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Fully reducible lacunary polynomials

Notation: F without index is Fq = GF (q), the finite field of order q = ph,
where p is a prime, (but sometimes p is a point). (g , h) = gcd(g , h), the
greatest common divisor of the polynomials g and h.
(x : y : z) = 〈(x , y , z)〉 denotes a projective point in PG2(F).

Lemma(essentially Rédei): Let f = g(X )X q + h(X ) ∈ F[X ] be a
polynomial which factorizes into linear factors in F[X ].

If deg g , deg h ≤ 1
2 (q − 1) then either

f (X ) = g(X )(X q − X )

or

f (X ) = (g , h)e(X p) .
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Proof

Write f = s · r , where s = (X q − X , f ) has the same roots as f , but
simple.

s | f − g(X q − X ) = gX + h .

r | f ′ and f so r | gf ′ − g ′f = gh′ − g ′h.

f | (Xg + h)(gh′ − g ′h) .

Comparing degrees gives (Xg + h)(gh′ − g ′h) = 0 and now h = −Xg or
(after removing the gcd) g ′ = h′ = 0.
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Examples showing the degree bound is sharp

In both examples q is odd.

(i) g(X ) = 1, h(X ) = −X (q+1)/2,

f (X ) = X q − X (q+1)/2 = X (q+1)/2(X (q−1)/2 − 1)

factors into linear factors in F[X ] (see below).

(ii) g(X ) = X (q−1)/2 − 3, h(X ) = 3X (q+1)/2 − X ,

f (X ) = X (X (q−1)/2 − 1)3 = X
∏
s=�

(X − s)3 .

Here � denotes a nonzero square in F.
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Blocking sets in finite projective planes

Theorem: Let S be a set of points of PG2(F) with the property that
every line is incident with a point of S .
If |S | < 3

2 (q + 1) and q is prime then S contains a line.

Proof: Choose coordinates (X1,X2,X3) so that X3 = 0 is a tangent and
p∞ = p = (1 : 0 : 0) its point in S . With S0 = S \ {p} let

f (X ,Y ) =
∏

(a:b:1)∈S0

(X + bY + a) .

For y , z ∈ F the line X1 + yX2 + zX3 = 0 is incident with a point of S0.
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Proof, continued

Proof: Choose coordinates (X1, X2, X3) so that X3 = 0 is a tangent and p = (1 : 0 : 0) its point in S. Let

f (X, Y ) =
∏

(a:b:1)∈S0
(X + bY + a) . For y, z ∈ F the line X1 + yX2 + zX3 = 0 is incident with a point of S0.

So ∃(a : b : 1) ∈ S0: a + yb + z = 0 hence f (X ,Y ) is zero for all pairs
(x , y) ∈ F2 hence:

f (X ,Y ) = g1(X ,Y )(X q − X ) + h1(X ,Y )(Y q − Y )

Restrict to the highest degree terms

f ∗(X ,Y ) :=
∏

(a:b:1)∈S0

(X + bY ) = g0X
q + h0Y

q

put Y = 1: f ∗(X , 1) =
∏

(a:b:1)(X + b) = gX q + h.
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Proof, continued

So
∏

(a:b:1)(X + b) = gX q + h is fully reducible,

deg(h) ≤ deg(g) = m ≤ (q − 1)/2 and the lemma applies:

deg(h) ≤ deg(g), so Xg + h 6= 0 and

f ∗(X , 1) = (g , h)e(X p) .

But q = p is prime so

e(X q) = (X + c)q for some c ∈ F .

We see that S contains the line X3 = cX2.
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Example: (the bubble construction)

Consider the identifications: (sub is subspace)

PG2(Fph) ↔ V3(Fph) ↔ V3h(Fp) ↔ PG3h−1(Fp)

point ↔ 1-dim sub ↔ h-dim sub ↔ (h − 1)-dim sub

line ↔ 2-dim sub ↔ 2h-dim sub ↔ (2h − 1)-dim sub

Let U be a h-dim sub of PG3h−1(Fp), let

B(U) = {x point of PG2(Fph) | x ∩ U 6= ∅} .

