Hyperovals in finite projective planes

Kai-Uwe Schmidt

Paderborn University, Germany

Let q be a power of two and let \mathbb{F}_{q} be the finite field with q elements. An arc in the projective plane $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ is a set of points of $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ with the property that no three of them are collinear. The maximum number of points in an arc in $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ is $q+2$, and in case of equality the arc is called a hyperoval. Hyperovals have applications in statistics, cryptography, and coding theory and have been studied extensively by finite geometers since the 1950s with the ultimate goal of establishing a complete classification. In spite of this, classification results for hyperovals were rather scarce until recently.
It is well known that hyperovals in $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ are in one-to-one correspondence to polynomials with certain properties, called o-polynomials of \mathbb{F}_{q}. This provides a powerful approach to study hyperovals and brings in methods from algebraic geometry. In this talk, I will describe the history of the hyperoval classification problem, survey prior results, and discuss a recent advance, which gives a complete classification of o-polynomials of \mathbb{F}_{q} whose degree is sufficiently small compared to q.

