite extension L of K, such that for each for each prime P of D, there is a prime Q of the ring E of integers of L, with $Q \supseteq P$, such that B and B^{\prime} are similar over the local ring E_{Q}.

Note that the SNF is locally determined.

Outline

Introduction
 Paley and Peisert graphs
 Matrix similarity over rings of algebraic integers

ℓ-local similarity, for $\ell \neq p$
p-local similarity

Jacobi sums

Discrete Fourier transform

X, complex character table of $\left(\mathbb{F}_{q},+\right)$ with elements ordered in the same way as for the rows and columns of A(q).

where ψ runs over the additive characters of \mathbb{F}_{q} and $\psi(S)=\sum_{y \in S} \psi(y)$. Thus, the $\psi(S)$ are the eigenvalues of A.

Since A^{\prime} and A are cospectral, we can extend the equation
with some permutation matrix U.

Discrete Fourier transform

X, complex character table of $\left(\mathbb{F}_{q},+\right)$ with elements ordered in the same way as for the rows and columns of $A(q)$.
X is invertible as a matrix in the ring $\mathbb{Z}[\zeta]\left[\frac{1}{p}\right], \zeta$ a complex primitive p-th root of unity.
(McWilliams-Mann (1968))

where ψ runs over the additive characters of \mathbb{F}_{q} and $\psi(S)=\sum_{y \in S} \psi(y)$. Thus, the $\psi(S)$ are the eigenvalues of Since A^{\prime} and A are cospectral, we can extend the equation with some permutation matrix U.

Discrete Fourier transform

X, complex character table of $\left(\mathbb{F}_{q},+\right)$ with elements ordered in the same way as for the rows and columns of A(q).
X is invertible as a matrix in the ring $\mathbb{Z}[\zeta]\left[\frac{1}{p}\right], \zeta$ a complex primitive p-th root of unity.
(McWilliams-Mann (1968))

$$
\begin{equation*}
X A(q) X^{-1}=\operatorname{diag}(\psi(S))_{\psi} \tag{1}
\end{equation*}
$$

where ψ runs over the additive characters of \mathbb{F}_{q} and $\psi(S)=\sum_{y \in S} \psi(y)$. Thus, the $\psi(S)$ are the eigenvalues of A.

Discrete Fourier transform

X, complex character table of $\left(\mathbb{F}_{q},+\right)$ with elements ordered in the same way as for the rows and columns of A(q).
X is invertible as a matrix in the ring $\mathbb{Z}[\zeta]\left[\frac{1}{p}\right], \zeta$ a complex primitive p-th root of unity.
(McWilliams-Mann (1968))

$$
\begin{align*}
X A(q) X^{-1} & =\operatorname{diag}(\psi(S))_{\psi} \\
& =U \operatorname{diag}\left(\psi\left(S^{\prime}\right)\right)_{\psi} U^{-1}=U X A^{\prime}(q) X^{-1} U^{-1} \tag{1}
\end{align*}
$$

where ψ runs over the additive characters of \mathbb{F}_{q} and $\psi(S)=\sum_{y \in S} \psi(y)$. Thus, the $\psi(S)$ are the eigenvalues of A.

Since A^{\prime} and A are cospectral, we can extend the equation with some permutation matrix U.

ℓ-local similarity

For any prime $\ell \neq p$, choose a prime ideal Λ of $\mathbb{Z}[\zeta]$ containing ℓ.

Equation (1) can be viewed as similarity over $\mathbb{Z}[\zeta] \wedge$.

ℓ-local similarity

For any prime $\ell \neq p$, choose a prime ideal \wedge of $\mathbb{Z}[\zeta]$ containing ℓ.
Equation (1) can be viewed as similarity over $\mathbb{Z}[\zeta]_{\Lambda}$.

$$
X A(q) X^{-1}=U X A^{\prime}(q) X^{-1} U^{-1} .
$$

Proposition
Assume $q=p^{2 \epsilon}, p \equiv 3(\bmod 4)$. For each prime $l \neq p, A(q)$ is similar to $A^{\prime}(q)$ over $\mathbb{Z}[\zeta] \wedge$, where \wedge is a prime ideal containing ℓ.

