The Polynomial Method in Finite Geometry

Simeon Ball, Aart Blokhuis

May 23-27th, 2016, Singapore Designs and Additive Combinatorics

Simeon Ball, Aart Blokhuis Polynomials Method in Finite Geometry

Notation: \mathbb{F} without index is $\mathbb{F}_q = GF(q)$, the finite field of order $q = p^h$, where p is a prime, (but sometimes p is a point). $(g, h) = \gcd(g, h)$, the greatest common divisor of the polynomials g and h. $(x : y : z) = \langle (x, y, z) \rangle$ denotes a projective point in $PG_2(\mathbb{F})$. LEMMA(essentially Rédei): Let $f = g(X)X^q + h(X) \in \mathbb{F}[X]$ be a polynomial which factorizes into linear factors in $\mathbb{F}[X]$.

If deg g, deg $h \leq \frac{1}{2}(q-1)$ then either

 $f(X) = g(X)(X^q - X)$

or

 $f(X) = (g, h)e(X^p) .$

Write $f = s \cdot r$, where $s = (X^q - X, f)$ has the same roots as f, but simple.

$$s | f - g(X^q - X) = gX + h$$
.
 $r | f' \text{ and } f \text{ so } r | gf' - g'f = gh' - g'h$.
 $f | (Xg + h)(gh' - g'h)$.

Comparing degrees gives (Xg + h)(gh' - g'h) = 0 and now h = -Xg or (after removing the gcd) g' = h' = 0.

In both examples q is odd.

(i) g(X) = 1, $h(X) = -X^{(q+1)/2}$,

 $f(X) = X^{q} - X^{(q+1)/2} = X^{(q+1)/2} (X^{(q-1)/2} - 1)$

factors into linear factors in $\mathbb{F}[X]$ (see below).

In both examples q is odd.

(i) g(X) = 1, $h(X) = -X^{(q+1)/2}$,

$$f(X) = X^{q} - X^{(q+1)/2} = X^{(q+1)/2} (X^{(q-1)/2} - 1)$$

factors into linear factors in $\mathbb{F}[X]$ (see below). (ii) $g(X) = X^{(q-1)/2} - 3$, $h(X) = 3X^{(q+1)/2} - X$, $f(X) = X(X^{(q-1)/2} - 1)^3 = X \prod_{s=\Box} (X - s)^3$.

Here \Box denotes a nonzero square in \mathbb{F} .

THEOREM: Let *S* be a set of points of $PG_2(\mathbb{F})$ with the property that every line is incident with a point of *S*. If $|S| < \frac{3}{2}(q+1)$ and *q* is prime then *S* contains a line. **PROOF:** Choose coordinates (X_1, X_2, X_3) so that $X_3 = 0$ is a tangent and $p_{\infty} = p = (1:0:0)$ its point in *S*. With $S_0 = S \setminus \{p\}$ let

$$f(X,Y) = \prod_{(a:b:1)\in S_0} (X+bY+a) .$$

For $y, z \in \mathbb{F}$ the line $X_1 + yX_2 + zX_3 = 0$ is incident with a point of S_0 .

PROOF, continued

PROOF: Choose coordinates (X_1, X_2, X_3) so that $X_3 = 0$ is a tangent and p = (1:0:0) its point in S. Let

$$\begin{split} f(X, Y) &= \prod_{(a:b:1) \in S_0} (X + bY + a) \text{ . For } y, z \in \mathbb{F} \text{ the line } X_1 + yX_2 + zX_3 = 0 \text{ is incident with a point of } S_0. \\ \text{So } \exists (a:b:1) \in S_0: a + yb + z = 0 \text{ hence } f(X, Y) \text{ is zero for all pairs } (x, y) \in \mathbb{F}^2 \text{ hence:} \end{split}$$

$$f(X,Y) = g_1(X,Y)(X^q - X) + h_1(X,Y)(Y^q - Y)$$

Restrict to the highest degree terms

$$f^*(X, Y) := \prod_{(a:b:1)\in S_0} (X+bY) = g_0 X^q + h_0 Y^q$$

put Y = 1: $f^*(X, 1) = \prod_{(a:b:1)} (X + b) = gX^q + h$.

So $\prod_{(a:b:1)}(X + b) = gX^q + h$ is fully reducible, $\deg(h) \le \deg(g) = m \le (q - 1)/2$ and the lemma applies: $\deg(h) \le \deg(g)$, so $Xg + h \ne 0$ and

 $f^*(X,1) = (g,h)e(X^p)$.

But q = p is prime so

 $e(X^q) = (X+c)^q$ for some $c \in \mathbb{F}$.

We see that *S* contains the line $X_3 = cX_2$.

