Proof of a Conjecture on Monomial Graphs

Xiang-dong Hou

Department of Mathematics and Statistics University of South Florida

Joint work with Stephen D. Lappano and Felix Lazebnik

New Directions in Combinatorics

IMS, Singapore, 2016-05-26

A I > A = A A

- The bipartite graph $G_q(f,g)$ and its background
- The conjecture
- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions

< 🗇 🕨 < 🖃 >

• The bipartite graph $G_q(f,g)$ and its background

- The conjecture
- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions

A .

Let \mathbb{F}_q be the finite field with q elements, q odd. Let $f, g \in \mathbb{F}_q[X, Y]$.

The graph $G = G_q(f, g)$ is an undirected bipartite graph with vertex partitions $P = \mathbb{F}_q^3$ and $L = \mathbb{F}_q^3$, and edges defined as follows: a vertex $(p) = (p_1, p_2, p_3) \in P$ is adjacent to a vertex $[I] = [I_1, I_2, I_3] \in L$ if and only if

$$p_2 + l_2 = f(p_1, l_1)$$
 and $p_3 + l_3 = g(p_1, l_1)$.

Let $k \ge 2$, and $g_k(n)$ denote the greatest number of edges in a graph with *n* vertices and a girth at least 2k + 1. The function $g_k(n)$ has been studied extensively.

Bondy and Simonovits 1974:

$$g_k(n) \leq c_k n^{1+\frac{1}{k}}$$
 for $k \geq 2$.

Lazebnik, Ustimenko and Woldar 1995:

$$g_k(n) \geq egin{cases} c_k' n^{1+rac{2}{3k-3+\epsilon}} & ext{if } k \geq 2, \ k
eq 5, \ c_5' n^{1+rac{1}{5}} & ext{if } k = 5, \end{cases}$$

where $\epsilon = 0$ if k is odd, $\epsilon = 1$ if k is even, and c'_k and c_k are positive constants depending on k only.

< 回 > < 三 > < 三 >

$$g_k(n) \geq egin{cases} c_k' n^{1+rac{2}{3k-3+\epsilon}} & ext{if } k \geq 2, \ k
eq 5, \ c_5' n^{1+rac{1}{5}} & ext{if } k = 5, \end{cases}$$

The only known values of *k* for which the lower bound for $g_k(n)$ is of magnitude $n^{1+1/k}$, which is the same as the magnitude of the upper bound, are k = 2, 3, and 5.

The lower bound for k = 3 is given by the graph $G_q(XY, XY^2)$. In fact, $G_q(XY, XY^2)$ has girth 8.

The lower bound for k = 2, 5 are given by graphs constructed in a similar manner.

< 回 > < 三 > < 三 >

• The bipartite graph $G_q(f,g)$ and its background

• The conjecture

- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions

When $f, g \in \mathbb{F}_q[X, Y]$ are monomials, the graph $G_q(f, g)$ is called a monomial graph.

We will only consider monomial graphs.

Conjecture 1

Let q be an odd prime power. Then every monomial graph of girth eight is isomorphic to $G_q(XY, XY^2)$.

Theorem

(Dmytrenko, Lazebnik, Williford 2007) Let q be odd. Every monomial graph of girth ≥ 8 is isomorphic to $G_q(XY, X^k Y^{2k})$, where $1 \leq k \leq q - 1$ is an integer not divisible by p.

The condition that $G_q(XY, X^k Y^{2k})$ has girth ≥ 8 implies that certain polynomials are permutations of \mathbb{F}_q .

- The bipartite graph $G_q(f,g)$ and its background
- The conjecture
- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions

A *permutation polynomial* (PP) of \mathbb{F}_q is a polynomial $f \in \mathbb{F}_q[X]$ such that the function defined by $a \mapsto f(a)$ is a bijection on \mathbb{F}_q .

A (10) > A (10) > A (10)

For an integer $1 \le k \le q - 1$, let

$$egin{aligned} & A_k = X^k ig[(X+1)^k - X^k ig] \in \mathbb{F}_q[X], \ & B_k = ig[(X+1)^{2k} - 1 ig] X^{q-1-k} - 2 X^{q-1} \in \mathbb{F}_q[X]. \end{aligned}$$

Theorem (DLW 2007)

Let q be odd and $1 \le k \le q-1$ be such that $p \nmid k$. If $G_q(XY, X^k Y^{2k})$ has girth ≥ 8 , then both A_k and B_k are PPs of \mathbb{F}_q .

Conjecture A (DLW 2007)

Let q be a power of an odd prime p and $1 \le k \le q-1$. Then A_k is a PP of \mathbb{F}_q if and only if k is a power of p.

Conjecture B (DLW 2007)

Let q be a power of an odd prime p and $1 \le k \le q-1$. Then B_k is a PP of \mathbb{F}_q if and only if k is a power of p.

Either of Conjectures A and B implies Conjecture 1.