ℓ-local similarity

For any prime $\ell \neq p$, choose a prime ideal \wedge of $\mathbb{Z}[\zeta]$ containing ℓ.
Equation (1) can be viewed as similarity over $\mathbb{Z}[\zeta]_{\wedge}$.

$$
X A(q) X^{-1}=U X A^{\prime}(q) X^{-1} U^{-1} .
$$

Proposition
Assume $q=p^{2 e}, p \equiv 3(\bmod 4)$. For each prime $\ell \neq p, A(q)$ is similar to $A^{\prime}(q)$ over $\mathbb{Z}[\zeta]_{\wedge}$, where \wedge is a prime ideal containing ℓ.

Outline

```
Introduction
Paley and Peisert graphs
Matrix similarity over rings of algebraic integers
\ell-local similarity, for }\ell\not=
```

p-local similarity
Jacobi sums

From now on assume $q=p^{2}, p \equiv 3(\bmod 4)$.
We wish to show that $A=A\left(p^{2}\right)$ is similar to $A^{\prime}=A^{\prime}\left(p^{2}\right)$
over the localization of some ring of algebraic integers at a prime containing p.
For convenience, replace A and A^{\prime} by $K=2 A+I$ and $K^{\prime}=2 A^{\prime}+l$.

From now on assume $q=p^{2}, p \equiv 3(\bmod 4)$.
We wish to show that $A=A\left(p^{2}\right)$ is similar to $A^{\prime}=A^{\prime}\left(p^{2}\right)$ over the localization of some ring of algebraic integers at a prime containing p.
For convenience, replace A and A^{\prime} by $K=2 A+I$ and $K^{\prime}=2 A^{\prime}+l$.

From now on assume $q=p^{2}, p \equiv 3(\bmod 4)$.
We wish to show that $A=A\left(p^{2}\right)$ is similar to $A^{\prime}=A^{\prime}\left(p^{2}\right)$ over the localization of some ring of algebraic integers at a prime containing p.
For convenience, replace A and A^{\prime} by $K=2 A+I$ and $K^{\prime}=2 A^{\prime}+I$.

The module $R^{\mathbb{F}_{q}}$

- $R_{0}=Z[t] / \Phi_{q-1}(t) \cong \mathbb{Z}[\xi], \xi$ a primitive $(q-1)$-st root of unity.
- p is unramified in R_{0}, so if P is a prime ideal of R_{0} containing p, then $R=\left(R_{0}\right)_{p}$ is a DVR with maximal ideal $p R$ and $R / p R \cong \mathbb{F}_{q}$.
- $R^{\mathbb{F} q}$ has basis elements $[x]$ for $x \in \mathbb{F}_{q}$.
- $\mu_{K}, \mu_{K^{\prime}}: R^{\mathbb{F} q} \rightarrow R^{\mathbb{F} q}$, left multiplication.

The module $R^{\mathbb{F}_{q}}$

- $R_{0}=Z[t] / \Phi_{q-1}(t) \cong \mathbb{Z}[\xi], \xi$ a primitive $(q-1)$-st root of unity.
- p is unramified in R_{0}, so if P is a prime ideal of R_{0} containing p, then $R=\left(R_{0}\right)_{P}$ is a DVR with maximal ideal $p R$ and $R / p R \cong \mathbb{F}_{q}$.
- $\mathbb{R}^{\mathbb{F}}$ has basis elements $[x]$ for $x \in \mathbb{F}_{q}$.
- $\mu_{K}, \mu_{K^{\prime}}: R^{\mathbb{F} q} \rightarrow R^{\mathbb{F} q}$, left multiplication.

The module $R^{\mathbb{F}_{q}}$

- $R_{0}=Z[t] / \Phi_{q-1}(t) \cong \mathbb{Z}[\xi], \xi$ a primitive $(q-1)$-st root of unity.
- p is unramified in R_{0}, so if P is a prime ideal of R_{0} containing p, then $R=\left(R_{0}\right)_{p}$ is a DVR with maximal ideal $p R$ and $R / p R \cong \mathbb{F}_{q}$.
- $R^{\mathbb{F}_{q}}$ has basis elements $[x]$ for $x \in \mathbb{F}_{q}$.