For any line ` of PG2(Fph): `∩U 6= ∅, so ∃x ∈ B(U) incident with `, and
B(U) is a blocking set of size at most
(ph+1 − 1)/(p − 1) = q + q/p + · · ·+ 1.
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The linearity conjecture

Let U be a h-dim subspace of PG3h−1(Fp), let

B(U) = {x point of PG2(Fph ) | x ∩ U 6= ∅} .

For any line ` of PG2(Fph ): ` ∩ U 6= ∅, so ∃x ∈ B(U) incident with `, and

B(U) is a blocking set of size at most (ph+1 − 1)/(p − 1) = q + q/p + · · ·+ 1.

Conjecture: All minimal blocking sets of size < 3
2 (q + 1) arise from

the bubble construction.
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Example: (the coset construction)

(0 : 1 : c)

(a : 0 : 1)

(1 : b : 0)

(a : 0 : 1), (1 : b : 0) and

(0 : 1 : c) are collinear if

and only if abc + 1 = 0.

e3 e1

e2

S = {(a : 0 : 1) | − a ∈ H} ∪ {(1 : b : 0) | − b 6∈ H}∪
∪{(0 : 1 : c) | − c 6∈ H} ∪ {e1, e2, e3}
is a blocking set for H subgroup of F∗. If |F∗ : H| = r , then

|S | = 2q + 1− q−1
r . For r = 2: |S | = 3

2 (q + 1).
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Link to additive combinatorics

If is contained in the union of three lines (as above), one can use
Kneser’s theorem to show that H is the union of cosets. Also for 3
concurrent lines H is the union of cosets, but now of the additive group.
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Functions that determine few directions

The function φ : F→ F determines the direction d if ∃x 6= y ∈ F s.t.

d =
φ(y)− φ(x)

y − x
.

d is not determined ⇔ x 7→ φ(x)− dx is permutation of F.

The graph of φ is {(x : φ(x) : 1) | x ∈ F}, a set of q affine points with
e2 = (0 : 1 : 0) not determined.

Appending points (1 : d : 0) where d is a

direction determined by φ gives a blocking

set of size q + N(φ), where N(φ) is the

number of directions determined by φ.
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Coset and bubble construction

To the blocking set coming from the coset construction corresponds a
function φ with N(φ) = q + 1− |H|.
For q odd, |H| = (q − 1)/2 we find N(φ) = 1

2 (q + 3).

For a special choice of subspace U in the bubble construction we find a
function φ determining between q/s + 1 and q−1

s−1 directions for some
subfield Fs of F.

For q even, s = 2 we find φ with N(φ) = 1
2 (q + 2).

Theorem: Any function determining at most 1
2 (q + 1) directions comes

from the bubble construction.
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Hasse derivatives

The k-th Hasse-derivative
∂k

∂X
of a polynomial

∑
ciX

i is

∂k

∂X

(∑
ciX

i
)

= ∂k(
∑

) =
∑(

i

k

)
ciX

i−k .

Exercise: ∂k(fg) =
k∑

i=0

∂ i f · ∂k−ig .

Exercise: if a is zero of f of multiplicity m, then a is zero of ∂ i f of
multiplicity ≥ m − i .
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An important exercise

Exercise: if X q + h is fully reducible and 2 ≤ deg h ≤ 1
2 (q − 1) then

X q + h = e(X s), for some (maximal) s = pσ, σ > 0.

Prove that deg(h) ≥ q + s

s + 1
, for this s where Fs is subfield of F.

X q/s + h1/s | (X + h)
(
h1/s

)′
,
(
h1/s

)′
6= 0, s 6= q, h 6= −X

Conclusion: q/s ≤ (1 + 1/s) deg h − 1.
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The Rédei polynomial

Let f (X ,Y ) =
∏
x∈F

(X + xY − φ(x)) =

q∑
j=0

σj(Y )X q−j .

If d is not determined by φ then f (X , d) = X q − X which implies
σj(d) = 0 for j = 1, . . . , q − 2. Since deg(σj) ≤ j − 1 for
j = 1, . . . , q − 2, σj ≡ 0 for j = 1, . . . , q − N(φ).

If d is determined by φ, then let s be the maximal power of p s.t.
f (X , d) = e(X s), i.e. σj(d) = 0 if s 6 | j .

Hence f (X ,Y ) = X q +

N0/s∑
j=0

σq−js(Y )X js + σq−1(Y )X ,

where for some N0 ≤ N(φ)− 1 , σq−N0 6≡ 0.

