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Fully reducible lacunary polynomials

Notation: F without index is F, = GF(q), the finite field of order g = p",
where p is a prime, (but sometimes p is a point). (g, h) = gcd(g, h), the
greatest common divisor of the polynomials g and h.
(x:y:z)={(x,y,z)) denotes a projective point in PGy(TF).

LEMMA (essentially Rédei): Let f = g(X)X9 + h(X) € F[X] be a
polynomial which factorizes into linear factors in F[X].

If deg g, degh < %(q — 1) then either
f(X) = g(X)(X? = X)
or

f(X) = (g, h)e(X?) .

Simeon Ball, Aart Blokhuis Polynomials Method in Finite Geometry



PROOF

Write f = s - r, where s = (X9 — X, f) has the same roots as f, but
simple.
s|f—g(X9—X)=gX+h.

r|f and f so r|gf' —g'f =gh' —g'h
f(Xg+h)(gh' —g'h) .

Comparing degrees gives (Xg + h)(gh’ — g’h) = 0 and now h = —Xg or
(after removing the ged) g’ = ' = 0.
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Examples showing the degree bound is sharp

In both examples g is odd.

(i) g(X) =1, h(X) = —x(a+1/2]
F(X) = X9 — X(@t1)/2 = x(@t1)/2(x(a-1)/2 _ 1)

factors into linear factors in F[X] (see below).
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Examples showing the degree bound is sharp

In both examples g is odd.

(i) g(X) =1, h(X) = —x(a+1/2]
F(X) = X9 — X(@t1)/2 = x(@t1)/2(x(a-1)/2 _ 1)

factors into linear factors in F[X] (see below).

(i) g(X) = X(@=D/2 3, h(X) = 3X(T+D/2 _ X,

f(X) = X(x(qfl)/2 _ 1)3 =X H(X - s)3 .
s=0

Here [J denotes a nonzero square in F.
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Blocking sets in finite projective planes

THEOREM: Let S be a set of points of PG,(IF) with the property that
every line is incident with a point of S.
If S| < %(q + 1) and q is prime then S contains a line.

PROOF: Choose coordinates (Xi, Xz, X3) so that X3 = 0 is a tangent and
Poo = p = (1:0:0) its point in S. With So = S\ {p} let

FXY)= J] (X+bY+a).
(a:b:1)eSy

For y,z € I the line X; + yXo + zX3 = 0 is incident with a point of Sp.

Simeon Ball, Aart Blokhuis Polynomials Method in Finite Geometry



PROOF, continued

PROOF: Choose coordinates (X7, Xp, X3) so that X3 = 0 is a tangent and p = (1 : 0 : 0) its point in S. Let

X, Y) = Tl(a:payesy (X +BY +3) - Fory, z € F the line X1 + yXp + 2X3 = 0 is incident with a point of Sp.

So3J(a:b:1)€ Sp: a+ yb+z =0 hence f(X,Y) is zero for all pairs
(x,y) € F? hence:

X, Y)=a(X, Y)(XT=X)+ hi(X, Y)Y =Y)
Restrict to the highest degree terms

X Y) = [ (X+bY)=goX9+ hoY9
(a:b:1)eSy

put Y =1 f*(X,1) = [[(5p1)(X + b) = gX9+ h.
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PROOF, continued

So [[(ap1)(X + b) = gX9 + h is fully reducible,
deg(h) < deg(g) = m < (g —1)/2 and the lemma applies:
deg(h) < deg(g), so Xg + h# 0 and

f7(X,1) = (g, h)e(X?) .
But g = p is prime so
e(X9) =(X+c)9 forsome ceF.

We see that S contains the line X3 = cX>. |
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EXAMPLE: (the bubble construction)

Consider the identifications: (sub is subspace)

PGZ(]th) < V3(Fpn) < V3h(]Fp) < PG3h_1(Fp)
point <« l-dimsub <« h-dimsub <« (h—1)-dim sub
line + 2-dimsub + 2hdimsub <« (2h—1)-dim sub

Let U be a h-dim sub of PGzx_1(F,), let
B(U) = {x point of PGy(Fps)|xNU#0} .

