Erdős-Ko-Rado theorems in polar spaces

Klaus Metsch, Justus Liebig Universität, Gießen

Singapore, May 2016

Klaus Metsch, Justus Liebig Universität, Gießen Erdős-Ko-Rado theorems in polar spaces

Theorem, 1961:

If S is an intersecting family of k-subsets of an n-set Ω , $n \ge 2k$, then $|S| \le {n-1 \choose k-1}$. For $n \ge 2k+1$ equality holds iff S consists of all k-subsets of Ω containing a fixed element.

Proof. Different techniques available

直 とう ゆう く う と

Generalisations

- t-intersection
- r-wise intersecting
- stability results
- other structures
- flags
- combinations

- ∢ ≣ ▶

 æ

Theorem (Hsieh, Frankl, Wilson, Godsil, Newman, Tanaka) The largest sets of k-subspaces of F_q^n , $n \ge 2k$, which pairwise intersect non-trivially consists of all k-spaces on a 1-dimensional subspace, or if n = 2k, all k-subspaces in a hyperplane.

Proof: Geometric techniques for n > 2k, algebraic for $n \ge 2k$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Blokhuis, Brouwer, Chowdhury, Frankl, Mussche, Patkos, Sőnyi, 2010)

Largest example of an intersecting set of k-subspaces of F_q^n not centered at a point when $q \ge 2$, $n \ge 2k + 1$, $(q, n) \ne (2, 2k + 1)$.

Theorem (Blokhuis, Brouwer, Güven, 2014)

The largest EKR-sets of point-hyperplane flags in PG(n, q) are known.

Theorem (Stanton 1980)

All examples of the following list are largest sets of mutually intersecting generators in a polar space

- For polar spaces other than Q⁺(2d − 1, q) and H(2d − 1, q²) for odd d ≥ 3: all generators on a point.
- For $Q^+(2d-1,q)$, $d \ge 3$ odd: All Latin (Greek) generators.

The correct bound for $H(2d - 1, q^2)$, $d \ge 3$ odd remained open.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem, (Pepe, Storme, Vanhove, 2011) Except when the polar space is $H(2d - 1, q^2)$, $d \ge 5$ odd, the following is a complete list of largest EKR-sets of generators

- the above ones
- ▶ polar spaces Q(6, q), W(5, q) and H(5, q²): all planes centered at a plane.
- ▶ for polar spaces Q(2d, q), d ≥ 3 odd: all Latin generators contained in a Q⁺(2d − 1, q)

伺 ト イヨト イヨト

Theorem, (Pepe, Storme, Vanhove, 2011) Except when the polar space is $H(2d - 1, q^2)$, $d \ge 5$ odd, the following is a complete list of largest EKR-sets of generators

- the above ones
- ▶ polar spaces Q(6, q), W(5, q) and H(5, q²): all planes centered at a plane.
- ▶ for polar spaces Q(2d, q), d ≥ 3 odd: all Latin generators contained in a Q⁺(2d − 1, q)

Remarks

- 1. The example for $H(5, q^2)$ is larger than the point-example!
- 2. The correct bound for $H(2d 1, q^2)$, $d \ge 5$ odd, is still open.

・ 同 ト ・ ヨ ト ・ ヨ ト

EKR-sets of generators in $H(2d - 1, q^2)$, $d \ge 5$ odd

- Point-example has size $\approx q^{(d-1)^2}$.
- Hoffman bound: $\approx q^{d(d-1)}$

向下 イヨト イヨト

EKR-sets of generators in $H(2d - 1, q^2)$, $d \ge 5$ odd

- Point-example has size $\approx q^{(d-1)^2}$.
- Hoffman bound: $\approx q^{d(d-1)}$
- ▶ Theorem (M, 2016)

$$egin{array}{rcl} |S| &\leq & ig(rac{q^{2d}-q^{2d-3}}{q-1}+1ig)\prod_{i=1\2i
eq d\pm 1}^{d-1}(q^{2i-1}+1ig) \ &= & q^{(d-1)^2+1}+const\cdot q^{(d-1)^2}. \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proof: Hoffman-bound for matrix $A_d - fA_{d-2}$.

Different question are possible.

- Sets of *n*-spaces no two of which are disjoint.
- Sets of *n*-spaces, no two of which are opposite (general position)

For generators both questions are the same.

Theorem (M, 2016):

A largest intersecting set of *n*-subspaces of a polar space of rank *d* with 1 < n < d, consists of all *n*-spaces on a point.

Proof:

- Geometric arguments for $n \neq d 1$.
- ► Algebraic arguments for all *n*, calculation of eigenvalues difficult.
- For n = d − 1 this is possible and Hoffman's bound for the matrix f ⋅ A_{0,d−1} + A_{0,d} proves the upper bound. The characterisation of the largest sets C is also done algebraically: Characteristic vector c = αj + v₀ + v₁. Calculate A_{0,d}c.
 ⇒ C has same distribution as the point-example. Now do geometry.

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem Determine the largest sets C of lines in a polar space of rank d such that

$$\ell_1^{\perp} \cap \ell_2 = \emptyset \ \forall \ell_1, \ell_2 \in C.$$

Example: Take a flag (U_1, \ldots, U_{d-1}) and all lines ℓ such that meet some U_i and are perpendicular to this U_i .

Theorem (Ihringer, M, Mühlherr)

The above example is best possible for rank three polar spaces.

(日本) (日本) (日本)

Theorem (Ihringer, M, Mühlherr)

A set S of mutually non-opposite comaximal subspaces in $Q^+(2d-1,q)$, $d \ge 2$, even has at most ... elements. For q > 2 equality holds only in the following two cases:

- ► For some point P, the set S consists of all comaximal subspaces that lie in a Latin generator on P.
- d = 4 and \mathcal{L} consists of all planes that meet a given generator at least in a line.

伺 とう きょう とう とう

Technique: algebraic and geometric arguments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorem (Ihringer, M, 2016)

Consider a finite classical polar space of rank d and an integer t such that $0 \le t \le \sqrt{\frac{8d}{9}} - 2$. Then the largest sets of generators that mutually meet in a subspace of codimension at most t consists of

- ▶ all generators that meet a fixed *d*-space in a subspace of dimension at least *d* − ^{*t*}/₂, if *t* is even.
- ► all generators that meet a fixed (d 1)-space in a subspace of dimension at least d ^t/₂ ¹/₂, if t is odd.

伺 とう ほう く きょう

Thank you very much for your attention!

Klaus Metsch, Justus Liebig Universität, Gießen Erdős-Ko-Rado theorems in polar spaces

・ロン ・回と ・ヨン ・ヨン

æ