Simeon Ball, Aart Blokhuis Polynomials Method in Finite Geometry



...

If d is determined by φ, then let s be the maximal power of p s.t.
f (X , d) = e(X s), i.e. σj(d) = 0 if s 6 | j .

Hence f (X ,Y ) = X q +

N0/s∑
j=0

σq−js(Y )X js + σq−1(Y )X ,

where for some N0 ≤ N(φ)− 1 , σq−N0 6≡ 0.

The exercise implies N0 ≥
q + s

s + 1
, examples all give N0 ≥

q

s
+ 1.

Any factor of f (X , d) is factor of X +

N0∑
j=0

σq−j(Y )X j .
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Proof that N(φ) ≥ q/s + 1

In what follows y is a direction determined by φ.

∂k f

∂Y
(y) =

(∑ x1 · · · xk∏
(X + xiY − f (xi ))

)
f (X , y) .

Multiplying both sides by

X +
N0∑
j=0

σq−jX
j

k

gives a

polynomial identity so

f (X , y) |

X +
N0∑
j=0

σq−jX
j

k

∂k f

∂Y
(y) .

If N ≤ q/s then N0 ≤ q/s − 1, so q − 1 ≥ kN0 + N0 ⇒ ∂k f
∂Y (y) = 0, for

k = 1, . . . , s − 1.

In particular
∂kσq−N0 (y)

∂Y
(y) = 0.
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...

In particular
∂kσq−N0 (y)

∂Y
(y) = 0.

∂s−1σq−N0 (y)

∂Y
(y) = 0 is an s-th power. It has ≥ sN0 zeros, but its

degree is ≤ q − N0 − 1. If it’s not zero then sN0 ≤ q − N0 − 1,
contradicting exercise.

So
∂s−1σq−N0 (y)

∂Y
≡ 0. Similarly

∂jσq−N0 (y)

∂Y
≡ 0 for j = 1, . . . , s − 1.

Therefore σq−N0 is an s-th power.
But σq−N0 (Y ) is zero for all directions not determined by φ since
s(q − N) >> q − N0 implies σq−N0 ≡ 0 (Contradiction).
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Further reading

Analysis of f (X ,Y ) proves the Bubble-conjecture for functions
determining few directions, or blocking sets of size q + m with an
m-secant.

Using Newton’s identities σj ≡ 0, for j = 1, . . . , q − N(φ) implies∑
x∈F

(xY − φ(x))j ≡ 0, for j = 1, . . . , q − N(φ),

from which we deduce that

φ(X )j mod (X q − X )

has no X q−1−i term if

(
i + j

j

)
6= 0 and i + j ≤ n − N(φ).
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The coset construction

Careful analysis of linear maps between polynomial spaces

(F1, . . . ,Fj) 7→ F1f + · · ·+ Fj f
j

allows one to prove:

Theorem: (q prime). Any function determining at most (2q + 1)/3
directions comes from the coset construction.

Conjecture: (q prime). If N(φ) < p − p/t − t then the graph of φ is
contained in an algebraic curve of degree ≤ t − 1.
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Applications of projective blocking sets

(i) A spread of Vk(F) is a partition of the non-zero vectors into k-dim
subspaces. A large partial spread gives rise to a proj. blocking set.

(ii) A k-dimensional linear code C of length n and minimum distance d is
a k-dim subspace of Fn in which every non-zero vector has at least d
non-zero coordinates.
Let G be a k × n matrix with rowspace C .
Let S be the set of columns of G , viewed as points of PGk−1(F).
Every hyperplane is incident with at most n − d point of the (multi-)set
S .

If the code is projective, that is S is a set, then its complement B is a
t-fold blocking set (with respect to hyperplanes).
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Complex characters

Let w ∈ Fk
p = G , viewed as elementary abelian group.

Define χw : G → C by χw (x) = exp(
2πi

p
(w · x)).

Lemma: If g(x) =
∑

w∈G cwχw (x), cw ∈ Z satisfies g(x) = 0, ∀x 6= 0,

then |G | = pk divides g(0).

Proof: g(0) =
∑
x∈G

g(x) =
∑
x

∑
w

cwχw (x) =

=
∑
w

cw
∑
x

χw (x) = c0

∑
x

χ0(x) = c0|G |.
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Affine sets with bounded hyperplane intersections

Theorem: Let S be a set of n points in AGk(Fp), such that any
hyperplane is incident with at most t points of S .