For any line £ of PGy(IF): £N U # 0, so 3x € B(U) incident with /, and
B(U) is a blocking set of size at most

(" =1)/(p=1)=q+a/p+-+1
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The linearity conjecture

Let U be a h-dim subspace of PGz,_1(F,), let
B(U) = {x point of PGy(F)|xNU#0} .

For any line £ of PGy(F): £N U # (), so 3x € B(U) incident with £, and
B(U) is a blocking set of size at most (p"** —1)/(p—1)=q+q/p+---+ 1.

CoONJECTURE: All minimal blocking sets of size < %(q + 1) arise from
the bubble construction.
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EXAMPLE: (the coset construction)

€2 o (2:0:1),(1:b:0) and
(0:1:c) are collinear if
and only if abc +1=0.

(1:b:0)

(0:1:¢)

e & (a:0:1)
@ @ @

S={(a:0:1)| —ac HU{(1:b:0)| —b & H}U

U{(0:1:¢)|] —c€ H}U{e, e, e}

is a blocking set for H subgroup of F*. If |F* : H| = r, then

S| =2q+1— <L Forr=2: |S|=2(q+1).
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Link to additive combinatorics

If is contained in the union of three lines (as above), one can use
Kneser's theorem to show that H is the union of cosets. Also for 3
concurrent lines H is the union of cosets, but now of the additive group.
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Functions that determine few directions

The function ¢ : F — F determines the direction d if 3x # y € F s.t.

o(y) — (%)
y—x

d:

d is not determined < x — ¢(x) — dx is permutation of F.
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Functions that determine few directions

The function ¢ : F — F determines the direction d if 3x # y € F s.t.

o(y) — (%)
y—x

d:

d is not determined < x — ¢(x) — dx is permutation of F.

The graph of ¢ is {(x : ¢(x) : 1) | x € F}, a set of g affine points with
e = (0:1:0) not determined.

Appending points (1 : d : 0) where d is a
direction determined by ¢ gives a blocking
set of size g + N(¢), where N(¢) is the
number of directions determined by ¢.
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Coset and bubble construction

To the blocking set coming from the coset construction corresponds a
function ¢ with N(¢) =q+1—|H|.

For q odd, |H| = (g — 1)/2 we find N(¢) = 2(g + 3).

For a special choice of subspace U in the bubble construction we find a

function ¢ determining between g/s + 1 and g directions for some
subfield Fy of F.

For g even, s = 2 we find ¢ with N(¢) = 1(q + 2).

THEOREM: Any function determining at most 3(q -+ 1) directions comes
from the bubble construction.
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Hasse derivatives

k

The k-th Hasse-derivative 88 of a polynomial > ;X' is

i; (>ax) == (;{) GXik

EXERCISE: 0%(fg) = 28’ f-okig

EXERCISE: if a is zero of f of multiplicity m, then a is zero of O'f of
multiplicity > m — /.
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An important exercise

EXERCISE: if X9+ h is fully reducible and 2 < degh < (g — 1) then
X9+ h = e(X?), for some (maximal) s = p?, ¢ > 0.

9+ s’ for this s where F; is subfield of F.

P that deg(h) > ——
rove tha eg()_s_i_1
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An important exercise

EXERCISE: if X9+ h is fully reducible and 2 < degh < (g — 1) then
X9+ h = e(X?), for some (maximal) s = p?, ¢ > 0.

q+s

P that deg(h) > ——
rove tha eg()_s_i_1

, for this s where F is subfield of IF.

