
Hyperovals in P2(Fq)

Kai-Uwe Schmidt

Department of Mathematics

Paderborn University

Germany

0



Florian Caullery

Federal University of Santa Catarina

Florianapolis, Brazil

0



Arcs and hyperovals

An arc in P2(Fq) is a set of points no three of which are collinear.

An arc contains at most q + 2 points:

·
··

In case of equality, the arc is a called a hyperoval.
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A hyperoval in the Fano plane
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Which planes contain hyperovals?

Let H be a hyperoval in P2(Fq).

Each line meets H in 0 or 2 points.

A point P not in H meets H in (q + 2)/2 lines.

·
··

H

P

Hence q must be even.

An arc of size q + 1 is called an oval.
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Existence of ovals and hyperovals

All conics are ovals:

For every nongenerate quadratic form Q in Fq[x , y , z ], the
projective curve defined by Q gives an oval in P2(Fq).

Ovals give (unique) hyperovals:

In even characteristic, all tangents of an oval meet in a single
point, which can be included to give a hyperoval.

Do all ovals come from conics?

Yes in odd characteristic. (Segre 1955)
Not in even characteristic.
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Classification of hyperovals
One of the most confounding and fundamental open prob-
lems in finite geometry is the question of classifying the
hyperovals of the Desarguesian projective planes.

— John Bamberg, on http://symomega.wordpress.com, 2011

[the classification of hyperovals] remains the chief prob-
lem in the area. Open since 1955, it is considered to be
a very difficult problem. We believe that this might pos-
sibly be accomplished within the next ten years.

— Bill Cherowitzo’s hyperoval page, last updated 2004

I know no-one of significance who shared his confidence
in classifying hyperovals in the near future.

— Tim Penttila on http://symomega.wordpress.com, 2012
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Coordinisation

Wlog: every hyperoval contains the quadrangle

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1).

Thus a hyperoval in P2(Fq) consists of (1 : 0 : 0) and
(0 : 1 : 0) and q affine points (a : b : 1) that differ in two
coordinates.

The unique hyperoval in P2(F4):

(1 : 0 : 0), (0 : 1 : 0),

(0 : 0 : 1), (1 : 1 : 1), (α : α2 : 1), (α2 : α : 1).
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Hyperovals and o-polynomials

For q > 2, a set of q + 2 points in P(Fq) is a hyperoval if and
only if it can be written as{

(1 : 0 : 0), (0 : 1 : 0)
}
∪
{

(f (c) : c : 1) : c ∈ Fq

}
,

where f is an o-polynomial of Fq.

A polynomial f ∈ Fq[x ] of degree at most q − 1 satisfying:

f (0) = 0 and f (1) = 1,

f induces a permutation of Fq,

det

 1 1 1
a b c

f (a) f (b) f (c)

 6= 0 for all distinct a, b, c ∈ Fq.
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Alternative definitions

The determinant condition can be replaced by one of the
following conditions:

For each a ∈ Fq, the mapping

x 7→ f (x + a) + f (a)

x

is a permutation on Fq fixing 0 (Segre 1962).

For each a ∈ F∗q, the mapping

x 7→ f (x) + ax

is 2-to-1 on Fq (Carlet-Mesnager 2011).
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Known o-polynomials of F2h

x2 (these give conics)

x2
k

(Segre 1962)

x6 (Segre-Bartocci 1971)

xσ+γ and x3σ+4 (Glynn 1983)

x1/6 + x1/2 + x5/6 (Payne 1985)

xσ + xσ+2 + x3σ+4 (Cherowitzo 1998)

Subiaco hyperovals (Cherowitzo-Penttila-Pinneri-Royle 1996)

Adelaide hyperovals (Cherowitzo-O’Keefe-Penttila 2003)

one sporadic example in F32 (O’Keefe-Penttila 1992)

σ = 2(h+1)/2 γ =

{
2(3h+1)/4 for h ≡ 1 (mod 4)

2(h+1)/4 for h ≡ 3 (mod 4)

9



Known o-polynomials of F2h

x2 (these give conics)

x2
k

(Segre 1962)

x6 (Segre-Bartocci 1971)

xσ+γ and x3σ+4 (Glynn 1983)

x1/6 + x1/2 + x5/6 (Payne 1985)

xσ + xσ+2 + x3σ+4 (Cherowitzo 1998)

Subiaco hyperovals (Cherowitzo-Penttila-Pinneri-Royle 1996)

