Proof of a Conjecture on Monomial Graphs

Xiang-dong Hou
Department of Mathematics and Statistics
University of South Florida, Tampa, FL 33620
xhou@usf.edu

Abstract

Let e be a positive integer, p be an odd prime, $q = p^e$, and \mathbb{F}_q be the finite field of q elements. Let $f,g \in \mathbb{F}_q[X,Y]$. The graph $G_q(f,g)$ is a bipartite graph with vertex partitions $P = \mathbb{F}_q^3$ and $L = \mathbb{F}_q^3$, and edges defined as follows: a vertex $(p) = (p_1, p_2, p_3) \in P$ is adjacent to a vertex $[l] = [l_1, l_2, l_3] \in L$ if and only if $p_2 + l_2 = f(p_1, l_1)$ and $p_3 + l_3 = g(p_1, l_1)$. If f = XY and $g = XY^2$, the graph $G_q(XY, XY^2)$ contains no cycles of length less than eight and is edge-transitive. Motivated by certain questions in extremal graph theory and finite geometry, people search for examples of graphs $G_q(f,g)$ containing no cycles of length less than eight and not isomorphic to the graph $G_q(XY, XY^2)$, even without requiring them to be edge-transitive. So far, no such graphs $G_q(f,g)$ have been found. It was conjectured that if both f and g are monomials, then no such graphs exist. In this paper we prove the conjecture.

This is a joint work with Stephen Lappano (University of South Florida) and Felix Lazebnik (University of Delaware)