X5 1 hY/5 (X + h) (hl/S)', (hl/s)l;«éo, s#q, h#-X

Conclusion: q/s < (14 1/s)degh— 1.
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The Rédei polynomial

q
Let F(X,Y) = J[(X +xY —o(x)) =D a;(Y)X97.
xEF Jj=0

If d is not determined by ¢ then f(X,d) = X9 — X which implies
oj(d)=0for j=1,...,q— 2. Since deg(cj) <j—1 for
j=1...,9—-20;=0forj=1,...,9— N(¢).
If d is determined by ¢, then let s be the maximal power of p s.t.
f(X,d)=e(X®), ie ogj(d)=0ifs /j.

No/s
Hence £(X,Y) = X9+ Y oq is(Y)X* + 0q-1(Y)X,

j=0

where for some No < N(¢) —1, oq—n, 0.
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If d is determined by ¢, then let s be the maximal power of p s.t.
f(X,d) =e(X®),ie oj(d)=0ifs /j.

No/s .
Hence f(X,Y) = X + Z oq—js(Y)XZ + oq-1(Y)X,

Jj=0

where for some Ny < N(¢) —1, oq—n, #Z0.

The exercise implies Ny > il +;, examples all give Ny > 9 + 1.
s s

No
Any factor of (X, d) is factor of X + Y g ;(Y)X.
j=0
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PROOF that N(¢) > q/s+1

In what follows y is a direction determined by ¢.

ﬁkf - Xg
vV (Z H(X+x, —f(x,))) FX.y)

No ) K
Multiplying both sides by [ X + Zoq_J X/| gives a
polynomial identity so =0
K
& N\ okf
F(X,y)| X+_Z;0q—jX’ Sy W) -
=

If N <gq/sthen Ny < q/s—1,s0q—1>kNy+ Ny = gyf(y):o, for
k=1,...,s—1.
b ale

q No(y)(y):O

In particular
P F3%
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81(0-(:9*\/)/0 (y) (y) -0

slog_
8 q No(y) (y)

In particular

= 0 is an s-th power. It has > sNy zeros, but its
degree is < g — Ny — 1. If it's not zero then sNy < g — Ny — 1,
contradicting exercise.

85710’5]-%()’) aqu—No(Y)

So B1%

Therefore o4_p, is an s-th power.
But o4_n,(Y) is zero for all directions not determined by ¢ since
s(g — N) >> q — Ny implies o4_pn, = 0 (Contradiction).

= 0. Similarly =0forj=1,...,s—1
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Further reading

Analysis of f(X,Y) proves the Bubble-conjecture for functions
determining few directions, or blocking sets of size g + m with an
m-secant.

Using Newton's identities 0; = 0, for j = 1,...,q — N(¢) implies

> (Y —¢(x)) =0, forj=1,....,q - N(¢),

xeF
from which we deduce that

#(XY  mod (X9-X)

has no X971~/ term if (I —JH) #0and i+j<n—N(¢).
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The coset construction

Careful analysis of linear maps between polynomial spaces
(Fi,...,F) > Fif + -+ Ff]

allows one to prove:

THEOREM: (q prime). Any function determining at most (2q +1)/3
directions comes from the coset construction.

CONJECTURE: (g prime). If N(¢) < p— p/t — t then the graph of ¢ is
contained in an algebraic curve of degree < t — 1.

Simeon Ball, Aart Blokhuis Polynomials Method in Finite Geometry



Applications of projective blocking sets

(i) A spread of Vi (F) is a partition of the non-zero vectors into k-dim
subspaces. A large partial spread gives rise to a proj. blocking set.

(i) A k-dimensional linear code C of length n and minimum distance d is
a k-dim subspace of F" in which every non-zero vector has at least d
non-zero coordinates.

Let G be a k x n matrix with rowspace C.

Let S be the set of columns of G, viewed as points of PGy_1(F).

Every hyperplane is incident with at most n — d point of the (multi-)set
S.

If the code is projective, that is S is a set, then its complement B is a
t-fold blocking set (with respect to hyperplanes).
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Complex characters

Let w € IE‘,’; = G, viewed as elementary abelian group.

i
Define xy : G — C by xw(x) = exp(%l(w - x)).

