Distance sets on circles and Kneser's addition theorem

Koji Momihara (Kumamoto University)

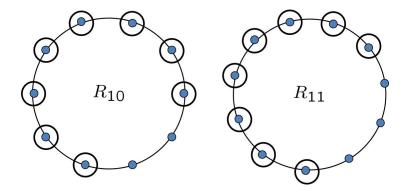
momihara@educ.kumamoto-u.ac.jp

joint work with Masashi Shinohara, Shiga University Distance sets on circles, to appear in *Amer. Math. Monthly*

27-May-2016

8 points on the unit circle with 5 distances

Such 8 points lie on a decagon or a hendecagon.



R_n: a regular *n*-sided polygon

100 points on the unit circle with 70 distances

Can you say anything about the structure of the set of such 100-points?

100 points on the unit circle with 70 distances

Can you say anything about the structure of the set of such 100-points?

Yes! Such 100 points lie on R_{140} or R_{141} !

How about the general case?

Conjecture (Erdős, AMM, 1946)

Every convex *n*-gon has at least $\lfloor n/2 \rfloor$ different distances between distinct vertices.

Conjecture (Erdős, AMM, 1946)

Every convex *n*-gon has at least $\lfloor n/2 \rfloor$ different distances between distinct vertices.

• Altman (1963)

•
$$k \ge (n-1)/2$$

• If n = 2k + 1, then $X = R_{2k+1}$.

Conjecture (Erdős, AMM, 1946)

Every convex *n*-gon has at least $\lfloor n/2 \rfloor$ different distances between distinct vertices.

- Altman (1963)
 - $k \ge (n-1)/2$
 - If n = 2k + 1, then $X = R_{2k+1}$.
- Fishburn (1995)
 - If n = 2k, then $X = R_{2k}$ or $X \subset R_{2k+1}$.
 - For $(n, k) = (7, 4), X \subset R_{2k}$ or $X \subset R_{2k+1}$.

Conjecture (Erdős, AMM, 1946)

Every convex *n*-gon has at least $\lfloor n/2 \rfloor$ different distances between distinct vertices.

- Altman (1963)
 - $k \ge (n-1)/2$
 - If n = 2k + 1, then $X = R_{2k+1}$.
- Fishburn (1995)
 - If n = 2k, then $X = R_{2k}$ or $X \subset R_{2k+1}$.
 - For $(n, k) = (7, 4), X \subset R_{2k}$ or $X \subset R_{2k+1}$.

Conjecture (Fishburn, 1995)

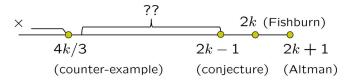
If n = 2k - 1, then $X \subset R_{2k}$ or $X \subset R_{2k+1}$.

This conjecture is correct for (n, k) = (9, 5) and (11, 6) (Erdős-Fishburn, 1996).

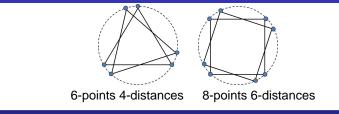
For which s, does it hold that $X \subset R_{2k}$ or $X \subset R_{2k+1}$ if n = 2k - s?

For which s, does it hold that $X \subset R_{2k}$ or $X \subset R_{2k+1}$ if n = 2k - s?

We can construct infinite many examples of sets of *n* points not lying on regular polygons if $s \ge 2k/3$ (or $n \le 4k/3$).



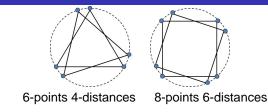
Counterexamples



Remark

For a set X of points on S^1 , the number of Euclidean distances between distinct points in X is equal to that of (shorter) arc lengths.

Counterexamples



Remark

For a set X of points on S^1 , the number of Euclidean distances between distinct points in X is equal to that of (shorter) arc lengths.