< = > < = > = −0 Q (>

Consider the identifications: (sub is subspace)

 $\begin{array}{rcl} PG_2(\mathbb{F}_{p^h}) & \leftrightarrow & V_3(\mathbb{F}_{p^h}) & \leftrightarrow & V_{3h}(\mathbb{F}_p) & \leftrightarrow & PG_{3h-1}(\mathbb{F}_p) \\ \text{point} & \leftrightarrow & 1\text{-dim sub} & \leftrightarrow & h\text{-dim sub} & \leftrightarrow & (h-1)\text{-dim sub} \\ \text{line} & \leftrightarrow & 2\text{-dim sub} & \leftrightarrow & 2h\text{-dim sub} & \leftrightarrow & (2h-1)\text{-dim sub} \end{array}$

Let U be a h-dim sub of $PG_{3h-1}(\mathbb{F}_p)$, let

 $B(U) = \{x \text{ point of } PG_2(\mathbb{F}_{p^h}) \mid x \cap U \neq \emptyset\}$.

For any line ℓ of $PG_2(\mathbb{F}_{p^h})$: $\ell \cap U \neq \emptyset$, so $\exists x \in B(U)$ incident with ℓ , and B(U) is a blocking set of size at most $(p^{h+1}-1)/(p-1) = q + q/p + \cdots + 1$.

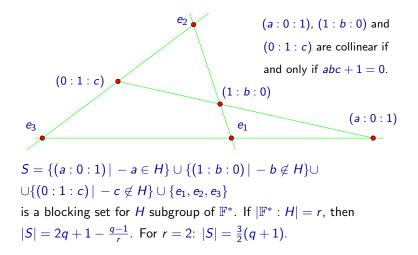
Let U be a h-dim subspace of $PG_{3h-1}(\mathbb{F}_p)$, let

 $B(U) = \{x \text{ point of } PG_2(\mathbb{F}_{p^h}) \,|\, x \cap U \neq \emptyset\}$.

For any line ℓ of $PG_2(\mathbb{F}_{p^h})$: $\ell \cap U \neq \emptyset$, so $\exists x \in B(U)$ incident with ℓ , and B(U) is a blocking set of size at most $(p^{h+1}-1)/(p-1) = q + q/p + \cdots + 1$.

CONJECTURE: All minimal blocking sets of size $<\frac{3}{2}(q+1)$ arise from the bubble construction.

EXAMPLE: (the coset construction)



If is contained in the union of three lines (as above), one can use Kneser's theorem to show that H is the union of cosets. Also for 3 concurrent lines H is the union of cosets, but now of the additive group.

Functions that determine few directions

The function ϕ : $\mathbb{F} \to \mathbb{F}$ determines the direction d if $\exists x \neq y \in \mathbb{F}$ s.t.

$$d=\frac{\phi(y)-\phi(x)}{y-x}.$$

d is not determined $\Leftrightarrow x \mapsto \phi(x) - dx$ is permutation of \mathbb{F} .

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 臣 のへで

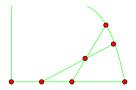
Functions that determine few directions

The function $\phi : \mathbb{F} \to \mathbb{F}$ determines the direction *d* if $\exists x \neq y \in \mathbb{F}$ s.t.

$$d=\frac{\phi(y)-\phi(x)}{y-x}.$$

d is not determined $\Leftrightarrow x \mapsto \phi(x) - dx$ is permutation of \mathbb{F} .

The graph of ϕ is $\{(x : \phi(x) : 1) | x \in \mathbb{F}\}$, a set of q affine points with $e_2 = (0 : 1 : 0)$ not determined.



Appending points (1 : d : 0) where d is a direction determined by ϕ gives a blocking set of size $q + N(\phi)$, where $N(\phi)$ is the number of directions determined by ϕ .

프 () () () (

To the blocking set coming from the coset construction corresponds a function ϕ with $N(\phi) = q + 1 - |H|$.

For *q* odd, |H| = (q-1)/2 we find $N(\phi) = \frac{1}{2}(q+3)$.

For a special choice of subspace U in the bubble construction we find a function ϕ determining between q/s + 1 and $\frac{q-1}{s-1}$ directions for some subfield \mathbb{F}_s of \mathbb{F} .

For *q* even, s = 2 we find ϕ with $N(\phi) = \frac{1}{2}(q+2)$.

THEOREM: Any function determining at most $\frac{1}{2}(q+1)$ directions comes from the bubble construction.

The *k*-th Hasse-derivative $\frac{\partial^k}{\partial X}$ of a polynomial $\sum c_i X^i$ is

$$\frac{\partial^k}{\partial X}\left(\sum c_i X^i\right) = \partial^k(\sum) = \sum \binom{i}{k} c_i X^{i-k}$$

EXERCISE:
$$\partial^k (fg) = \sum_{i=0}^k \partial^i f \cdot \partial^{k-i} g.$$

EXERCISE: if *a* is zero of *f* of multiplicity *m*, then *a* is zero of $\partial^i f$ of multiplicity $\geq m - i$.