- The bipartite graph $G_q(f,g)$ and its background
- The conjecture
- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions

For e > 1, gpf(e) = the greatest prime factor of <math>e; gpf(1) = 1.

Theorem (DLW 2007)

Conjecture 1 is true if one of the following occurs.

(i)
$$q = p^e$$
, where $p \ge 5$ and $gpf(e) \le 3$.

(ii) $3 \le q \le 10^{10}$.

Theorem (Kronenthal 2012)

For each prime r or r = 1, there is a positive integer $p_0(r)$ such that Conjecture 1 is true for $q = p^e$ with $gfp(e) \le r$ and $p \ge p_0(r)$. In particular, one can choose $p_0(5) = 7$, $p_0(7) = 11$, $p_0(11) = 13$.

Theorem (DLW 2007)

Conjecture A is true for q = p.

For each odd prime p, let $\alpha(p)$ be the smallest positive even integer a such that

$$\binom{a}{a/2} \equiv (-1)^{a/2} 2^a \pmod{p}.$$

Theorem (Kronenthal 2012)

Let p be an odd prime. If Conjecture B is true for $q = p^e$, then it is also true for $q = p^{em}$ whenever

$$m \leq \frac{p-1}{\lfloor (p-1)/\alpha(p) \rfloor}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lappano, Lazebnik, H 2015

- Conjecture A is true for $q = p^e$, where p is an odd prime and $gpf(e) \le p 1$.
- Conjecture B is true for q = p^e, where e > 0 is arbitrary and p is an odd prime satisfying α(p) > (p - 1)/2.
- Conjecture 1 is true.

- The bipartite graph $G_q(f,g)$ and its background
- The conjecture
- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions

____ ▶

Let q be odd and $1 \le k \le q - 1$.

We show that if both A_k and B_k are PPs of \mathbb{F}_q , then k is a power of p.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $f \in \mathbb{F}_q[X]$ is a PP of \mathbb{F}_q if and only if

$$\sum_{x\in\mathbb{F}_q}f(x)^s = \begin{cases} 0 & \text{if } 0\leq s\leq q-2,\\ -1 & \text{if } s=q-1. \end{cases}$$

For each integer a > 0, let $a^* \in \{1, ..., q-1\}$ be such that $a^* \equiv a \pmod{q-1}$; we also define $0^* = 0$.

For $1 \le s \le q - 1$, $\sum_{x \in \mathbb{F}_q} A_k(x)^s = (-1)^{s+1} \sum_{i=0}^s (-1)^i {\binom{s}{i}} {\binom{(ki)^*}{(2ks)^*}},$ $\sum_{x \in \mathbb{F}_q} B_k(x)^s = -(-2)^s \sum_{i,j} 2^{-i} (-1)^j {\binom{s}{i}} {\binom{i}{j}} {\binom{(2kj)*}{(ki)^*}}.$

X. Hou (Universities of South Florida)

a conjecture on monomial graphs

IMS-2016-05-26 21 / 30

3

(i) A_k is a PP of \mathbb{F}_q if and only if gcd(k, q-1) = 1 and

$$\sum_{i}(-1)^{i}\binom{s}{i}\binom{(ki)^{*}}{(2ks)^{*}}=0\quad ext{for all } 1\leq s\leq q-2.$$

(ii) B_k is a PP of \mathbb{F}_q if and only if gcd(k, q-1) = 1 and

$$\sum_{i} (-1)^{i} {s \choose i} {(2ki)^* \choose (ks)^*} = (-2)^s$$
 for all $1 \le s \le q-2$.

Too much information, too little readily useful. Need to choose suitable *s* such that useful information can be extracted from the above equations.

Assume that $1 \le k \le q - 1$ with gcd(k, q - 1) = 1.

$$a:=\left\lfloor rac{q-1}{k}
ight
floor.$$

 $k', b \in \{1, \ldots, q-1\}$ are such that

$$k'k \equiv 1 \pmod{q-1}, \qquad bk \equiv -1 \pmod{q-1}.$$
 $c := \left\lfloor \frac{q-1}{k'} \right\rfloor.$

э

(a) < (a) < (b) < (b)

(i) A_k is a PP of \mathbb{F}_q if and only if gcd(k, q-1) = 1 and

$$\sum_i (-1)^i {s \choose i} {(ki)^* \choose (2ks)^*} = 0 \quad ext{for all } 1 \leq s \leq q-2.$$

(ii) B_k is a PP of \mathbb{F}_q if and only if gcd(k, q-1) = 1 and

$$\sum_{i}(-1)^{i}\binom{s}{i}\binom{(2ki)^{*}}{(ks)^{*}}=(-2)^{s}$$
 for all $1\leq s\leq q-2$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(i) A_k is a PP of \mathbb{F}_q if and only if gcd(k, q-1) = 1 and

$$\sum_i (-1)^i {s \choose i} {(ki)^* \choose (2ks)^*} = 0 \quad ext{for all } 1 \leq s \leq q-2.$$

(ii) B_k is a PP of \mathbb{F}_q if and only if gcd(k, q-1) = 1 and

$$\sum_{i} (-1)^{i} \binom{s}{i} \binom{(2ki)^{*}}{(ks)^{*}} = (-2)^{s} \quad \text{for all } 1 \leq s \leq q-2.$$

• Choose s = a, a - 1, b, q - 1 - ck', q - 1 - (c - 1)k', etc.