LEMMA: If g(x) = 3", cc cwXw(X), cw € Z satisfies g(x) =0, Vx # 0,
then |G| = p* divides g(0).

Proor: g(0) = Zg(X) = Z Z CwXw(X) =

xeG X

=Y > xwlx) =Y xo(x) = clGl.
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Affine sets with bounded hyperplane intersections

THEOREM: Let S be a set of n points in AGx(F}), such that any
hyperplane is incident with at most t points of S.

Then n<(t—e)p+e, whereec{0,....,k—1} is maximal such
t
that <e> #£0 mod pF—e.

LEMMA: If S is as above, then the coefficient of X®~"*€ in
(X —1)7"(XP — 1)t is zero mod p* for all € > 1.

Simeon Ball, Aart Blokhuis Polynomials Method in Finite Geometry



PROOF of the LEMMA

Lenya: The coefficient of XPP—11€ in (X — 1)71(XP — 1)t is zero mod pKk—2 for all € > 1.

PRrOOF: Let f(X,x) =[] (1 - exp(?(u ))X) =o)X,
ues Jj=0

where oj(x) is an integer combination of characters.

Let g(X, x) ij )X/ be the inverse: g(X,x)f(X,x) = 1.

Then pj(x) also is an integer combination of characters.
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PROOF continued

By hypothesis, for x # 0, u-x = a € IF, for at most t elements u € S, so
f(X,x)|(XP—1) forx #0.
Let h(X,x) = (XP — 1)'g(X, x), then

f(X,x)h(X,x) = (XP —-1)",

so h is a polynomial in X of degree tp — n.
The coefficient of X™~""¢ in h(X, x) is an integer combination of
characters, which is zero Vx # 0:

F(X,0) = (X — 1)" = h(X,0) = (X — 1)""(XP — 1)t .

Now apply the previous lemma. O
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Combinatorial Nullstellensatz

X = by X = b, Let K be any field,
X =a. S; finite subset of K,
let gi(X)) = [ (Xi—a) -
acs;
X1 = ap
X1 =a1

THEOREM: Let f € K[Xy,...,X,]. If f is zero on the grid S; x -+ x S,
K
then f = gi(X;)hi(Xy,. .., Xy) for some polynomials hy, ..., hy,

i=1
where deg h; < degf — |5;].
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Combinatorial Nullstellensatz, continued

Let D; C S;, D; # 0.
Let £;(X) = [ (X - a)

\ aeD;

THEOREM: If fis zero on S; X --- X S\ (D1 x - -+ x D) and non zero in
at least one point of D; X --- X Dy, then

f—Zg, Dhi+u(Xy, .., X g, ',forsomeu;éO.

k
It follows that deg(f) > _ (ISi| — |D;)).

i=1
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PROOF

We can write f = > gi(Xi)h; + r(X4,...,X,), where the degree in X; of
ris at most |S;| — 1. £;(X;)f is zero at all points of S; X --- X S, so

£i(X;)r is zero at all points S; X -+ X Sk.

Nullstellensatz, together with degree of X; in r is at most |S;| — 1 implies
(Xi)r = gi(Xi)hi,

so % divides r, for each i =1,... k. 0

i
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Affine sets with bounded hyperplane intersections

THEOREM: Let S be a set of n points in AGx_1(F), such that any
hyperplane is incident with at least t points of S.

Then [S|> (t+k—2)(g—1)+1.

PROOF: (t =1) Let £(X1,...,Xx) = H(u1X1 4o w1 X1 + 1),
uesS

Then f is zero in F¥\ (0,...,0) so apply previous theorem.

One can prove more for larger t since the theorem implies

£(X,0,...,0) = (X'v(X) + u(X))(X97t = 1)" where

degu < |S| — (t+k —2)(g —1) — 1 and X*v(X) + u(X) factors into linear
factors.
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Extension fields as vector spaces

IF« is a vector space over F = [f; of dimension k.
We can view elements of IF « as vectors of AG(IF).
Hyperplanes have equation Tr(aX) = b, a € Fy«, b € IF.