EXERCISE: if $X^q + h$ is fully reducible and $2 \le \deg h \le \frac{1}{2}(q-1)$ then $X^q + h = e(X^s)$, for some (maximal) $s = p^{\sigma}$, $\sigma > 0$.

Prove that $\deg(h) \geq \frac{q+s}{s+1}$, for this s where \mathbb{F}_s is subfield of \mathbb{F} .

EXERCISE: if $X^q + h$ is fully reducible and $2 \le \deg h \le \frac{1}{2}(q-1)$ then $X^q + h = e(X^s)$, for some (maximal) $s = p^{\sigma}$, $\sigma > 0$.

Prove that $deg(h) \ge \frac{q+s}{s+1}$, for this s where \mathbb{F}_s is subfield of \mathbb{F} .

 $X^{q/s} + h^{1/s} | (X+h) (h^{1/s})', (h^{1/s})' \neq 0, s \neq q, h \neq -X$ Conclusion: $q/s \le (1+1/s) \deg h - 1.$

A = A = A = OQO
 A

The Rédei polynomial

Let
$$f(X, Y) = \prod_{x \in F} (X + xY - \phi(x)) = \sum_{j=0}^{q} \sigma_j(Y) X^{q-j}$$
.

If *d* is not determined by ϕ then $f(X, d) = X^q - X$ which implies $\sigma_j(d) = 0$ for j = 1, ..., q - 2. Since $\deg(\sigma_j) \le j - 1$ for j = 1, ..., q - 2, $\sigma_j \equiv 0$ for $j = 1, ..., q - N(\phi)$.

If *d* is determined by ϕ , then let *s* be the maximal power of *p* s.t. $f(X, d) = e(X^s)$, i.e. $\sigma_j(d) = 0$ if $s \not| j$.

Hence
$$f(X, Y) = X^{q} + \sum_{j=0}^{N_{0}/s} \sigma_{q-js}(Y) X^{js} + \sigma_{q-1}(Y) X_{js}$$

where for some $N_0 \leq N(\phi) - 1$, $\sigma_{q-N_0} \not\equiv 0$.

If *d* is determined by ϕ , then let *s* be the maximal power of *p* s.t. $f(X, d) = e(X^s)$, i.e. $\sigma_j(d) = 0$ if $s \nmid j$.

Hence
$$f(X,Y) = X^q + \sum_{j=0}^{N_0/s} \sigma_{q-js}(Y) X^{js} + \sigma_{q-1}(Y) X$$
,

where for some $N_0 \leq N(\phi) - 1$, $\sigma_{q-N_0}
ot\equiv 0$.

The exercise implies $N_0 \ge \frac{q+s}{s+1}$, examples all give $N_0 \ge \frac{q}{s} + 1$.

Any factor of f(X, d) is factor of $X + \sum_{j=0}^{N_0} \sigma_{q-j}(Y) X^j$.

PROOF that $\mathit{N}(\phi) \geq q/s + 1$

In what follows y is a direction determined by ϕ .

$$\frac{\partial^k f}{\partial Y}(y) = \left(\sum \frac{x_1 \cdots x_k}{\prod (X + x_i Y - f(x_i))}\right) f(X, y) \; .$$

Multiplying both sides by $\begin{pmatrix} x \\ y \end{pmatrix}$

$$X + \sum_{j=0}^{N_0} \sigma_{q-j} X^j
ight)^k$$
 gives a

$$f(X,y) \mid \left(X + \sum_{j=0}^{N_0} \sigma_{q-j} X^j\right)^k \frac{\partial^k f}{\partial Y}(y) \; .$$

If $N \leq q/s$ then $N_0 \leq q/s - 1$, so $q - 1 \geq kN_0 + N_0 \Rightarrow \frac{\partial^k f}{\partial Y}(y) = 0$, for $k = 1, \dots, s - 1$. In particular $\frac{\partial^k \sigma_{q-N_0}(y)}{\partial Y}(y) = 0$.

In particular $\frac{\partial^k \sigma_{q-N_0}(y)}{\partial Y}(y) = 0.$

 $\frac{\partial^{s-1}\sigma_{q-N_0}(y)}{\partial Y}(y) = 0 \text{ is an } s\text{-th power. It has } \geq sN_0 \text{ zeros, but its} \\ \text{degree is} \leq q - N_0 - 1. \text{ If it's not zero then } sN_0 \leq q - N_0 - 1, \\ \text{contradicting exercise.} \end{cases}$

So $\frac{\partial^{s-1}\sigma_{q-N_0}(y)}{\partial Y} \equiv 0$. Similarly $\frac{\partial^j \sigma_{q-N_0}(y)}{\partial Y} \equiv 0$ for $j = 1, \dots, s-1$. Therefore σ_{q-N_0} is an *s*-th power. But $\sigma_{q-N_0}(Y)$ is zero for all directions not determined by ϕ since $s(q-N) >> q - N_0$ implies $\sigma_{q-N_0} \equiv 0$ (Contradiction).

