Proof of a Conjecture on Monomial Graphs

Xiang-dong Hou

Department of Mathematics and Statistics University of South Florida

Joint work with Stephen D. Lappano and Felix Lazebnik

New Directions in Combinatorics

IMS, Singapore, 2016-05-26

outline

- The bipartite graph $G_{q}(f, g)$ and its background
- The conjecture
- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions
- The bipartite graph $G_{q}(f, g)$ and its background
- The conjecture
- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions

the bipartite graph $G_{q}(f, g)$

Let \mathbb{F}_{q} be the finite field with q elements, q odd. Let $f, g \in \mathbb{F}_{q}[X, Y]$. The graph $G=G_{q}(f, g)$ is an undirected bipartite graph with vertex partitions $P=\mathbb{F}_{q}^{3}$ and $L=\mathbb{F}_{q}^{3}$, and edges defined as follows: a vertex $(p)=\left(p_{1}, p_{2}, p_{3}\right) \in P$ is adjacent to a vertex $[l]=\left[l_{1}, l_{2}, l_{3}\right] \in L$ if and only if

$$
p_{2}+l_{2}=f\left(p_{1}, l_{1}\right) \quad \text { and } \quad p_{3}+l_{3}=g\left(p_{1}, l_{1}\right) .
$$

some graph theory

Let $k \geq 2$, and $g_{k}(n)$ denote the greatest number of edges in a graph with n vertices and a girth at least $2 k+1$. The function $g_{k}(n)$ has been studied extensively.
Bondy and Simonovits 1974:

$$
g_{k}(n) \leq c_{k} n^{1+\frac{1}{k}} \quad \text { for } k \geq 2
$$

Lazebnik, Ustimenko and Woldar 1995:

$$
g_{k}(n) \geq \begin{cases}c_{k}^{\prime} n^{1+\frac{2}{3 k-3+\epsilon}} & \text { if } k \geq 2, k \neq 5 \\ c_{5}^{\prime} n^{1+\frac{1}{5}} & \text { if } k=5\end{cases}
$$

where $\epsilon=0$ if k is odd, $\epsilon=1$ if k is even, and c_{k}^{\prime} and c_{k} are positive constants depending on k only.

when $k=2,3,5$

$$
g_{k}(n) \geq \begin{cases}c_{k}^{\prime} n^{1+\frac{2}{3 k-3+\epsilon}} & \text { if } k \geq 2, k \neq 5 \\ c_{5}^{\prime} n^{1+\frac{1}{5}} & \text { if } k=5\end{cases}
$$

The only known values of k for which the lower bound for $g_{k}(n)$ is of magnitude $n^{1+1 / k}$, which is the same as the magnitude of the upper bound, are $k=2,3$, and 5 .
The lower bound for $k=3$ is given by the graph $G_{q}\left(X Y, X Y^{2}\right)$. In fact, $G_{q}\left(X Y, X Y^{2}\right)$ has girth 8.
The lower bound for $k=2,5$ are given by graphs constructed in a similar manner.

- The bipartite graph $G_{q}(f, g)$ and its background
- The conjecture
- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions

monomial graphs

When $f, g \in \mathbb{F}_{q}[X, Y]$ are monomials, the graph $G_{q}(f, g)$ is called a monomial graph.

We will only consider monomial graphs.

the conjecture

Conjecture 1

Let q be an odd prime power. Then every monomial graph of girth eight is isomorphic to $G_{q}\left(X Y, X Y^{2}\right)$.

Theorem

(Dmytrenko, Lazebnik, Williford 2007) Let q be odd. Every monomial graph of girth ≥ 8 is isomorphic to $G_{q}\left(X Y, X^{k} Y^{2 k}\right)$, where $1 \leq k \leq q-1$ is an integer not divisible by p.

The condition that $G_{q}\left(X Y, X^{k} Y^{2 k}\right)$ has girth ≥ 8 implies that certain polynomials are permutations of \mathbb{F}_{q}.