The module $R^{\mathbb{F}_{q}}$

- $R_{0}=Z[t] / \Phi_{q-1}(t) \cong \mathbb{Z}[\xi], \xi$ a primitive $(q-1)$-st root of unity.
- p is unramified in R_{0}, so if P is a prime ideal of R_{0} containing p, then $R=\left(R_{0}\right)_{p}$ is a DVR with maximal ideal $p R$ and $R / p R \cong \mathbb{F}_{q}$.
- $R^{\mathbb{F} q}$ has basis elements $[x]$ for $x \in \mathbb{F}_{q}$.
- $\mu_{K}, \mu_{K^{\prime}}: R^{\mathbb{F} q} \rightarrow R^{\mathbb{F} q}$, left multiplication.
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, T\left(\beta^{j}\right)=\xi^{j}$, Teichmüller character, generates $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}=R[0] \oplus R^{\mathbb{F}}{ }^{\hat{q}}$
- $R^{\mathbb{F}^{\times}}$decomposes further into the direct sum of \mathbb{F}_{q}^{\times}-invariant components of rank 1 , affording the characters $T^{i}, i=0, \ldots, q-2$.
- The component affording T^{i} is spanned by

- New basis $\left\{e_{i} \mid i=1, \ldots q-2\right\} \cup\{1,[0]\}$,
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, T\left(\beta^{j}\right)=\xi^{j}$, Teichmüller character, generates $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}=R[0] \oplus R^{\mathbb{F}_{q}^{\times}}$
- $R^{\mathbb{F} \times}$ decomposes further into the direct sum of
\mathbb{F}_{q}^{\times}-invariant components of rank 1, affording the characters $T^{i}, i=0, \ldots, q-2$.
- The component affording T^{i} is spanned by

- New basis $\left\{e_{i} \mid i=1, \ldots q-2\right\} \cup\{1,[0]\}$,
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, T\left(\beta^{j}\right)=\xi^{j}$, Teichmüller character, generates $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}=R[0] \oplus R^{\mathbb{F}_{q}^{\times}}$
- $R^{\mathbb{F}^{\times}}$decomposes further into the direct sum of \mathbb{F}_{q}^{\times}-invariant components of rank 1 , affording the characters $T^{i}, i=0, \ldots, q-2$.
- The component affording T^{i} is spanned by

- New basis $\left\{e_{i} \mid i=1, \ldots q-2\right\} \cup\{1,[0]\}$,
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, T\left(\beta^{j}\right)=\xi^{j}$, Teichmüller character, generates $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}=R[0] \oplus R^{\mathbb{F}_{q}^{\times}}$
- $R^{\mathbb{F}^{\times}}$decomposes further into the direct sum of \mathbb{F}_{q}^{\times}-invariant components of rank 1 , affording the characters $T^{i}, i=0, \ldots, q-2$.
- The component affording T^{i} is spanned by

$$
e_{i}=\sum_{x \in \mathbb{F}_{q}^{\times}} T^{i}\left(x^{-1}\right)[x] .
$$

- New basis $\left\{e_{i} \mid i=1, \ldots q-2\right\} \cup\{1,[0]\}$,
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, T\left(\beta^{j}\right)=\xi^{j}$, Teichmüller character, generates $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}=R[0] \oplus R^{\mathbb{F}_{q}^{\times}}$
- $R^{\mathbb{F}^{\times}}$decomposes further into the direct sum of \mathbb{F}_{q}^{\times}-invariant components of rank 1 , affording the characters $T^{i}, i=0, \ldots, q-2$.
- The component affording T^{i} is spanned by

$$
e_{i}=\sum_{x \in \mathbb{F}_{q}^{\times}} T^{i}\left(x^{-1}\right)[x] .
$$

- New basis $\left\{e_{i} \mid i=1, \ldots q-2\right\} \cup\{\mathbf{1},[0]\}$,

$\mathbb{F}_{q}^{\times 4}$-decomposition

Next consider the action of the subgroup $H=\mathbb{F}_{q}^{\times 4}$ of fourth powers.
$r:=\frac{(q-1)}{4}$.
$T^{i}, T^{i+r}, T^{i+2 r}$, and $T^{i+3 r}$ are equal on H.
For $i \notin\{0, r, 2 r, 3 r\}$ the elements $e_{i}, e_{i+r}, e_{i+2 r}$ and $e_{i+3 r}$ span the H-isotypic component

$$
M_{i}=\left\{m \in R^{\mathbb{F}} q \mid y m=T^{i}(y) m, \quad \forall y \in H\right\}
$$