Analysis of f(X, Y) proves the Bubble-conjecture for functions determining few directions, or blocking sets of size q + m with an *m*-secant.

Using Newton's identities $\sigma_j \equiv 0$, for $j = 1, ..., q - N(\phi)$ implies $\sum_{x \in \mathbb{F}} (xY - \phi(x))^j \equiv 0$, for $j = 1, ..., q - N(\phi)$,

from which we deduce that

 $\phi(X)^j \mod (X^q - X)$ has no X^{q-1-i} term if $\binom{i+j}{j} \neq 0$ and $i+j \leq n - N(\phi)$.

Careful analysis of linear maps between polynomial spaces

$$(F_1,\ldots,F_j)\mapsto F_1f+\cdots+F_jf^j$$

allows one to prove:

THEOREM: (q prime). Any function determining at most (2q + 1)/3 directions comes from the coset construction.

CONJECTURE: (q prime). If $N(\phi) then the graph of <math>\phi$ is contained in an algebraic curve of degree $\leq t - 1$.

(i) A spread of $V_k(\mathbb{F})$ is a partition of the non-zero vectors into k-dim subspaces. A large partial spread gives rise to a proj. blocking set.

(ii) A *k*-dimensional linear code *C* of length *n* and minimum distance *d* is a *k*-dim subspace of \mathbb{F}^n in which every non-zero vector has at least *d* non-zero coordinates.

Let G be a $k \times n$ matrix with rowspace C.

Let S be the set of columns of G, viewed as points of $PG_{k-1}(\mathbb{F})$. Every hyperplane is incident with at most n d point of the (multi-

Every hyperplane is incident with at most n - d point of the (multi-)set *S*.

If the code is *projective*, that is S is a set, then its complement B is a t-fold blocking set (with respect to hyperplanes).

Let $w \in \mathbb{F}_p^k = G$, viewed as elementary abelian group.

Define
$$\chi_w : G \to \mathbb{C}$$
 by $\chi_w(x) = \exp(\frac{2\pi i}{p}(w \cdot x)).$

LEMMA: If $g(x) = \sum_{w \in G} c_w \chi_w(x)$, $c_w \in \mathbb{Z}$ satisfies g(x) = 0, $\forall x \neq 0$, then $|G| = p^k$ divides g(0).

PROOF:
$$g(0) = \sum_{x \in G} g(x) = \sum_{x} \sum_{w} c_{w} \chi_{w}(x) =$$

= $\sum_{w} c_{w} \sum_{x} \chi_{w}(x) = c_{0} \sum_{x} \chi_{0}(x) = c_{0}|G|.$

THEOREM: Let S be a set of n points in $AG_k(\mathbb{F}_p)$, such that any hyperplane is incident with at most t points of S.

 $\begin{array}{ll} \text{Then} & n \leq (t-e)p+e, \quad \text{where } e \in \{0,\ldots,k-1\} \text{ is maximal such} \\ \text{that} \begin{pmatrix} t \\ e \end{pmatrix} \not\equiv 0 \mod p^{k-e}. \end{array}$

LEMMA: If S is as above, then the coefficient of $X^{tp-n+\epsilon}$ in $(X-1)^{-n}(X^p-1)^t$ is zero mod p^k for all $\epsilon \ge 1$.

A = A = A = OQO
 A

LEMMA: The coefficient of $X^{tp-n+\epsilon}$ in $(X-1)^{-n}(X^p-1)^t$ is zero mod p^{k-2} for all $\epsilon \geq 1$.

PROOF: Let
$$f(X, x) = \prod_{u \in S} (1 - \exp(\frac{2\pi i}{p}(u \cdot x))X) = \sum_{j=0}^n \sigma_j(x)X^j$$
,

where $\sigma_i(x)$ is an integer combination of characters.

Let $g(X, x) = \sum_{j=0}^{\infty} \rho_j(x) X^j$ be the inverse: g(X, x) f(X, x) = 1.

Then $\rho_i(x)$ also is an integer combination of characters.

By hypothesis, for $x \neq 0$, $u \cdot x = a \in \mathbb{F}_p$ for at most t elements $u \in S$, so $f(X,x) | (X^p - 1)^t$ for $x \neq 0$. Let $h(X,x) = (X^p - 1)^t g(X,x)$, then

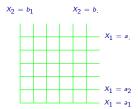
$$f(X,x)h(X,x)=(X^p-1)^t,$$

so *h* is a polynomial in *X* of degree tp - n. The coefficient of $X^{tp-n+\epsilon}$ in h(X, x) is an integer combination of characters, which is zero $\forall x \neq 0$:

$$f(X,0) = (X-1)^n \Rightarrow h(X,0) = (X-1)^{-n}(X^p-1)^t$$

Now apply the previous lemma.