More generally an r-dimensional subspace has equation f(X) = b where
f is a g-linearized polynomial ,
f(X)=aoX + a1 X9+ +a X9 4+ X7

1 x x9
In particular x, y, z are collinear iff |1y y9| =0 iff
1 z Zz9
1 x x9
(x=y)(x=2)[0 1 (x—y)9t =0if and only if
0 1 (x—2z)91

(x = )it = (x - 2)971. k

-1
A (g — 1)-st power u9~ ! in Fo is a (q 1 )—st root of unity.
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Nuclei

THEOREM: Let S be a set of g+ m points of AGy(FF) and let N be a
disjoint set of points such that every line with a point of N is incident
with a point of S. Then |N| < m(q — 1).

PRrRoOF: Consider S as a subset of Fg2 and let

|51
FT,X) =] (T-(X=y)) Za X)TISI=
yES
where g;(X) is of degree < j(q —1).
If x € N then f(T,x) = (T9"! —1)(poly of degree m — 1). Hence
om(x) = 0. The coefficient of TISI=7 in (T — X9-1)I5I'is X™(@-1) 50 ¢,
has degree m(q — 1) which implies the bound.
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EXERCISE

a) If SN C AG(2,F), |S| = t(g+ 1)+ (m— 1) and every line incident
with a point of N is incident with at least t points of S, then

(Hm_l);&o = [N|<m(g—1).

m

b) If S C AG(2,F) and every line is incident with at least t points of |S|
then |S| > (t 4+ 1)g — p® where e is maximal such that p® | t.
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Maximal arcs

THEOREM: Let S # () be a set of points in AGy(Fy), g odd, such that
every line intersects S in 0 or in some constant number r of points. Then
either S is a single point, or S contains all points of the plane.

Proor: |S|=1+(q+1)(r—1)=gqr—q+r and r|g. We use the
same polynomial as before:

S|

ATX) = [[(T=(X=y)") = ()T

yES j=0
For X = x € S we see every direction r — 1 times:
F(T.x) = [[(T—-(x=y) ") = T(TH" =),
y€eSs
For X = x € S we see every direction 0 or r (a power of p) times:

IS1/r

F(T,x)=>_ ou(X)TI*I7

i=0
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rest of the proof

IS1/r
€S F(Tx) = T(T™ = 1) x g S A(Tox) = Y (X)) T,

i=0

In both cases: oj(x) (of degree < j(q — 1)) is zero for j=1,...,r — 1.
Moreover: S5(X) := [[,cs(X —y)|o(X).

Next step: input secret ingredient and conclude (S(x)o,(x)) =0, but
this implies that not only S| o,, but in fact SP—1 does, contradiction. [J
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Lifting to the p-adic integers

Let Z, denote the ring of p-adic integers.
Let f(X) be a (monic) polynomial in Z,[X] of degree h whose reduction
modulo p also has degree h and is irreducible. Then f is irreducible.

Let R = Z,[X]/(f) be the quotient ring of Z,[X] by the ideal (f) and let
p={x€R|x=0 mod (p)}.

Then p is the maximal ideal of R and R/p ~F.
Recall, F = F, and q = p".