- M_{0}, the submodule of H-fixed points in $R^{\mathbb{F} q}$. Basis elements $1=\sum_{x \in \mathbb{F}_{q}} x=e_{0}+[0],[0], e_{r}, e_{2 r}$ and $e_{3} r$.
$\Rightarrow R^{\mathbb{F} q}=M_{0} \oplus \bigoplus_{i=1}^{\frac{q-5}{4}} M_{i}$.
- μ_{K} and $\mu_{K^{\prime}}$ preserve M_{i} as they are $R H$-module homomophisms.
- Can re-order new basis so that the matrices of μ_{K} and $\mu_{K^{\prime}}$ are block-diagonal with $\frac{q-5}{4} 4 \times 4$ blocks and a single 5×5 block.

$\mathbb{F}_{q}^{\times 4}$-decomposition

Next consider the action of the subgroup $H=\mathbb{F}_{q}^{\times 4}$ of fourth powers.

$$
\begin{aligned}
& r:=\frac{(q-1)}{4} . \\
& T^{i}, T^{i+r}, T^{i+2 r} \text {, and } T^{i+3 r} \text { are equal on } H .
\end{aligned}
$$

- M_{0}, the submodule of H-fixed points in $R^{\mathbb{F} q}$. Basis elements $\mathbf{1}=\sum_{x \in \mathbb{P}_{q}} x=e_{0}+[0],[0], e_{r}, e_{2 r}$ and $e_{3} r$.

- μ_{K} and μ_{K}, preserve M_{i} as they are $R H$-module homomophisms.
- Can re-order new basis so that the matrices of μ_{K} and μ_{K} are block-diagonal with $\frac{q-5}{4} 4 \times 4$ blocks and a single 5×5 block.

$\mathbb{F}_{q}^{\times 4}$-decomposition

Next consider the action of the subgroup $H=\mathbb{F}_{q}^{\times 4}$ of fourth powers.

$$
\begin{aligned}
& r:=\frac{(q-1)}{4} . \\
& T^{i}, T^{i+r}, T^{i+2 r} \text {, and } T^{i+3 r} \text { are equal on } H .
\end{aligned}
$$

For $i \notin\{0, r, 2 r, 3 r\}$ the elements $e_{i}, e_{i+r}, e_{i+2 r}$ and $e_{i+3 r}$ span the H-isotypic component

$$
\begin{aligned}
M_{i} & =\left\{m \in R^{\mathbb{F} q} \mid y m=T^{i}(y) m, \quad \forall y \in H\right\} \\
\text { of } R^{\mathbb{F} q} \text { for } 1 & \leq i \leq \frac{q-5}{4} .
\end{aligned}
$$

$$
\mu_{K} \text { and } \mu_{K} \text { preserve } M_{i} \text { as they are } R H \text {-module }
$$

homomophisms.

$\mathbb{F}_{q}^{\times 4}$-decomposition

Next consider the action of the subgroup $H=\mathbb{F}_{q}^{\times 4}$ of fourth powers.

$$
\begin{aligned}
& r:=\frac{(q-1)}{4} \\
& T^{i}, T^{i+r}, T^{i+2 r} \text {, and } T^{i+3 r} \text { are equal on } H \text {. }
\end{aligned}
$$

For $i \notin\{0, r, 2 r, 3 r\}$ the elements $e_{i}, e_{i+r}, e_{i+2 r}$ and $e_{i+3 r}$ span the H-isotypic component

$$
M_{i}=\left\{m \in R^{\mathbb{F} q} \mid y m=T^{i}(y) m, \quad \forall y \in H\right\}
$$

of $R^{\mathbb{F} q}$ for $1 \leq i \leq \frac{q-5}{4}$.

- M_{0}, the submodule of H-fixed points in $R^{\mathbb{F} q}$. Basis elements $\mathbf{1}=\sum_{x \in \mathbb{F}_{q}} x=e_{0}+[0],[0], e_{r}, e_{2 r}$ and $e_{3} r$.