Adelaide hyperovals (Cherowitzo-O’Keefe-Penttila 2003)

one sporadic example in F32 (O’Keefe-Penttila 1992)

σ = 2(h+1)/2 γ =

{
2(3h+1)/4 for h ≡ 1 (mod 4)

2(h+1)/4 for h ≡ 3 (mod 4)

9



Known o-polynomials of F2h

x2 (these give conics)

x2
k

(Segre 1962)

x6 (Segre-Bartocci 1971)

xσ+γ and x3σ+4 (Glynn 1983)

x1/6 + x1/2 + x5/6 (Payne 1985)

xσ + xσ+2 + x3σ+4 (Cherowitzo 1998)

Subiaco hyperovals (Cherowitzo-Penttila-Pinneri-Royle 1996)

Adelaide hyperovals (Cherowitzo-O’Keefe-Penttila 2003)

one sporadic example in F32 (O’Keefe-Penttila 1992)

σ = 2(h+1)/2 γ =

{
2(3h+1)/4 for h ≡ 1 (mod 4)

2(h+1)/4 for h ≡ 3 (mod 4)

9



Known o-polynomials of F2h

x2 (these give conics)

x2
k

(Segre 1962)

x6 (Segre-Bartocci 1971)

xσ+γ and x3σ+4 (Glynn 1983)

x1/6 + x1/2 + x5/6 (Payne 1985)

xσ + xσ+2 + x3σ+4 (Cherowitzo 1998)

Subiaco hyperovals (Cherowitzo-Penttila-Pinneri-Royle 1996)

Adelaide hyperovals (Cherowitzo-O’Keefe-Penttila 2003)

one sporadic example in F32 (O’Keefe-Penttila 1992)

σ = 2(h+1)/2 γ =

{
2(3h+1)/4 for h ≡ 1 (mod 4)

2(h+1)/4 for h ≡ 3 (mod 4)

9



Known o-polynomials of F2h

x2 (these give conics)

x2
k

(Segre 1962)

x6 (Segre-Bartocci 1971)

xσ+γ and x3σ+4 (Glynn 1983)

x1/6 + x1/2 + x5/6 (Payne 1985)

xσ + xσ+2 + x3σ+4 (Cherowitzo 1998)

Subiaco hyperovals (Cherowitzo-Penttila-Pinneri-Royle 1996)

Adelaide hyperovals (Cherowitzo-O’Keefe-Penttila 2003)

one sporadic example in F32 (O’Keefe-Penttila 1992)

σ = 2(h+1)/2 γ =

{
2(3h+1)/4 for h ≡ 1 (mod 4)

2(h+1)/4 for h ≡ 3 (mod 4)

9



Known o-polynomials of F2h

x2 (these give conics)

x2
k

(Segre 1962)

x6 (Segre-Bartocci 1971)

xσ+γ and x3σ+4 (Glynn 1983)

x1/6 + x1/2 + x5/6 (Payne 1985)

xσ + xσ+2 + x3σ+4 (Cherowitzo 1998)

Subiaco hyperovals (Cherowitzo-Penttila-Pinneri-Royle 1996)

Adelaide hyperovals (Cherowitzo-O’Keefe-Penttila 2003)

one sporadic example in F32 (O’Keefe-Penttila 1992)

σ = 2(h+1)/2 γ =

{
2(3h+1)/4 for h ≡ 1 (mod 4)

2(h+1)/4 for h ≡ 3 (mod 4)

9



Known o-polynomials of F2h

x2 (these give conics)

x2
k

(Segre 1962)

x6 (Segre-Bartocci 1971)

xσ+γ and x3σ+4 (Glynn 1983)

x1/6 + x1/2 + x5/6 (Payne 1985)

xσ + xσ+2 + x3σ+4 (Cherowitzo 1998)

Subiaco hyperovals (Cherowitzo-Penttila-Pinneri-Royle 1996)

Adelaide hyperovals (Cherowitzo-O’Keefe-Penttila 2003)

one sporadic example in F32 (O’Keefe-Penttila 1992)

σ = 2(h+1)/2 γ =

{
2(3h+1)/4 for h ≡ 1 (mod 4)

2(h+1)/4 for h ≡ 3 (mod 4)

9



Known o-polynomials of F2h

x2 (these give conics)

x2
k

(Segre 1962)

x6 (Segre-Bartocci 1971)

xσ+γ and x3σ+4 (Glynn 1983)

x1/6 + x1/2 + x5/6 (Payne 1985)

xσ + xσ+2 + x3σ+4 (Cherowitzo 1998)