Then n ≤ (t − e)p + e, where e ∈ {0, . . . , k − 1} is maximal such

that

(
t

e

)
6≡ 0 mod pk−e .

Lemma: If S is as above, then the coefficient of X tp−n+ε in
(X − 1)−n(X p − 1)t is zero mod pk for all ε ≥ 1.
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Proof of the Lemma

Lemma: The coefficient of Xtp−n+ε in (X − 1)−n(Xp − 1)t is zero mod pk−2 for all ε ≥ 1.

Proof: Let f (X , x) =
∏
u∈S

(1− exp(
2πi

p
(u · x))X ) =

n∑
j=0

σj(x)X j ,

where σj(x) is an integer combination of characters.

Let g(X , x) =
∞∑
j=0

ρj(x)X j be the inverse: g(X , x)f (X , x) = 1.

Then ρj(x) also is an integer combination of characters.
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Proof continued

By hypothesis, for x 6= 0, u · x = a ∈ Fp for at most t elements u ∈ S , so
f (X , x) | (X p − 1)t for x 6= 0.
Let h(X , x) = (X p − 1)tg(X , x), then

f (X , x)h(X , x) = (X p − 1)t ,

so h is a polynomial in X of degree tp − n.
The coefficient of X tp−n+ε in h(X , x) is an integer combination of
characters, which is zero ∀x 6= 0:

f (X , 0) = (X − 1)n ⇒ h(X , 0) = (X − 1)−n(X p − 1)t .

Now apply the previous lemma.
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Combinatorial Nullstellensatz

X2 = b1 X2 = b.

X1 = a1

X1 = a2

X1 = a.

Let K be any field,

Si finite subset of K,

let gi (Xi ) =
∏
a∈Si

(Xi − a) .

Theorem: Let f ∈ K[X1, . . . ,Xn]. If f is zero on the grid S1 × · · · × Sk ,

then f =
k∑

i=1

gi (Xi )hi (X1, . . . ,Xk) for some polynomials h1, . . . , hk ,

where deg hi ≤ deg f − |Si |.
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Combinatorial Nullstellensatz, continued

Let Di ⊂ Si , Di 6= ∅.

Let `i (Xi ) =
∏
a∈Di

(Xi − a)

Theorem: If f is zero on S1 × · · · × Sk \ (D1 × · · · ×Dk) and non zero in
at least one point of D1 × · · · × Dk , then

f =
∑

gi (Xi )hi + u(X1, . . . ,Xk)
∏ gi (Xi )

`i (Xi )
, for some u 6= 0.

It follows that deg(f ) ≥
k∑

i=1

(|Si | − |Di |).
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Proof

We can write f =
∑

gi (Xi )hi + r(X1, . . . ,Xn), where the degree in Xi of
r is at most |Si | − 1. `i (Xi )f is zero at all points of S1 × · · · × Sk , so

`i (Xi )r is zero at all points S1 × · · · × Sk .

Nullstellensatz, together with degree of Xi in r is at most |Si | − 1 implies
li (Xi )r = gi (Xi )hi ,

so
gi
li

divides r , for each i = 1, . . . , k .
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Affine sets with bounded hyperplane intersections

Theorem: Let S be a set of n points in AGk−1(F), such that any
hyperplane is incident with at least t points of S .

Then |S | ≥ (t + k − 2)(q − 1) + 1.

Proof: (t = 1) Let f (X1, . . . ,Xk) =
∏
u∈S

(u1X1 + · · ·+ uk−1Xk−1 + 1).

Then f is zero in Fk \ (0, . . . , 0) so apply previous theorem.

One can prove more for larger t since the theorem implies

f (X , 0, . . . , 0) = (X tv(X ) + u(X ))(X q−1 − 1)t where

deg u ≤ |S | − (t + k − 2)(q − 1)− 1 and X tv(X ) + u(X ) factors into linear

factors.
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Extension fields as vector spaces

Fqk is a vector space over F = Fq of dimension k .

We can view elements of Fqk as vectors of AGk(F).

Hyperplanes have equation Tr(aX ) = b, a ∈ Fqk , b ∈ F.