- μ_{K} and $\mu_{K^{\prime}}$ preserve M_{i} as they are RH -module

$\mathbb{F}_{q}^{\times 4}$-decomposition

Next consider the action of the subgroup $H=\mathbb{F}_{q}^{\times 4}$ of fourth powers.

$$
\begin{aligned}
& r:=\frac{(q-1)}{4} . \\
& T^{i}, T^{i+r}, T^{i+2 r} \text {, and } T^{i+3 r} \text { are equal on } H \text {. }
\end{aligned}
$$

For $i \notin\{0, r, 2 r, 3 r\}$ the elements $e_{i}, e_{i+r}, e_{i+2 r}$ and $e_{i+3 r}$ span the H-isotypic component

$$
M_{i}=\left\{m \in R^{\mathbb{F} q} \mid y m=T^{i}(y) m, \quad \forall y \in H\right\}
$$

of $R^{\mathbb{F} q}$ for $1 \leq i \leq \frac{q-5}{4}$.

- M_{0}, the submodule of H-fixed points in $R^{\mathbb{F} q}$. Basis elements $\mathbf{1}=\sum_{x \in \mathbb{F}_{q}} x=e_{0}+[0],[0], e_{r}, e_{2 r}$ and $e_{3} r$.
- $R^{\mathbb{F} q}=M_{0} \oplus \bigoplus_{i=1}^{\frac{q-5}{4}} M_{i}$.
- μ_{K} and $\mu_{K^{\prime}}$ preserve M_{i} as they are RH-module

$\mathbb{F}_{q}^{\times 4}$-decomposition

Next consider the action of the subgroup $H=\mathbb{F}_{q}^{\times 4}$ of fourth powers.

$$
r:=\frac{(q-1)}{4} .
$$

$T^{i}, T^{i+r}, T^{i+2 r}$, and $T^{i+3 r}$ are equal on H.
For $i \notin\{0, r, 2 r, 3 r\}$ the elements $e_{i}, \boldsymbol{e}_{i+r}, \boldsymbol{e}_{i+2 r}$ and $e_{i+3 r}$ span the H-isotypic component

$$
M_{i}=\left\{m \in R^{\mathbb{F} q} \mid y m=T^{i}(y) m, \quad \forall y \in H\right\}
$$

of $R^{\mathbb{F} q}$ for $1 \leq i \leq \frac{q-5}{4}$.

- M_{0}, the submodule of H-fixed points in $R^{\mathbb{F} q}$. Basis elements $\mathbf{1}=\sum_{x \in \mathbb{F}_{q}} x=e_{0}+[0],[0], e_{r}, e_{2 r}$ and $e_{3} r$.
- $R^{\mathbb{F} q}=M_{0} \oplus \bigoplus_{i=1}^{\frac{q-5}{4}} M_{i}$.
- μ_{K} and $\mu_{K^{\prime}}$ preserve M_{i} as they are RH -module homomophisms.

$\mathbb{F}_{q}^{\times 4}$-decomposition

Next consider the action of the subgroup $H=\mathbb{F}_{q}^{\times 4}$ of fourth powers.

$$
r:=\frac{(q-1)}{4} .
$$

$T^{i}, T^{i+r}, T^{i+2 r}$, and $T^{i+3 r}$ are equal on H.
For $i \notin\{0, r, 2 r, 3 r\}$ the elements $e_{i}, e_{i+r}, e_{i+2 r}$ and $e_{i+3 r}$ span the H-isotypic component

$$
M_{i}=\left\{m \in R^{\mathbb{F} q} \mid y m=T^{i}(y) m, \quad \forall y \in H\right\}
$$

of $R^{\mathbb{F} q}$ for $1 \leq i \leq \frac{q-5}{4}$.

- M_{0}, the submodule of H-fixed points in $R^{\mathbb{F} q}$. Basis elements $\mathbf{1}=\sum_{x \in \mathbb{F}_{q}} x=e_{0}+[0],[0], e_{r}, e_{2 r}$ and $e_{3} r$.
- $R^{\mathbb{F} q}=M_{0} \oplus \bigoplus_{i=1}^{\frac{q-5}{4}} M_{i}$.
- μ_{K} and $\mu_{K^{\prime}}$ preserve M_{i} as they are RH -module homomophisms.
- Can re-order new basis so that the matrices of μ_{K} and $\mu_{K^{\prime}}$ are block-diagonal with $\frac{q-5}{4} 4 \times 4$ blocks and a single 5×5 block.