Subiaco hyperovals (Cherowitzo-Penttila-Pinneri-Royle 1996)

Adelaide hyperovals (Cherowitzo-O’Keefe-Penttila 2003)

one sporadic example in F32 (O’Keefe-Penttila 1992)

σ = 2(h+1)/2 γ =

{
2(3h+1)/4 for h ≡ 1 (mod 4)

2(h+1)/4 for h ≡ 3 (mod 4)

9



Known o-polynomials of F2h

x2 (these give conics)

x2
k

(Segre 1962)

x6 (Segre-Bartocci 1971)

xσ+γ and x3σ+4 (Glynn 1983)

x1/6 + x1/2 + x5/6 (Payne 1985)

xσ + xσ+2 + x3σ+4 (Cherowitzo 1998)

Subiaco hyperovals (Cherowitzo-Penttila-Pinneri-Royle 1996)

Adelaide hyperovals (Cherowitzo-O’Keefe-Penttila 2003)

one sporadic example in F32 (O’Keefe-Penttila 1992)

σ = 2(h+1)/2 γ =

{
2(3h+1)/4 for h ≡ 1 (mod 4)

2(h+1)/4 for h ≡ 3 (mod 4)

9



Known classification results
Planes of small order:

O-polynomials of F16 (Hall 1975)

O-polynomials of F32 (Penttila-Royle 1994)

O-monomials of F2h for h ≤ 30 (Glynn 1989)

Polynomials of small degree:

O-polynomials of degree at most 6 (Hirschfeld 1971)

Polynomials of a certain form:

Linearised o-polynomials (Payne 1971, Hirschfeld 1975)

O-monomials of degree 2i + 2j (Cherowitzo-Storme 1998)

O-monomials of degree 2i + 2j + 2k (Vis 2010)
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A new classification result
Call two polynomials f , g ∈ Fq[x ] equivalent if there exists an
a ∈ Fq such that

g(x) =
f (x + a) + f (a)

f (1 + a) + f (a)
.

This preserves the o-polynomial property.

Theorem (Caullery-S. 2015)

If f is an o-polynomial of Fq of degree less than 1
2
q1/4, then f

is equivalent to either x6 or x2
k

for a positive integer k .

x6 is an o-polynomial of F2h if and only if h is odd.

x2
k

is an o-polynomial of F2h if and only if (k , h) = 1.
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Exceptional o-polynomials
A polynomial f ∈ Fq[x ] is an exceptional o-polynomial of Fq if
it is an o-polynomial of Fqr for infinitely many r .

Conjecture (Segre-Bartocci 1971)

The only exceptional o-monomials are x6 and x2
k
.

Proved by (Hernando-McGuire 2012), (Zieve 2015).

Corollary (Caullery-S. 2015)

Up to equivalence, the only exceptional o-polynomials are x6

and x2
k
.

Similar classification problems have been studied extensively
for permutation polynomials, cyclic codes, and planar
functions, but no complete solution is known in these cases.
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The determinant condition
Every o-polynomial f of Fq satisfies

det

 1 1 1
x y z

f (x) f (y) f (z)

 6= 0 for all distinct x , y , z ∈ Fq.

Associate with f ∈ Fq[x ] the determinant polynomial:

Φf =
x(f (y) + f (z)) + y(f (x) + f (z)) + z(f (x) + f (y))

(x + y)(x + z)(y + z)
.

Goal
Show that, for most f ∈ Fq[x ] of low degree, the determinant
polynomial Φf has roots in F3

q with x , y , z distinct.
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The Lang-Weil bound

A polynomial over a field K is absolutely irreducible if it is
irreducible over the algebraic closure of K.

Examples:

x2 + y 2 is irreducible over Q, but not over C.

x2 + y 2 − 1 is irreducible over C, so is absolutely irreducible.

Lang-Weil Bound (Ghorpade-Lauchaud 2002)

Let f ∈ Fq[x1, . . . , xn] be an absolutely irreducible polynomial
of degree d and let N be its number of roots in Fn

q. Then

|N − qn−1| ≤ (d − 1)(d − 2)qn−3/2 + 12(d + 3)n+1qn−2.
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Strategy
The determinant polynomial:

Φf =
x(f (y) + f (z)) + y(f (x) + f (z)) + z(f (x) + f (y))

(x + y)(x + z)(y + z)
.

New goal

Show that, for most f ∈ Fq[x ] of low degree, the determinant
polynomial Φf has an absolutely irreducible factor over Fq.

