Distance sets on circles and Kneser's addition theorem

Koji Momihara

(joint work with Masahi Shinohara, Shiga University)
Faculty of Education, Kumamoto University, Japan
E-mail: momihara@educ.kumamoto-u.ac.jp
Let us consider the following problem: For a set X of n points on the unit circle of \mathbb{R}^{2} such that exactly k distances occur between two distinct points in X, can you say anything about its structure?

We can show that if the number k of distances is sufficiently small relative to the number n of points, then X lies on a regular polygon. More precisely, if $k<3 t$ or $3 t-2$ according to whether $n=4 t, 4 t-1$ or $n=4 t-2,4 t-3$, respectively, then X lies on a regular $2 k$ or $(2 k+1)$-sided polygon. Furthermore, this bound can not be further improved.

The well-known addition theorem of Kneser is behind our result. The talk will be based on the paper "K. Momihara, M. Shinohara, Distance sets on circles, to appear in Amer. Math. Monthly".