Outline

```
Introduction
Paley and Peisert graphs
Matrix similarity over rings of algebraic integers
\ell-local similarity, for }\ell\not=
p-local similarity
Jacobi sums
```


Jacobi Sums

Definition

Let θ and ψ be multiplicative characters of \mathbb{F}_{q}^{\times}taking values in R^{\times}. The Jacobi sum is

$$
J(\theta, \psi)=\sum_{x \in \mathbb{F}_{q}} \theta(x) \psi(1-x)
$$

(At $x=0$, nonprinc. chars take value 0 , princ. char takes value 1.)

$$
e_{i}=\sum_{x \in \mathbb{F}_{q}^{\times}} T^{i}\left(x^{-1}\right)[x]
$$

Jacobi Sums

Definition

Let θ and ψ be multiplicative characters of \mathbb{F}_{q}^{\times}taking values in R^{\times}. The Jacobi sum is

$$
J(\theta, \psi)=\sum_{x \in \mathbb{F}_{q}} \theta(x) \psi(1-x)
$$

(At $x=0$, nonprinc. chars take value 0 , princ. char takes value 1.)

$$
\mu_{A}\left(e_{i}\right)=\sum_{x \in \mathbb{F}_{q}^{\times}} \sum_{y \in S} T^{i}\left(x^{-1}\right)[x+y]
$$

Jacobi Sums

Definition

Let θ and ψ be multiplicative characters of \mathbb{F}_{q}^{\times}taking values in R^{\times}. The Jacobi sum is

$$
J(\theta, \psi)=\sum_{x \in \mathbb{F}_{q}} \theta(x) \psi(1-x)
$$

(At $x=0$, nonprinc. chars take value 0 , princ. char takes value 1.)

$$
\begin{aligned}
\mu_{A}\left(e_{i}\right) & =\sum_{x \in \mathbb{F}_{q}^{\times}} \sum_{y \in S} T^{i}\left(x^{-1}\right)[x+y] \\
& =\sum_{x \in \mathbb{F}_{q}^{\times}} \sum_{y \in \mathbb{F}_{q}} \chi_{S}(y) T^{i}\left(x^{-1}\right)[x+y]
\end{aligned}
$$

Jacobi Sums

Definition

Let θ and ψ be multiplicative characters of \mathbb{F}_{q}^{\times}taking values in R^{\times}. The Jacobi sum is

$$
J(\theta, \psi)=\sum_{x \in \mathbb{F}_{q}} \theta(x) \psi(1-x)
$$

(At $x=0$, nonprinc. chars take value 0 , princ. char takes value 1.)

$$
\begin{aligned}
\mu_{A}\left(e_{i}\right) & =\sum_{x \in \mathbb{F}_{q}^{\times}} \sum_{y \in S} T^{i}\left(x^{-1}\right)[x+y] \\
& =\sum_{x \in \mathbb{F}_{q}^{\times}} \sum_{y \in \mathbb{F}_{q}} \chi_{s}(y) T^{i}\left(x^{-1}\right)[x+y] \\
& =\sum_{z \in \mathbb{F}_{q}} \sum_{x \in \mathbb{F}_{q}^{\times}} \chi_{S}(z-x) T^{i}\left(x^{-1}\right)[z]
\end{aligned}
$$

Notation

- Recall $r=\frac{\left(p^{2}-1\right)}{4}$.
$\Rightarrow \eta=\beta^{r}, \alpha=\frac{(\eta-1)}{2}, \bar{\alpha}=\frac{(\eta+1)}{2}$
- Write $J\left(T^{-i}, T^{-j}\right)$ as $J(i, j)$ for short.

Notation

- Recall $r=\frac{\left(p^{2}-1\right)}{4}$.
- $\eta=\beta^{r}, \alpha=\frac{(\eta-1)}{2}, \bar{\alpha}=\frac{(\eta+1)}{2}$
- Write $J\left(T^{-i}, T^{-j}\right)$ as $J(i, j)$ for short.

Notation

- Recall $r=\frac{\left(p^{2}-1\right)}{4}$.
- $\eta=\beta^{r}, \alpha=\frac{(\eta-1)}{2}, \bar{\alpha}=\frac{(\eta+1)}{2}$
- Write $J\left(T^{-i}, T^{-j}\right)$ as $J(i, j)$ for short.