Very useful: For q > 2, every o-polynomial of Fq is even.

Why? Write f (x) =
∑q−1

i=1 cix
i and expand:

f (x + a) + f (a)

x

∣∣∣∣
x=0

= c1 + c3a
3 + · · ·+ cq−1a

q−2.
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The monomial case
For monomials f (x) = xd we have

Φf =
x(yd + zd) + y(xd + zd) + z(xd + yd)

(x + y)(x + z)(y + z)
.

Theorem (Hernando-McGuire 2012)

If d is an even positive integer, not equal to 6 or a power of
two, then Φf has an absolutely irreducible factor over F2.

Their proof uses Bezout’s Theorem: If g and h are projective
curves over an algebraically closed field K with no common
component, then

(deg g)(deg h) =
∑

P∈P2(K)

IP(g , h),

where IP(g , h) is the intersection number of g and h at P .
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Exceptional polynomials
A polynomial F ∈ Fq[x ] is exceptional if it induces a
permutation on infinitely many extensions of Fq.

Fact: A polynomial F ∈ Fq[x ] is exceptional if and only if

F (x)− F (y)

x − y

has no absolutely irreducible factor over Fq.

Corollary: The determinant polynomial of f (x) = xd has no
absolutely irreducible factor over F2 if and only if

F (x) =
(x + 1)d + 1

x

is an exceptional polynomial.
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Zieve’s approach
A polynomial F ∈ Fq[x ] is indecomposable if there do not exist
G ,H ∈ Fq[x ] of degree at least two such that F (x) = G (H(x)).

Theorem
If F ∈ Fp[x ] is an indecomposable exceptional polynomial of
degree coprime to p, then there are polynomials µ, ν ∈ Fp[x ]
of degree one such that µ ◦ F ◦ ν is either a monomial or a
Dickson polynomial of degree coprime to p2 − 1.

Let d be even and suppose that

F (x) =
(x + 1)d + 1

x
=

d∑
i=1

(
d

i

)
x i−1

is an exceptional polynomial. Write F = G ◦ H for an
indecomposable polynomial H and apply the theorem to H .
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Finishing the proof
Therefore

d∑
i=1

(
d

i

)
x i−1 = G (H(x)),

where H is (up to compositions with linear polynomials) either

a monomial, which forces d to be a power of 2; or

a Dickson polynomial of degree s coprime to 6, thus

H(x + x−1) = x s + x−s

and
d∑

i=1

(
d

i

)
(x + x−1)i−1 = G (x s + x−s),

which forces d = 6.
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Recap: The monomial case

For monomials f (x) = xd we have

Φf =
x(yd + zd) + y(xd + zd) + z(xd + yd)

(x + y)(x + z)(y + z)
.

Theorem (Hernando-McGuire 2012, Zieve 2015)

If d is an even positive integer, not equal to 6 or a power of
two, then Φf has an absolutely irreducible factor over F2.

Corollary

If f (x) = xd is an o-polynomial of Fq with d less than 1
2
q1/4,

then d is either 6 or a power of 2.
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Intersecting surfaces

Lemma (Aubry-McGuire-Rodier 2010)

Let S and P be projective surfaces in P3(Fq), where P is
defined over Fq. If S ∩ P has a reduced absolutely irreducible
component defined over Fq, then S has an absolutely
irreducible component defined over Fq.
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The reduction step

Let f (x) =
∑

i cix
i be of degree d . Then

Φf (x , y , z) =
d∑

i=2

ciφi(x , y , z),

where

φi(x , y , z) =
x(y i + z i) + y(x i + z i) + z(x i + y i)

(x + y)(x + z)(y + z)
.

is homogeneous of degree i − 2.

Homogenise by introducing the indeterminate w and
intersect with the hyperplane w = 0. This gives the
projective curve defined by φd(x , y , z).

This is the curve defined by the monomial xd !

We are left with o-polynomials of degree 6 or a power of 2.
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The remaining degrees
Degree 6:

Lemma (Hirschfeld 1971)

If f is an o-polynomial of degree 6, then f is equivalent to x6.

Degree 2k :

Proposition (Caullery-S. 2015)

If f is an even polynomial of degree 2k , then Φf is absolutely
irreducible or f is a linearised polynomial.

Proof: Use lots of divisibility and factoring arguments.

Lemma (Payne 1971, Hirschfeld 1975)

If f is a linearised o-polynomial, then it is of the form x2
k
.
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