Combinatorial Nullstellensatz



Let \mathbb{K} be any field,

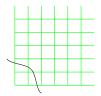
 $-x_1 = a_i$ S_i finite subset of \mathbb{K} ,

let
$$g_i(X_i) = \prod_{a \in S_i} (X_i - a)$$
 .

THEOREM: Let $f \in \mathbb{K}[X_1, \ldots, X_n]$. If f is zero on the grid $S_1 \times \cdots \times S_k$, then $f = \sum_{i=1}^k g_i(X_i)h_i(X_1, \ldots, X_k)$ for some polynomials h_1, \ldots, h_k , where deg $h_i \leq \deg f - |S_i|$.

A = A = A = OQO
 A

Combinatorial Nullstellensatz, continued



Let
$$D_i \subset S_i$$
, $D_i \neq \emptyset$.
Let $\ell_i(X_i) = \prod_{a \in D_i} (X_i - a)$

THEOREM: If f is zero on $S_1 \times \cdots \times S_k \setminus (D_1 \times \cdots \times D_k)$ and non zero in at least one point of $D_1 \times \cdots \times D_k$, then

$$f = \sum g_i(X_i)h_i + u(X_1, \dots, X_k) \prod \frac{g_i(X_i)}{\ell_i(X_i)}, \text{ for some } u \neq 0.$$

It follows that $\deg(f) \geq \sum_{i=1}^k (|S_i| - |D_i|).$

We can write $f = \sum g_i(X_i)h_i + r(X_1, \ldots, X_n)$, where the degree in X_i of r is at most $|S_i| - 1$. $\ell_i(X_i)f$ is zero at all points of $S_1 \times \cdots \times S_k$, so

 $\ell_i(X_i)r$ is zero at all points $S_1 \times \cdots \times S_k$. Nullstellensatz, together with degree of X_i in r is at most $|S_i| - 1$ implies $l_i(X_i)r = g_i(X_i)h_i$, so $\frac{g_i}{L}$ divides r, for each $i = 1, \dots, k$.

THEOREM: Let S be a set of n points in $AG_{k-1}(\mathbb{F})$, such that any hyperplane is incident with at least t points of S.

Then $|S| \ge (t + k - 2)(q - 1) + 1.$

PROOF: (t = 1) Let $f(X_1, \ldots, X_k) = \prod_{u \in S} (u_1 X_1 + \cdots + u_{k-1} X_{k-1} + 1).$

Then f is zero in $\mathbb{F}^k \setminus (0, \ldots, 0)$ so apply previous theorem.

One can prove more for larger t since the theorem implies $f(X, 0, ..., 0) = (X^t v(X) + u(X))(X^{q-1} - 1)^t$ where deg $u \le |S| - (t + k - 2)(q - 1) - 1$ and $X^t v(X) + u(X)$ factors into linear factors.

 \mathbb{F}_{q^k} is a vector space over $\mathbb{F} = \mathbb{F}_q$ of dimension k.

We can view elements of \mathbb{F}_{q^k} as vectors of $AG_k(\mathbb{F})$.

Hyperplanes have equation Tr(aX) = b, $a \in \mathbb{F}_{q^k}$, $b \in \mathbb{F}$.

More generally an *r*-dimensional subspace has equation f(X) = b where f is a *q*-linearized polynomial

 $f(X) = a_0 X + a_1 X^q + \dots + a_i X^{q'} + \dots + X^{q'}.$ In particular x, y, z are collinear iff $\begin{pmatrix} 1 & x & x^q \\ 1 & y & y^q \\ 1 & z & z^q \end{pmatrix} = 0$ iff $(x - y)(x - z) \begin{vmatrix} 1 & x & x^q \\ 0 & 1 & (x - y)^{q-1} \\ 0 & 1 & (x - z)^{q-1} \end{vmatrix} = 0$ if and only if $(x - y)^{q-1} = (x - z)^{q-1}.$ A (q - 1)-st power u^{q-1} in \mathbb{F}_{q^k} is a $\left(\frac{q^k - 1}{q - 1}\right)$ -st root of unity.

A =
 A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

THEOREM: Let S be a set of q + m points of $AG_2(\mathbb{F})$ and let N be a disjoint set of points such that every line with a point of N is incident with a point of S. Then $|N| \le m(q-1)$.