The matrix of μ_{K} on M_{i} is

$$
K_{i}=\left[\begin{array}{cccc}
0 & J(i+2 r, 2 r) & 0 & 0 \\
J(i, 2 r) & 0 & 0 & 0 \\
0 & 0 & 0 & J(i+3 r, 2 r) \\
0 & 0 & J(i+r, 2 r) & 0
\end{array}\right]
$$

The matrix of $\mu_{K^{\prime}}$ on M_{i} is

$$
K_{i}^{\prime}\left[\begin{array}{cccc}
0 & 0 & \alpha J(i+r, 3 r) & \bar{\alpha} J(i+3 r, r) \\
0 & 0 & \bar{\alpha} J(i+r, r) & \alpha J(i+3 r, 3 r) \\
\bar{\alpha} J(i, r) & \alpha J(i+2 r, 3 r) & 0 & 0 \\
\alpha J(i, 3 r) & \bar{\alpha} J(i+2 r, r) & 0 & 0
\end{array}\right]
$$

The matrix of μ_{K} on M_{0} is

$$
K_{0}^{\prime}\left[\begin{array}{ccccc}
q & 1 & -1 & 0 & 0 \\
0 & 0 & q & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & J(3 r, 2 r) \\
0 & 0 & 0 & J(r, 2 r) & 0
\end{array}\right]
$$

The matrix $\mu_{K^{\prime}}$ on M_{0} is

$$
K_{0}^{\prime}\left[\begin{array}{ccccc}
q & 1 & -\alpha & 0 & -\bar{\alpha} \\
0 & 0 & q \alpha & 0 & q \bar{\alpha} \\
0 & \bar{\alpha} & 0 & \alpha J(2 r, 3 r) & 0 \\
0 & 0 & \bar{\alpha} J(r, r) & 0 & \alpha J(3 r, 3 r) \\
0 & \alpha & 0 & \bar{\alpha} J(2 r, r) & 0
\end{array}\right]
$$

Outline of proof of R-similarity of K_{i} and K_{i}^{\prime}

Proof of similarity of K_{i}^{\prime} with K_{i} involves finding a new basis.

Outline of proof of R-similarity of K_{i} and K_{i}^{\prime}

Proof of similarity of K_{i}^{\prime} with K_{i} involves finding a new basis.
The definition of the new basis is not uniform for all i but depends on the p-adic valuations of the Jacobi sums appearing in these matrices.

Outline of proof of R-similarity of K_{i} and K_{i}^{\prime}

Proof of similarity of K_{i}^{\prime} with K_{i} involves finding a new basis.
The definition of the new basis is not uniform for all i but depends on the p-adic valuations of the Jacobi sums appearing in these matrices.
By close examination of Jacobi sums, we can reduce to just three cases, corresponding to whether K_{i} has p-rank 1,2 , or 3 .

p-adic valuation of Jacobi Sums

Let $j \in \mathbb{Z}$ with $j \not \equiv 0\left(\bmod \left(p^{2}-1\right)\right)$.
p-digit expresssion: $j=a_{0}+a_{1} p, 0 \leq a_{i} \leq p-1$.
Set $s(j)=a_{0}+a_{1}$.

$s(r)=s(3 r)=p-1$.

p-adic valuation of Jacobi Sums

Let $j \in \mathbb{Z}$ with $j \not \equiv 0\left(\bmod \left(p^{2}-1\right)\right)$.
p-digit expresssion: $j=a_{0}+a_{1} p, 0 \leq a_{i} \leq p-1$.

p-adic valuation of Jacobi Sums

Let $j \in \mathbb{Z}$ with $j \not \equiv 0\left(\bmod \left(p^{2}-1\right)\right)$.
p-digit expresssion: $j=a_{0}+a_{1} p, 0 \leq a_{i} \leq p-1$.
Set $s(j)=a_{0}+a_{1}$.

p-adic valuation of Jacobi Sums

Let $j \in \mathbb{Z}$ with $j \not \equiv 0\left(\bmod \left(p^{2}-1\right)\right)$.
p-digit expresssion: $j=a_{0}+a_{1} p, 0 \leq a_{i} \leq p-1$.
Set $s(j)=a_{0}+a_{1}$.
$r=\frac{p^{2}-1}{4}=\frac{3 p-1}{4}+\frac{p-3}{4} p$.