- The bipartite graph $G_{q}(f, g)$ and its background
- The conjecture
- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions

permutation polynomial

A permutation polynomial (PP) of \mathbb{F}_{q} is a polynomial $f \in \mathbb{F}_{q}[X]$ such that the function defined by $a \mapsto f(a)$ is a bijection on \mathbb{F}_{q}.

A_{k} and B_{k}

For an integer $1 \leq k \leq q-1$, let

$$
\begin{gathered}
A_{k}=X^{k}\left[(X+1)^{k}-X^{k}\right] \in \mathbb{F}_{q}[X] \\
B_{k}=\left[(X+1)^{2 k}-1\right] X^{q-1-k}-2 X^{q-1} \in \mathbb{F}_{q}[X]
\end{gathered}
$$

Theorem (DLW 2007)

Let q be odd and $1 \leq k \leq q-1$ be such that $p \nmid k$. If $G_{q}\left(X Y, X^{k} Y^{2 k}\right)$ has girth ≥ 8, then both A_{k} and B_{k} are PPs of \mathbb{F}_{q}.

conjectures on A_{k} and B_{k}

Conjecture A (DLW 2007)

Let q be a power of an odd prime p and $1 \leq k \leq q-1$. Then A_{k} is a $P P$ of \mathbb{F}_{q} if and only if k is a power of p.

Conjecture B (DLW 2007)

Let q be a power of an odd prime p and $1 \leq k \leq q-1$. Then B_{k} is a $P P$ of \mathbb{F}_{q} if and only if k is a power of p.

Either of Conjectures A and B implies Conjecture 1.

- The bipartite graph $G_{q}(f, g)$ and its background
- The conjecture
- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions

prior status of Conjecture 1

For $e>1, \operatorname{gpf}(e)=$ the greatest prime factor of $e ; \operatorname{gpf}(1)=1$.

Theorem (DLW 2007)

Conjecture 1 is true if one of the following occurs.
(i) $q=p^{e}$, where $p \geq 5$ and $\operatorname{gpf}(e) \leq 3$.
(ii) $3 \leq q \leq 10^{10}$.

Theorem (Kronenthal 2012)

For each prime r or $r=1$, there is a positive integer $p_{0}(r)$ such that Conjecture 1 is true for $q=p^{e}$ with gfp $(e) \leq r$ and $p \geq p_{0}(r)$. In particular, one can choose $p_{0}(5)=7, p_{0}(7)=11, p_{0}(11)=13$.

prior status of Conjectures A and B

Theorem (DLW 2007)

Conjecture A is true for $q=p$.
For each odd prime p, let $\alpha(p)$ be the smallest positive even integer a such that

$$
\binom{a}{a / 2} \equiv(-1)^{a / 2} 2^{a} \quad(\bmod p) .
$$

Theorem (Kronenthal 2012)

Let p be an odd prime. If Conjecture B is true for $q=p^{e}$, then it is also true for $q=p^{e m}$ whenever

$$
m \leq \frac{p-1}{\lfloor(p-1) / \alpha(p)\rfloor} .
$$

current status of the conjectures

Lappano, Lazebnik, H 2015

- Conjecture A is true for $q=p^{e}$, where p is an odd prime and $\operatorname{gpf}(e) \leq p-1$.
- Conjecture B is true for $q=p^{e}$, where $e>0$ is arbitrary and p is an odd prime satisfying $\alpha(p)>(p-1) / 2$.
- Conjecture 1 is true.
- The bipartite graph $G_{q}(f, g)$ and its background
- The conjecture
- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions

strategy

Let q be odd and $1 \leq k \leq q-1$.
We show that if both A_{k} and B_{k} are PPs of \mathbb{F}_{q}, then k is a power of p.

Hermite's criterion

$f \in \mathbb{F}_{q}[X]$ is a PP of \mathbb{F}_{q} if and only if

$$
\sum_{x \in \mathbb{F}_{q}} f(x)^{s}= \begin{cases}0 & \text { if } 0 \leq s \leq q-2 \\ -1 & \text { if } s=q-1\end{cases}
$$

power sums of A_{k} and B_{k}

For each integer $a>0$, let $a^{*} \in\{1, \ldots, q-1\}$ be such that $a^{*} \equiv a$ $(\bmod q-1)$; we also define $0^{*}=0$.