Let T be the set of roots of X9 — X in R

For S C T define gs(X) = g(X) = [[(X — v).
uesS
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Affine sets with bounded hyperplane intersections

LeMMA: If f € R[X] is the product of linear factors such that for each
u € S, there are at least t factors X — a of f for which a = u mod p,

then
Zg )P hi(X)

for some polynomials h;, where deg h; < degf — (t — j)|S|.

t

Proor: f(X) = h(X) [ ] (e(X) + pci(X)),
i=1

for some ¢y, ..., ¢, h € R[X]. OJ
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Let B C AGk(F) such that every hyperplane is incident with at least t
points of B. Lift each coordinate to the ring R. Let

F(Xoxt, o xk) = [eg(X 4 txa 4 - 4 g 1xx + 1).
Let y € Rk, y #(0,...,0).
t
From the lemma: (X,y) = > p/hi(X)(X9 = X)",
j=0

so f(X,y) modulo p¢ is divisible by (X9 — X)t—¢+1,

Hence (X9 — X)* "1 f(X,x1,...,x) is a polynomial in X whenever we
evaluate (x,...,xx) # (0,...,0) modulo p°.
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Hence (X9 — X)* " 'f(X,xi,...,xx) is a polynomial in X whenever we
evaluate (x1,...,xk—1) # (0,...,0) modulo p°.

The coefficient of X~ is a polynomial in xi,..., xx of relatively small
degree
its value at (0, ...,0) is the coefficient of X ¢ in

(X9 — X)X +1)Bl .

For ¢ small enough this coefficient must be zero modulo p°®.
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Sets of points as hypersurfaces

Let S be a set of points of AGk(K).
k
LEMMA: If |S] < (n: ) then there is an f € K[X1,..., Xk] of degree
at most n such that
SCV(f)={x € AG(K) | f(x) = 0}.

PROOF: The dimension of the space of functions S — K is |S5].
The dimension of the space of polynomials in K[X, ..., Xk] of degree at

most n is n+k
P .

k
If S| < n: then there are two polynomials g and h that agree on
S. Let f =g —h. O
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Kakeya type problems

Let L be a set of lines of AG,(K).

Let S be a set of points in AG,(K), such that every line of L is incident
with at least NV points of s.

Let D be a set of points of PGk_1(K) such that d € D iff L has a line
with direction d.

TurEorREM: With L, S, D and N as above: if (k!|S|)/% < N then D is
contained in an algebraic hypersurface of degree < (k!|S|)!/.

PROOF: By the lemma there is a poly f of degree m < (k!|S|)'/* with
S C V(f).
For each d € D, 3x € AGk(K) such that f(x+ Ad) = 0 for N values of A.
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PROOF: By the lemma there is a poly f of degree m < (k1|S|)1/K with S C Vv(f).

For each d € D, 3x € AG(K) such that f(x + Ad) = 0 for N values of A.
m—1
0=f X—‘y—)\d = E /\J X1,...,Xk,d1,...,dk)—|—/\mfm(d1,...,dk).
Jj=0

Since m < N — 1, each coeff of M (j =0,...,m) is zero.

Hence 7,(d) = 0 and f,, is a hom. poly of degree m with D C V/(f,).
COROLLARY: If D is an N¥~1 grid then (k!|S|)Y/* > N:

Nk
81>

COROLLARY(Kakeya): If D is the set of all directions (i.e. PGk_1(F))
then previous bound with N = q.

Simeon Ball, Aart Blokhuis Polynomials Method in Finite Geometry



(tex)n( &y

{1,3},{2,4},m

oy
o x

® x

Starting with a set of N lines L in
AG,(K) which has lines with different
directions we can construct N~ lines
in AG,(K)

Starting with a set of 2N? points S in
AG,(K) we construct a set of 2(1N)k
points in AG,(K);

1
2

Suitable starting configurations exist for
K =T: L lines of a dual conic;

K = R: L lines of a dual regular N-gon.
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Bezout's theorem

THEOREM: If f and g € K[Xi, X3] have no common factor, then V(f, g)
contains at most (deg f)(deg g) points.

THEOREM: If f, g € K[Xy, X2, X3] have no common factor, then V(f, g)
contains at most (deg f)(deg g) lines.

Let L be a set of N2 lines in AG3(K) and let S be a set of points with
the property that every line of L is incident with at least N points of S.
How small can |S| be?

EXAMPLE:
L/:{Y:mX+C|m€{l,.,,’Ne}7ce {1’.."Nl+e}};
S'={(x,y)|x€{1,....,N}, ye{l,..., 2N e}}.