PROOF: Consider S as a subset of \mathbb{F}_{q^2} and let

$$f(T,X) = \prod_{y \in S} (T - (X - y)^{q-1}) = \sum_{j=0}^{|S|} \sigma_j(X) T^{|S|-j}$$

where $\sigma_j(X)$ is of degree $\leq j(q-1)$. If $x \in N$ then $f(T, x) = (T^{q+1} - 1)$ (poly of degree m-1). Hence $\sigma_m(x) = 0$. The coefficient of $T^{|S|-m}$ in $(T - X^{q-1})^{|S|}$ is $X^{m(q-1)}$ so σ_m has degree m(q-1) which implies the bound.

a) If $S, N \subset AG(2, \mathbb{F})$, |S| = t(q + 1) + (m - 1) and every line incident with a point of N is incident with at least t points of S, then

$$egin{pmatrix} t+m-1\ m \end{pmatrix}
eq 0 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} |N| \leq m(q-1) \; .$$

b) If $S \subset AG(2, \mathbb{F})$ and every line is incident with at least t points of |S| then $|S| \ge (t+1)q - p^e$ where e is maximal such that $p^e | t$.

A = A = A = OQO
 A

Maximal arcs

THEOREM: Let $S \neq \emptyset$ be a set of points in $AG_2(\mathbb{F}_q)$, q odd, such that every line intersects S in 0 or in some constant number r of points. Then either S is a single point, or S contains all points of the plane.

PROOF: |S| = 1 + (q+1)(r-1) = qr - q + r and r | q. We use the same polynomial as before:

$$f(T,X) = \prod_{y \in S} (T - (X - y)^{q-1}) = \sum_{j=0}^{|S|} \sigma_j(X) T^{|S|-j}$$

For $X = x \in S$ we see every direction r - 1 times:

$$f(T,x) = \prod_{y \in S} \left(T - (x - y)^{q-1} \right) = T(T^{q+1} - 1)^{r-1} ,$$

For $X = x \notin S$ we see every direction 0 or r (a power of p) times:

$$f(T,x) = \sum_{i=0}^{|S|/r} \sigma_{ir}(X) T^{|S|-ir} ,$$

白 マイ ビー・ イ ビー・ くらつ

$$x \in S: f(T,x) = T(T^{q+1}-1)^{r-1}, x \notin S: f(T,x) = \sum_{i=0}^{|S|/r} \sigma_{ir}(X)T^{|S|-ir},$$

In both cases: $\sigma_j(x)$ (of degree $\leq j(q-1)$) is zero for j = 1, ..., r-1. Moreover: $S(X) := \prod_{y \in S} (X - y) | \sigma_r(X)$.

Next step: input secret ingredient and conclude $(S(x)\sigma_r(x))' = 0$, but this implies that not only $S | \sigma_r$, but in fact S^{p-1} does, contradiction.

Let \mathbb{Z}_p denote the ring of *p*-adic integers.

Let f(X) be a (monic) polynomial in $\mathbb{Z}_p[X]$ of degree h whose reduction modulo p also has degree h and is irreducible. Then f is irreducible.

Let $R = \mathbb{Z}_p[X]/(f)$ be the quotient ring of $\mathbb{Z}_p[X]$ by the ideal (f) and let $\mathfrak{p} = \{x \in R \mid x = 0 \mod (p)\}.$

Then \mathfrak{p} is the maximal ideal of R and $R/\mathfrak{p} \simeq \mathbb{F}$. Recall, $\mathbb{F} = \mathbb{F}_q$ and $q = p^h$.

Let T be the set of roots of $X^q - X$ in R

For $S \subset T$ define $g_S(X) = g(X) = \prod_{u \in S} (X - u)$.

LEMMA: If $f \in R[X]$ is the product of linear factors such that for each $u \in S$, there are at least t factors X - a of f for which $a = u \mod p$, then

$$f(X) = \sum_{j=0}^t g(X)^{t-j} p^j h_j(X) ,$$

for some polynomials h_j , where deg $h_j \leq \deg f - (t - j)|S|$.

PROOF:
$$f(X) = h(X) \prod_{i=1}^{l} (g(X) + pc_i(X)),$$

for some $c_1, \ldots, c_t, h \in R[X]$.

프 () () () (

Let $B \subset AG_k(\mathbb{F})$ such that every hyperplane is incident with at least t points of B. Lift each coordinate to the ring R. Let

$$f(X, x_1, \dots, x_k) = \prod_{u \in B} (X + u_1 x_1 + \dots + u_{k-1} x_k + 1).$$

Let $y \in R^k$, $y \neq (0, \dots, 0)$.

From the lemma: $f(X, y) = \sum_{j=0}^{t} p^{j} h_{j}(X) (X^{q} - X)^{t-j}$,

so f(X, y) modulo p^e is divisible by $(X^q - X)^{t-e+1}$. Hence $(X^q - X)^{e-t-1}f(X, x_1, ..., x_k)$ is a polynomial in X whenever we evaluate $(x_1, ..., x_k) \neq (0, ..., 0)$ modulo p^e .

Hence $(X^q - X)^{e^{-t-1}} f(X, x_1, \dots, x_k)$ is a polynomial in X whenever we evaluate $(x_1, \dots, x_{k-1}) \neq (0, \dots, 0)$ modulo p^e .