-

(i) A_k is a PP of \mathbb{F}_q if and only if gcd(k, q-1) = 1 and

$$\sum_{i}(-1)^{i}\binom{s}{i}\binom{(ki)^{*}}{(2ks)^{*}}=0\quad ext{for all } 1\leq s\leq q-2.$$

(ii) B_k is a PP of \mathbb{F}_q if and only if gcd(k, q-1) = 1 and

$$\sum_i (-1)^i {s \choose i} {(2ki)^* \choose (ks)^*} = (-2)^s \quad \textit{for all } 1 \leq s \leq q-2.$$

• Choose s = a, a - 1, b, q - 1 - ck', q - 1 - (c - 1)k', etc.

• All but a few terms vanish in the above equations. Useful information is obtained ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

facts about A_k and B_k

Lemma 1

1.

Assume that A_k is a PP of \mathbb{F}_q . Then all the base p digits of k' are 0 or

facts about A_k and B_k

Lemma 1

Assume that A_k is a PP of \mathbb{F}_q . Then all the base p digits of k' are 0 or 1.

Lemma 2

Assume that all the base p digits of k' are 0 or 1 and k' is not a power of p, then $c \equiv 0 \pmod{p}$.

facts about A_k and B_k

Lemma 1

Assume that A_k is a PP of \mathbb{F}_q . Then all the base p digits of k' are 0 or 1.

Lemma 2

Assume that all the base p digits of k' are 0 or 1 and k' is not a power of p, then $c \equiv 0 \pmod{p}$.

Lemma 3

Assume that q is odd, $1 < k \le q - 1$, and both A_k and B_k are PPs of \mathbb{F}_q . Then c is even and

$$2^{-2ck'} = \begin{pmatrix} 2(q-1) - 2ck' \\ q-1 - ck' \end{pmatrix} + (-1)^{\frac{q-1}{2} + \frac{c}{2} + 1} \begin{pmatrix} 2(q-1) - 2ck' \\ \frac{1}{2}(q-1) - (\frac{c}{2} - 1)k' \end{pmatrix} \begin{pmatrix} 2c \\ c+2 \end{pmatrix}.$$

- Assume to the contrary that Conjecture 1 is false. Then there exists $1 \le k \le q - 1$, which is not a power of p, such that both A_k and B_k are PPs of \mathbb{F}_q .
- Lemma 1 and 2 imply that $c \equiv 0 \pmod{p}$. Then

$$\binom{2c}{c+2}=0.$$

• Since $q - 1 - ck' \equiv p - 1 \pmod{p}$, the sum (q-1-ck')+(q-1-ck') has a carry in base p at p^0 , implying that $\left(2(q-1)-2ck'\right)$

$$\left(\begin{array}{c} q - 1 \end{array} \right) = 2ck$$

 $\left(\begin{array}{c} q - 1 - ck' \end{array} \right) = 0.$

く 戸 と く ヨ と く ヨ と …

Combing

$$2^{-2ck'} = \begin{pmatrix} 2(q-1) - 2ck' \\ q-1 - ck' \end{pmatrix} + (-1)^{\frac{q-1}{2} + \frac{c}{2} + 1} \begin{pmatrix} 2(q-1) - 2ck' \\ \frac{1}{2}(q-1) - (\frac{c}{2} - 1)k' \end{pmatrix} \begin{pmatrix} 2c \\ c+2 \end{pmatrix},$$

and

$$egin{pmatrix} 2c \ c+2 \end{pmatrix} = 0 = egin{pmatrix} 2(q-1)-2ck' \ q-1-ck' \end{pmatrix}$$

gives a contradiction.

A (10) A (10) A (10)

- The bipartite graph $G_q(f,g)$ and its background
- The conjecture
- Permutation polynomials
- Previous results
- Outline of a proof of the conjecture
- Open questions

 э

Conjecture A

Let q be a power of an odd prime p and $1 \le k \le q-1$. Then A_k is a PP of \mathbb{F}_q if and only if k is a power of p.

Conjecture B

Let q be a power of an odd prime p and $1 \le k \le q-1$. Then B_k is a PP of \mathbb{F}_q if and only if k is a power of p.

- Conjecture A is true for q = p. Conjecture B has not been established for q = p.
- Although Conjectures A and B were originally stated for an odd characteristic, their status also appears to be unsettled for p = 2.

Thank You!

æ