More generally an r -dimensional subspace has equation f (X ) = b where
f is a q-linearized polynomial

f (X ) = a0X + a1X
q + · · ·+ aiX

qi

+ · · ·+ X qr

.

In particular x , y , z are collinear iff

∣∣∣∣∣∣
1 x xq

1 y yq

1 z zq

∣∣∣∣∣∣ = 0 iff

(x − y)(x − z)

∣∣∣∣∣∣
1 x xq

0 1 (x − y)q−1

0 1 (x − z)q−1

∣∣∣∣∣∣ = 0 if and only if

(x − y)q−1 = (x − z)q−1.

A (q − 1)-st power uq−1 in Fqk is a

(
qk − 1

q − 1

)
-st root of unity.
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Nuclei

Theorem: Let S be a set of q + m points of AG2(F) and let N be a
disjoint set of points such that every line with a point of N is incident
with a point of S . Then |N| ≤ m(q − 1).

Proof: Consider S as a subset of Fq2 and let

f (T ,X ) =
∏
y∈S

(
T − (X − y)q−1

)
=

|S|∑
j=0

σj(X )T |S|−j .

where σj(X ) is of degree ≤ j(q − 1).
If x ∈ N then f (T , x) = (T q+1 − 1)(poly of degree m − 1). Hence
σm(x) = 0. The coefficient of T |S|−m in (T − X q−1)|S| is Xm(q−1) so σm
has degree m(q − 1) which implies the bound.
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Exercise

a) If S ,N ⊂ AG (2,F), |S | = t(q + 1) + (m − 1) and every line incident
with a point of N is incident with at least t points of S , then(

t + m − 1

m

)
6= 0 ⇒ |N| ≤ m(q − 1) .

b) If S ⊂ AG (2,F) and every line is incident with at least t points of |S |
then |S | ≥ (t + 1)q − pe where e is maximal such that pe | t.
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Maximal arcs

Theorem: Let S 6= ∅ be a set of points in AG2(Fq), q odd, such that
every line intersects S in 0 or in some constant number r of points. Then
either S is a single point, or S contains all points of the plane.

Proof: |S | = 1 + (q + 1)(r − 1) = qr − q + r and r | q. We use the
same polynomial as before:

f (T ,X ) =
∏
y∈S

(
T − (X − y)q−1

)
=

|S|∑
j=0

σj(X )T |S|−j .

For X = x ∈ S we see every direction r − 1 times:

f (T , x) =
∏
y∈S

(
T − (x − y)q−1

)
= T (T q+1 − 1)r−1 ,

For X = x 6∈ S we see every direction 0 or r (a power of p) times:

f (T , x) =

|S|/r∑
i=0

σir (X )T |S|−ir ,
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rest of the proof

x ∈ S : f (T , x) = T (T q+1 − 1)r−1 , x 6∈ S : f (T , x) =

|S|/r∑
i=0

σir (X )T |S|−ir ,

In both cases: σj(x) (of degree ≤ j(q − 1)) is zero for j = 1, . . . , r − 1.
Moreover: S(X ) :=

∏
y∈S(X − y) |σr (X ).

Next step: input secret ingredient and conclude (S(x)σr (x))′ = 0, but
this implies that not only S |σr , but in fact Sp−1 does, contradiction.
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Lifting to the p-adic integers

Let Zp denote the ring of p-adic integers.
Let f (X ) be a (monic) polynomial in Zp[X ] of degree h whose reduction
modulo p also has degree h and is irreducible. Then f is irreducible.

Let R = Zp[X ]/(f ) be the quotient ring of Zp[X ] by the ideal (f ) and let
p = {x ∈ R | x = 0 mod (p)}.
Then p is the maximal ideal of R and R/p ' F.
Recall, F = Fq and q = ph.

Let T be the set of roots of X q − X in R

For S ⊂ T define gS(X ) = g(X ) =
∏
u∈S

(X − u).
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Affine sets with bounded hyperplane intersections

Lemma: If f ∈ R[X ] is the product of linear factors such that for each
u ∈ S , there are at least t factors X − a of f for which a = u mod p,
then

f (X ) =
t∑

j=0

g(X )t−jpjhj(X ) ,

for some polynomials hj , where deg hj ≤ deg f − (t − j)|S |.