p-adic valuation of Jacobi Sums

Let $j \in \mathbb{Z}$ with $j \not \equiv 0\left(\bmod \left(p^{2}-1\right)\right)$.
p-digit expresssion: $j=a_{0}+a_{1} p, 0 \leq a_{i} \leq p-1$.
Set $s(j)=a_{0}+a_{1}$.
$r=\frac{p^{2}-1}{4}=\frac{3 p-1}{4}+\frac{p-3}{4} p$.
$3 r=\frac{p^{2}-1}{4}=\frac{p-3}{4}+\frac{3 p-1}{4} p$.

p-adic valuation of Jacobi Sums

Let $j \in \mathbb{Z}$ with $j \not \equiv 0\left(\bmod \left(p^{2}-1\right)\right)$.
p-digit expresssion: $j=a_{0}+a_{1} p, 0 \leq a_{i} \leq p-1$.
Set $s(j)=a_{0}+a_{1}$.
$r=\frac{p^{2}-1}{4}=\frac{3 p-1}{4}+\frac{p-3}{4} p$.
$3 r=\frac{p^{2}-1}{4}=\frac{p-3}{4}+\frac{3 p-1}{4} p$.
$s(r)=s(3 r)=p-1$.

More on Jacobi sums

By Stickelberger's Theorem and relation between Gauss sums and Jacobi sums, we know that when i, j and $i+j$ are not divisible by $p^{2}-1$ the p-adic valuation of $J(i, j)$ is equal to

$$
c(i, j):=\frac{1}{p-1}(s(i)+s(j)-s(i+j))
$$

This valuation can be viewed as the number of carries, when adding the p-expansions of i and k, modulo $p^{2}-1$ Finally, we also need the exact values (Berndt-Evans (1979))

More on Jacobi sums

By Stickelberger's Theorem and relation between Gauss sums and Jacobi sums, we know that when i, j and $i+j$ are not divisible by $p^{2}-1$ the p-adic valuation of $J(i, j)$ is equal to

$$
c(i, j):=\frac{1}{p-1}(s(i)+s(j)-s(i+j))
$$

This valuation can be viewed as the number of carries, when adding the p-expansions of i and k, modulo $p^{2}-1$.
Finally, we also need the exact values (Berndt-Evans
(1979))
\square

More on Jacobi sums

By Stickelberger's Theorem and relation between Gauss sums and Jacobi sums, we know that when i, j and $i+j$ are not divisible by $p^{2}-1$ the p-adic valuation of $J(i, j)$ is equal to

$$
c(i, j):=\frac{1}{p-1}(s(i)+s(j)-s(i+j))
$$

This valuation can be viewed as the number of carries, when adding the p-expansions of i and k, modulo $p^{2}-1$.
Finally, we also need the exact values (Berndt-Evans (1979))

$$
J(r, r)=J(r, 2 r)=J(3 r, 2 r)=J(3 r, 3 r)=p
$$

Concluding remarks

For all primes $\ell, A(q)$ is similar to $A^{\prime}(q)$ over $\mathbb{Z}_{(\ell)}$.
For all integers a, b, c the generalized adjacency matrices $a A(q)+b l+c J$ and $a A^{\prime}(q)+b l+c J$ are cospectral and equivalent.
For which values of q are they are similar over \mathbb{Z} ?

Concluding remarks

For all primes $\ell, A(q)$ is similar to $A^{\prime}(q)$ over $\mathbb{Z}_{(\ell)}$.
For all integers a, b, c the generalized adjacency matrices $a A(q)+b I+c J$ and $a A^{\prime}(q)+b I+c J$ are cospectral and equivalent.
For which values of q are they are similar over \mathbb{Z} ?

Concluding remarks

For all primes $\ell, A(q)$ is similar to $A^{\prime}(q)$ over $\mathbb{Z}_{(\ell)}$.
For all integers a, b, c the generalized adjacency matrices $a A(q)+b I+c J$ and $a A^{\prime}(q)+b I+c J$ are cospectral and equivalent.
For which values of q are they are similar over \mathbb{Z} ?

Thank you for your attention!