For $1 \leq s \leq q-1$,

$$
\sum_{x \in \mathbb{F}_{G}} A_{k}(x)^{s}=(-1)^{s+1} \sum_{i=0}^{s}(-1)^{i}\binom{s}{i}\binom{(k i)^{*}}{(2 k s)^{*}},
$$

$$
\sum_{x \in \mathbb{F}_{q}} B_{k}(x)^{s}=-(-2)^{s} \sum_{i, j} 2^{-i}(-1)^{j}\binom{s}{i}\binom{i}{j}\binom{(2 k j)^{*}}{(k i)^{*}} .
$$

criteria for A_{k} and B_{k} to be PP

Theorem

(i) A_{k} is a PP of \mathbb{F}_{q} if and only if $\operatorname{gcd}(k, q-1)=1$ and

$$
\sum_{i}(-1)^{i}\binom{s}{i}\binom{(k i)^{*}}{(2 k s)^{*}}=0 \quad \text { for all } 1 \leq s \leq q-2
$$

(ii) B_{k} is a $P P$ of \mathbb{F}_{q} if and only if $\operatorname{gcd}(k, q-1)=1$ and

$$
\sum_{i}(-1)^{i}\binom{s}{i}\binom{(2 k i)^{*}}{(k s)^{*}}=(-2)^{s} \quad \text { for all } 1 \leq s \leq q-2
$$

Too much information, too little readily useful. Need to choose suitable s such that useful information can be extracted from the above equations.

notation

Assume that $1 \leq k \leq q-1$ with $\operatorname{gcd}(k, q-1)=1$.

$$
a:=\left\lfloor\frac{q-1}{k}\right\rfloor .
$$

$k^{\prime}, b \in\{1, \ldots, q-1\}$ are such that

$$
\begin{gathered}
k^{\prime} k \equiv 1 \quad(\bmod q-1), \quad b k \equiv-1 \quad(\bmod q-1) \\
c:=\left\lfloor\frac{q-1}{k^{\prime}}\right\rfloor
\end{gathered}
$$

choosing s

Theorem

(i) A_{k} is a $P P$ of \mathbb{F}_{q} if and only if $\operatorname{gcd}(k, q-1)=1$ and

$$
\sum_{i}(-1)^{i}\binom{s}{i}\binom{(k i)^{*}}{(2 k s)^{*}}=0 \quad \text { for all } 1 \leq s \leq q-2 .
$$

(ii) B_{k} is a $P P$ of \mathbb{F}_{q} if and only if $\operatorname{gcd}(k, q-1)=1$ and

$$
\sum_{i}(-1)^{i}\binom{s}{i}\binom{(2 k i)^{*}}{(k s)^{*}}=(-2)^{s} \quad \text { for all } 1 \leq s \leq q-2
$$

choosing s

Theorem

(i) A_{k} is a PP of \mathbb{F}_{q} if and only if $\operatorname{gcd}(k, q-1)=1$ and

$$
\sum_{i}(-1)^{i}\binom{s}{i}\binom{(k i)^{*}}{(2 k s)^{*}}=0 \quad \text { for all } 1 \leq s \leq q-2
$$

(ii) B_{k} is a $P P$ of \mathbb{F}_{q} if and only if $\operatorname{gcd}(k, q-1)=1$ and

$$
\sum_{i}(-1)^{i}\binom{s}{i}\binom{(2 k i)^{*}}{(k s)^{*}}=(-2)^{s} \quad \text { for all } 1 \leq s \leq q-2
$$

- Choose $s=a, a-1, b, q-1-c k^{\prime}, q-1-(c-1) k^{\prime}$, etc.

choosing s

Theorem

(i) A_{k} is a $P P$ of \mathbb{F}_{q} if and only if $\operatorname{gcd}(k, q-1)=1$ and

$$
\sum_{i}(-1)^{i}\binom{s}{i}\binom{(k i)^{*}}{(2 k s)^{*}}=0 \quad \text { for all } 1 \leq s \leq q-2
$$