The coefficient of $X^{-\epsilon}$ is a polynomial in x_1, \ldots, x_k of relatively small degree

its value at $(0, \ldots, 0)$ is the coefficient of $X^{-\epsilon}$ in

 $(X^{q} - X)^{e-t-1}(X+1)^{|B|}$.

For ϵ small enough this coefficient must be zero modulo p^e .

Let S be a set of points of $AG_k(\mathbb{K})$. LEMMA: If $|S| \leq \binom{n+k}{k}$ then there is an $f \in \mathbb{K}[X_1, \ldots, X_k]$ of degree at most n such that

 $S \subseteq V(f) = \{x \in AG_k(\mathbb{K}) \mid f(x) = 0\}.$

PROOF: The dimension of the space of functions $S \to \mathbb{K}$ is |S|. The dimension of the space of polynomials in $\mathbb{K}[X_1, \ldots, X_k]$ of degree at most n is $\binom{n+k}{k}$. If $|S| < \binom{n+k}{k}$ then there are two polynomials g and h that agree on S. Let f = g - h.

Let *L* be a set of lines of $AG_k(\mathbb{K})$.

Let S be a set of points in $AG_k(\mathbb{K})$, such that every line of L is incident with at least N points of s.

Let D be a set of points of $PG_{k-1}(\mathbb{K})$ such that $d \in D$ iff L has a line with direction d.

THEOREM: With *L*, *S*, *D* and *N* as above: if $(k!|S|)^{1/k} < N$ then *D* is contained in an algebraic hypersurface of degree $\leq (k!|S|)^{1/k}$.

PROOF: By the lemma there is a poly f of degree $m \le (k!|S|)^{1/k}$ with $S \subseteq V(f)$. For each $d \in D$, $\exists x \in AG_k(\mathbb{K})$ such that $f(x + \lambda d) = 0$ for N values of λ .

PROOF: By the lemma there is a poly f of degree $m \leq (k!|S|)^{1/k}$ with $S \subseteq V(f)$.

For each $d \in D$, $\exists x \in AG_k(\mathbb{K})$ such that $f(x + \lambda d) = 0$ for N values of λ .

$$0=f(x+\lambda d)=\sum_{j=0}^{m-1}\lambda^j f_j(x_1,\ldots,x_k,d_1,\ldots,d_k)+\lambda^m f_m(d_1,\ldots,d_k).$$

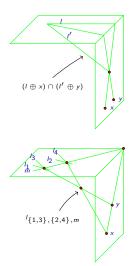
Since $m \leq N - 1$, each coeff of λ^j (j = 0, ..., m) is zero.

Hence $f_m(d) = 0$ and f_m is a hom. poly of degree m with $D \subseteq V(f_m)$. COROLLARY: If D is an N^{k-1} grid then $(k!|S|)^{1/k} \ge N$:

$$|S| \geq \frac{N^{\kappa}}{k!}$$

.

COROLLARY(Kakeya): If D is the set of all directions (i.e. $PG_{k-1}(\mathbb{F})$) then previous bound with N = q.



Starting with a set of N lines L in $AG_2(\mathbb{K})$ which has lines with different directions we can construct N^{k-1} lines in $AG_k(\mathbb{K})$

Starting with a set of $\frac{1}{2}N^2$ points *S* in $AG_2(\mathbb{K})$ we construct a set of $2(\frac{1}{2}N)^k$ points in $AG_k(\mathbb{K})$;

Suitable starting configurations exist for

 $\mathbb{K} = \mathbb{F}$: *L* lines of a dual conic;

 $\mathbb{K} = \mathbb{R}$: *L* lines of a dual regular *N*-gon.

∃ → (∃ →)

THEOREM: If f and $g \in \mathbb{K}[X_1, X_2]$ have no common factor, then V(f, g) contains at most $(\deg f)(\deg g)$ points.

THEOREM: If $f, g \in \mathbb{K}[X_1, X_2, X_3]$ have no common factor, then V(f, g) contains at most $(\deg f)(\deg g)$ lines.

Let *L* be a set of N^2 lines in $AG_3(\mathbb{K})$ and let *S* be a set of points with the property that every line of *L* is incident with at least *N* points of *S*. How small can |S| be?

EXAMPLE: $L' = \{Y = mX + c \mid m \in \{1, \dots, N^e\}, c \in \{1, \dots, N^{1+e}\}\};$ $S' = \{(x, y) \mid x \in \{1, \dots, N\}, y \in \{1, \dots, 2N^{1+e}\}\}.$ $|L'| = N^{1+2e} \text{ and } |S'| = cN^{2+e}.$

If *L* is the union of N^{1-2e} such sets *L'* then $|S| = cN^{3-e}$.