Proof: f (X ) = h(X )
t∏

i=1

(g(X ) + pci (X )),

for some c1, . . . , ct , h ∈ R[X ].
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Let B ⊂ AGk(F) such that every hyperplane is incident with at least t
points of B. Lift each coordinate to the ring R. Let

f (X , x1, . . . , xk) =
∏

u∈B(X + u1x1 + · · ·+ uk−1xk + 1).

Let y ∈ Rk , y 6= (0, . . . , 0).

From the lemma: f (X , y) =
t∑

j=0

pjhj(X )(X q − X )t−j ,

so f (X , y) modulo pe is divisible by (X q − X )t−e+1.

Hence (X q − X )e−t−1f (X , x1, . . . , xk) is a polynomial in X whenever we
evaluate (x1, . . . , xk) 6= (0, . . . , 0) modulo pe .
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Hence (X q − X )e−t−1f (X , x1, . . . , xk) is a polynomial in X whenever we

evaluate (x1, . . . , xk−1) 6= (0, . . . , 0) modulo pe .

The coefficient of X−ε is a polynomial in x1, . . . , xk of relatively small
degree
its value at (0, . . . , 0) is the coefficient of X−ε in

(X q − X )e−t−1(X + 1)|B| .

For ε small enough this coefficient must be zero modulo pe .
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Sets of points as hypersurfaces

Let S be a set of points of AGk(K).

Lemma: If |S | ≤
(
n + k

k

)
then there is an f ∈ K[X1, . . . ,Xk ] of degree

at most n such that

S ⊆ V (f ) = {x ∈ AGk(K) | f (x) = 0}.

Proof: The dimension of the space of functions S → K is |S |.
The dimension of the space of polynomials in K[X1, . . . ,Xk ] of degree at

most n is

(
n + k

k

)
.

If |S | <
(
n + k

k

)
then there are two polynomials g and h that agree on

S . Let f = g − h.
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Kakeya type problems

Let L be a set of lines of AGk(K).
Let S be a set of points in AGk(K), such that every line of L is incident
with at least N points of s.
Let D be a set of points of PGk−1(K) such that d ∈ D iff L has a line
with direction d .

Theorem: With L,S ,D and N as above: if (k!|S |)1/k < N then D is
contained in an algebraic hypersurface of degree ≤ (k!|S |)1/k .

Proof: By the lemma there is a poly f of degree m ≤ (k!|S |)1/k with
S ⊆ V (f ).
For each d ∈ D, ∃x ∈ AGk(K) such that f (x +λd) = 0 for N values of λ.
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Proof: By the lemma there is a poly f of degree m ≤ (k!|S|)1/k with S ⊆ V (f ).

For each d ∈ D, ∃x ∈ AGk (K) such that f (x + λd) = 0 for N values of λ.

0 = f (x + λd) =
m−1∑
j=0

λj fj(x1, . . . , xk , d1, . . . , dk) + λmfm(d1, . . . , dk).

Since m ≤ N − 1, each coeff of λj (j = 0, . . . ,m) is zero.

Hence fm(d) = 0 and fm is a hom. poly of degree m with D ⊆ V (fm).

Corollary: If D is an Nk−1 grid then (k!|S |)1/k ≥ N:

|S | ≥ Nk

k!
.

Corollary(Kakeya): If D is the set of all directions (i.e. PGk−1(F))
then previous bound with N = q.
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x

y

l

l′

(l ⊕ x) ∩ (l′ ⊕ y)

Starting with a set of N lines L in
AG2(K) which has lines with different
directions we can construct Nk−1 lines
in AGk(K)

x

y

m
l1

l3 l2

l4

l{1,3},{2,4},m

Starting with a set of 1
2N

2 points S in
AG2(K) we construct a set of 2( 1

2N)k

points in AGk(K);

Suitable starting configurations exist for

K = F: L lines of a dual conic;

K = R: L lines of a dual regular N-gon.
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Bezout’s theorem

Theorem: If f and g ∈ K[X1,X2] have no common factor, then V (f , g)
contains at most (deg f )(deg g) points.

Theorem: If f , g ∈ K[X1,X2,X3] have no common factor, then V (f , g)
contains at most (deg f )(deg g) lines.

Let L be a set of N2 lines in AG3(K) and let S be a set of points with
the property that every line of L is incident with at least N points of S .
How small can |S | be?