(ii) B_{k} is a $P P$ of \mathbb{F}_{q} if and only if $\operatorname{gcd}(k, q-1)=1$ and

$$
\sum_{i}(-1)^{i}\binom{s}{i}\binom{(2 k i)^{*}}{(k s)^{*}}=(-2)^{s} \quad \text { for all } 1 \leq s \leq q-2
$$

- Choose $s=a, a-1, b, q-1-c k^{\prime}, q-1-(c-1) k^{\prime}$, etc.
- All but a few terms vanish in the above equations. Useful information is obtained ...

facts about A_{k} and B_{k}

Lemma 1

Assume that A_{k} is a PP of \mathbb{F}_{q}. Then all the base p digits of k^{\prime} are 0 or 1.

facts about A_{k} and B_{k}

Lemma 1

Assume that A_{k} is a PP of \mathbb{F}_{q}. Then all the base p digits of k^{\prime} are 0 or 1.

Lemma 2

Assume that all the base p digits of k^{\prime} are 0 or 1 and k^{\prime} is not a power of p, then $c \equiv 0(\bmod p)$.

facts about A_{k} and B_{k}

Lemma 1

Assume that A_{k} is a PP of \mathbb{F}_{q}. Then all the base p digits of k^{\prime} are 0 or 1.

Lemma 2

Assume that all the base p digits of k^{\prime} are 0 or 1 and k^{\prime} is not a power of p, then $c \equiv 0(\bmod p)$.

Lemma 3

Assume that q is odd, $1<k \leq q-1$, and both A_{k} and B_{k} are PPs of \mathbb{F}_{q}. Then c is even and

$$
\begin{aligned}
& 2^{-2 c k^{\prime}}= \\
& \binom{2(q-1)-2 c k^{\prime}}{q-1-c k^{\prime}}+(-1)^{\frac{q-1}{2}+\frac{c}{2}+1}\binom{2(q-1)-2 c k^{\prime}}{\frac{1}{2}(q-1)-\left(\frac{c}{2}-1\right) k^{\prime}}\binom{2 c}{c+2} .
\end{aligned}
$$

proof of Conjecture 1

- Assume to the contrary that Conjecture 1 is false. Then there exists $1 \leq k \leq q-1$, which is not a power of p, such that both A_{k} and B_{k} are PPs of \mathbb{F}_{q}.
- Lemma 1 and 2 imply that $c \equiv 0(\bmod p)$. Then

$$
\binom{2 c}{c+2}=0
$$

- Since $q-1-c k^{\prime} \equiv p-1(\bmod p)$, the sum $\left(q-1-c k^{\prime}\right)+\left(q-1-c k^{\prime}\right)$ has a carry in base p at p^{0}, implying that

$$
\binom{2(q-1)-2 c k^{\prime}}{q-1-c k^{\prime}}=0
$$

proof of Conjecture 1 - conclusion

Combing

$$
2^{-2 c k^{\prime}}=
$$

$$
\binom{2(q-1)-2 c k^{\prime}}{q-1-c k^{\prime}}+(-1)^{\frac{q-1}{2}+\frac{c}{2}+1}\binom{2(q-1)-2 c k^{\prime}}{\frac{1}{2}(q-1)-\left(\frac{c}{2}-1\right) k^{\prime}}\binom{2 c}{c+2},
$$

and

$$
\binom{2 c}{c+2}=0=\binom{2(q-1)-2 c k^{\prime}}{q-1-c k^{\prime}}
$$

gives a contradiction.

- The bipartite graph $G_{q}(f, g)$ and its background
- The conjecture
- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions

open questions

Conjecture A

Let q be a power of an odd prime p and $1 \leq k \leq q-1$. Then A_{k} is a $P P$ of \mathbb{F}_{q} if and only if k is a power of p.

Conjecture B

Let q be a power of an odd prime p and $1 \leq k \leq q-1$. Then B_{k} is a $P P$ of \mathbb{F}_{q} if and only if k is a power of p.

- Conjecture A is true for $q=p$. Conjecture B has not been established for $q=p$.
- Although Conjectures A and B were originally stated for an odd characteristic, their status also appears to be unsettled for $p=2$.

end

Thank You!