L] = N'2¢ and |S'| = cN>*e,

If L is the union of N1=2¢ such sets L’ then |S| = cN3~¢.
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THEOREM: Let L be a set of N? lines in AG3(K), at most N in any
plane. If char(K) =0 or K =T, and S is a set of points such that every
line of L is incident with at least N points of L, then |S| > c/N® for some
constant c.

PROOF: If |S| < cN3 then there is a subset S’ of S such that S’ C V/(f)
for some irreducible poly f of degree d < N (by the lemma).

L’: lines of L incident with at least 4d points of S.

S”: points of S’ incident with at least 3 lines of L.

L' lines of L’ incident with at least 4d points of S”.

By a dyadic pigeon-hole principle, one can show |L”| > 4d?.
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By a dyadic pigeon-hole principle, one can show |L”| > 4d?.

s A point of §” is either a singular
point or a flexy point of V/(f).
Singular points are in V/(h), where h
is the first partial derivative of f.
Flexy points are in V(g), where g is
the Hessian of f (deg g < 3d).

Bezout's theorem implies that V/(f, h) contains at most d? lines and
V(f,g) contains at most 3d? lines.
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The resultant of two polynomials

n—1

Let f = Z X" and g(x Zg,X’ be polynomials in K[X].
i=0 i=0
m—1 ) m—1 )
Let b=X"+ ZX’ and a= Z a;X' besuchthat af 4+ bg=0.
i=0 i=0
Considering the coefficients of X™m=1 . X"=m=1 gives 2n linear

equations which in matrix form are:
(307 ) 3m717 b07 ) bmfl)Rm = _(gn7172m7 ce 7gn71)-
Note that deg g > n — m, so the right hand side is nonzero.
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The resultant

EXAMPLE (m=2):

0 fn fnfl ﬁ172
fo foo1 foo o3
a,a,b7b ) ! " " = —\8n—-1,8n—2,8n—-3,8n—4) -
(a0, a1, bo, br) | 7 7y g1 g (8n—1,8n0—2,8n3,8n—4)
0 gn—l gn—2 gn—3

Suppose h = (f, g) has degree n — k.

If m > k + 1 there are multiple solutions (b can be a multiple of f/h and
a= —b(g/h). Hence det R, = 0.

If m = k then there is a unique solution (b = ~f/h and a = —b(g/h),
where v is chosen so that b is monic). Hence det R, # 0.

Next suppose f, g € K[X, Y].
By writing f and g as polynomials in X, whose coefficients are
polynomials in Y, the determinant of R, is a polynomial in Y.
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Two variables

LEMMA: Suppose there is a yp € K such that

deg(f(X,y0),&(X, %)) =n—m.

If there are np, elements y € F for which

deg(f(X,y),g(X7y)) =n- (m_ h) )

m—1

then > hn, < deg(det Rp) .
h=1

PrOOF: (det Rpy)(y0) # 0.

If, for y € K, deg(f(X,y),g(X,y)) =n— (m—h), then y is a zero of
multiplicity y. O
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THEOREM: Let S be a set of points of PGy(IF) and suppose there is a
point poo € S, such that r lines incident with p., contain all points of S.
Then the number of lines incident with S is at most

1+rg+(IS|—r(g+1—r).

Loo
t-secant of S
.

r — 1 lines

5\ Loo
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(Case |S\ lso| > q).

Let F(X,Y)= ] (X+aY+b)andg(X,Y)=XI-X.
(a,b)eS\lo

Let poo = (1: ¥ : 0). Then deg(f(X,y0,8(X,3)) =r—1.

# lines incident with S is at most

l+tg+(g+1—t)(r—1)+ ) hny
h=1

By lemma,

Z hnp < deg(det Ry) < (|S|—(r—1)—m)(g—r+1).

(m=|5\Ilwx|—r+1)
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