Example:
L′ = {Y = mX + c |m ∈ {1, . . . ,Ne}, c ∈ {1, . . . ,N1+e}};
S ′ = {(x , y) | x ∈ {1, . . . ,N}, y ∈ {1, . . . , 2N1+e}}.

|L′| = N1+2e and |S ′| = cN2+e .

If L is the union of N1−2e such sets L′ then |S | = cN3−e .
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Theorem: Let L be a set of N2 lines in AG3(K), at most N in any
plane. If char(K) = 0 or K = Fp and S is a set of points such that every
line of L is incident with at least N points of L, then |S | > cN3 for some
constant c .

Proof: If |S | < cN3 then there is a subset S ′ of S such that S ′ ⊂ V (f )
for some irreducible poly f of degree d < 1

4N (by the lemma).
L′: lines of L incident with at least 4d points of S ′.
S ′′: points of S ′ incident with at least 3 lines of L′.
L′′′: lines of L′ incident with at least 4d points of S ′′.

By a dyadic pigeon-hole principle, one can show |L′′| > 4d2.
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By a dyadic pigeon-hole principle, one can show |L′′| > 4d2.

S

S′S′′

∈ L′

∈ L′′

∈ L′′
A point of S ′′ is either a singular
point or a flexy point of V (f ).
Singular points are in V (h), where h
is the first partial derivative of f .
Flexy points are in V (g), where g is
the Hessian of f (deg g < 3d).

Bezout’s theorem implies that V (f , h) contains at most d2 lines and
V (f , g) contains at most 3d2 lines.
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The resultant of two polynomials

Let f =
n∑

i=0

fiX
i and g(x) =

n−1∑
i=0

giX
i be polynomials in K[X ].

Let b = Xm +
m−1∑
i=0

X i and a =
m−1∑
i=0

aiX
i be such that af + bg = 0.

Considering the coefficients of X n+m−1, . . . ,X n−m−1 gives 2n linear
equations which in matrix form are:

(a0, . . . , am−1, b0, . . . , bm−1)Rm = −(gn−1−2m, . . . , gn−1).

Note that deg g ≥ n −m, so the right hand side is nonzero.
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The resultant

Example (m = 2):

(a0, a1, b0, b1)


0 fn fn−1 fn−2

fn fn−1 fn−2 fn−3

0 0 gn−1 gn−2

0 gn−1 gn−2 gn−3

 = −(gn−1, gn−2, gn−3, gn−4) .

Suppose h = (f , g) has degree n − k .
If m ≥ k + 1 there are multiple solutions (b can be a multiple of f /h and
a = −b(g/h). Hence detRm = 0.
If m = k then there is a unique solution (b = γf /h and a = −b(g/h),
where γ is chosen so that b is monic). Hence detRm 6= 0.

Next suppose f , g ∈ K[X ,Y ].
By writing f and g as polynomials in X , whose coefficients are
polynomials in Y , the determinant of Rm is a polynomial in Y .
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Two variables

Lemma: Suppose there is a y0 ∈ K such that

deg(f (X , y0), g(X , y0)) = n −m .

If there are nh elements y ∈ F for which

deg(f (X , y), g(X , y)) = n − (m − h) ,

then
m−1∑
h=1

hnh ≤ deg(det Rm) .

Proof: (det Rm)(y0) 6= 0.

If, for y ∈ K, deg(f (X , y), g(X , y)) = n − (m − h), then y is a zero of
multiplicity y .
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Theorem: Let S be a set of points of PG2(F) and suppose there is a
point p∞ 6∈ S , such that r lines incident with p∞ contain all points of S .
Then the number of lines incident with S is at most

1 + rq + (|S | − r)(q + 1− r) .

`∞
t-secant of S

r − 1 lines

S \ `∞
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(Case |S \ `∞| > q).

Let f (X ,Y ) =
∏

(a,b)∈S\`∞

(X + aY + b) and g(X ,Y ) = X q − X .

Let p∞ = (1 : y0 : 0). Then deg(f (X , y0, g(X , y0)) = r − 1.

# lines incident with S is at most

1 + tq + (q + 1− t)(r − 1) +
r∑

h=1

hnh.

By lemma,∑
hnh ≤ deg(det Rm) ≤ (|S | − (r − 1)−m)(q − r + 1).

(m = |S \ l∞| − r + 1)
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