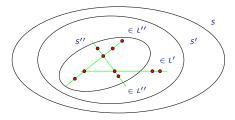
THEOREM: Let *L* be a set of N^2 lines in $AG_3(\mathbb{K})$, at most *N* in any plane. If char(\mathbb{K}) = 0 or $\mathbb{K} = \mathbb{F}_p$ and *S* is a set of points such that every line of *L* is incident with at least *N* points of *L*, then $|S| > cN^3$ for some constant *c*.

PROOF: If $|S| < cN^3$ then there is a subset S' of S such that $S' \subset V(f)$ for some irreducible poly f of degree $d < \frac{1}{4}N$ (by the lemma). L': lines of L incident with at least 4d points of S'. S'': points of S' incident with at least 3 lines of L'. L''': lines of L' incident with at least 4d points of S''.

By a dyadic pigeon-hole principle, one can show $|L''| > 4d^2$.

医下颌 医下颌

By a dyadic pigeon-hole principle, one can show $|L''| > 4d^2$.



A point of S'' is either a singular point or a flexy point of V(f). Singular points are in V(h), where his the first partial derivative of f. Flexy points are in V(g), where g is the Hessian of f (deg g < 3d).

물 제 제 물 제

Bezout's theorem implies that V(f, h) contains at most d^2 lines and V(f, g) contains at most $3d^2$ lines.

The resultant of two polynomials

Let
$$f = \sum_{i=0}^{n} f_i X^i$$
 and $g(x) = \sum_{i=0}^{n-1} g_i X^i$ be polynomials in $\mathbb{K}[X]$.
Let $b = X^m + \sum_{i=0}^{m-1} X^i$ and $a = \sum_{i=0}^{m-1} a_i X^i$ be such that $af + bg = 0$.

Considering the coefficients of $X^{n+m-1}, \ldots, X^{n-m-1}$ gives 2n linear equations which in matrix form are:

$$(a_0,\ldots,a_{m-1},b_0,\ldots,b_{m-1})R_m = -(g_{n-1-2m},\ldots,g_{n-1}).$$

Note that deg $g \ge n - m$, so the right hand side is nonzero.

EXAMPLE (m = 2):

$$(a_0, a_1, b_0, b_1) \begin{pmatrix} 0 & f_n & f_{n-1} & f_{n-2} \\ f_n & f_{n-1} & f_{n-2} & f_{n-3} \\ 0 & 0 & g_{n-1} & g_{n-2} \\ 0 & g_{n-1} & g_{n-2} & g_{n-3} \end{pmatrix} = -(g_{n-1}, g_{n-2}, g_{n-3}, g_{n-4}) .$$

Suppose h = (f, g) has degree n - k. If $m \ge k + 1$ there are multiple solutions (*b* can be a multiple of f/h and a = -b(g/h). Hence det $R_m = 0$. If m = k then there is a unique solution ($b = \gamma f/h$ and a = -b(g/h), where γ is chosen so that *b* is monic). Hence det $R_m \neq 0$. Next suppose $f, g \in \mathbb{K}[X, Y]$. By writing *f* and *g* as polynomials in *X*, whose coefficients are polynomials in *Y*, the determinant of R_m is a polynomial in *Y*.

LEMMA: Suppose there is a $y_0 \in \mathbb{K}$ such that

 $\deg(f(X,y_0),g(X,y_0))=n-m.$

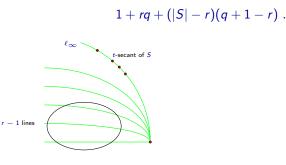
If there are n_h elements $y \in \mathbb{F}$ for which

 $\deg(f(X, y), g(X, y)) = n - (m - h) ,$

then
$$\sum_{h=1}^{m-1} hn_h \leq \deg(\det R_m) .$$

PROOF: $(\det R_m)(y_0) \neq 0.$
If, for $y \in \mathbb{K}$, $\deg(f(X, y), g(X, y)) = n - (m - h)$, then y is a zero of multiplicity y.

THEOREM: Let S be a set of points of $PG_2(\mathbb{F})$ and suppose there is a point $p_{\infty} \notin S$, such that r lines incident with p_{∞} contain all points of S. Then the number of lines incident with S is at most



Simeon Ball, Aart Blokhuis Polynomials Method in Finite Geometry

(Case $|S \setminus \ell_{\infty}| > q$).

Let $f(X, Y) = \prod_{(a,b)\in S\setminus\ell_{\infty}} (X + aY + b)$ and $g(X, Y) = X^q - X$.

Let $p_{\infty} = (1 : y_0 : 0)$. Then $\deg(f(X, y_0, g(X, y_0)) = r - 1$.

lines incident with S is at most

$$1 + tq + (q + 1 - t)(r - 1) + \sum_{h=1}^{r} hn_h.$$

By lemma,

$$\sum hn_h \leq \deg(\det R_m) \leq (|S| - (r-1) - m)(q - r + 1).$$

 $(m = |S \setminus I_{\infty}| - r + 1)$