Example

Let

$$M_n = \begin{cases} 3t, & \text{if } n = 4t \text{ or } 4t - 1, \\ 3t - 2, & \text{if } n = 4t - 2 \text{ or } 4t - 3. \end{cases}$$

Then, there exist (infinitely many) *n*-point sets with $k = M_n$ distances on S^1 not lying on regular polygons.

Can you construct counter-examples for $k < M_n$?

Theorem (M.-Shinohara, 2016)

Let

$$M_n = \begin{cases} 3t, & \text{if } n = 4t \text{ or } 4t - 1, \\ 3t - 2, & \text{if } n = 4t - 2 \text{ or } 4t - 3. \end{cases}$$

If $k < M_n$, then any *n*-point set on S^1 with k distances lies on R_{2k} or R_{2k+1} .

Can you construct counter-examples for $k < M_n$?

Theorem (M.-Shinohara, 2016)

Let

$$M_n = \begin{cases} 3t, & \text{if } n = 4t \text{ or } 4t - 1, \\ 3t - 2, & \text{if } n = 4t - 2 \text{ or } 4t - 3. \end{cases}$$

If $k < M_n$, then any *n*-point set on S^1 with k distances lies on R_{2k} or R_{2k+1} .

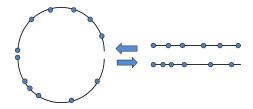
Proposition 1

If $k < M_n$, then any *n*-point set on S^1 with *k* distances lies on R_m for some integer *m*.

Proposition 2

Assume that $k < M_n$ and an *n*-point set on S^1 with *k* distances lies on R_m . Then, $m \in \{2k, 2k + 1\}$.

Proposition 1: cut & join method



Assume the existence of a 4t + 1-point set *X* with k < 3t + 1 distances.

- We can cut the circle into two half circles so that each of them contains exactly 2t + 1 of the points in *X*.
- We can classify 2t + 1-point sets on \mathbb{R} with k < 3t + 1 distances having both rational and irrational intervals.
- We can show that the circle as a join of such two distance sets on ℝ satisfies k ≥ 3t + 1.

Proposition 2

Proposition 2 is due to Kneser's addition theorem.

Remark

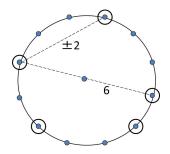
A subset *X* of points of R_m can be viewed as a subset \overline{X} of \mathbb{Z}_m .

Proposition 2

Proposition 2 is due to Kneser's addition theorem.

Remark

A subset *X* of points of R_m can be viewed as a subset *X* of \mathbb{Z}_m . Then, # of distances between points in $X \subset R_m$ is equal to (# of differences between elements in $\overline{X} \subset \mathbb{Z}_m + \epsilon$)/2, where $\epsilon = 1$ or 0 depending on whether *X* contains a point having its antipodal in *X* or not.



Theorem (Kneser, 1953)

G: a finite abelian group *A*, *B* ⊆ *G* $\implies \exists H \leq G \text{ s.t. } |A + B| \geq \min\{|G|, |A| + |B| - |H|\}.$

Theorem (Kneser, 1953)

G: a finite abelian group $A, B \subseteq G$ $\implies \exists H \leq G \text{ s.t. } |A + B| \geq \min\{|G|, |A| + |B| - |H|\}.$

Corollary

G: a finite abelian group $A, B \subseteq G$ $\implies \exists H \leq G \text{ s.t. } |A + B| \geq |A + H| + |B + H| - |H|.$

Proposition 3

A: an *n*-subset of
$$G = \mathbb{Z}_m$$
 s.t. $\langle A \rangle = \mathbb{Z}_m$
 $\implies |A - A| \ge \min\{m, s_n\}$, where

$$s_n = \begin{cases} 3n/2, & \text{if } n \equiv 0 \pmod{2}, \\ 3(n+1)/2, & \text{if } n \equiv 1 \pmod{2}. \end{cases}$$

Proposition 3

A: an *n*-subset of
$$G = \mathbb{Z}_m$$
 s.t. $\langle A \rangle = \mathbb{Z}_m$
 $\implies |A - A| \ge \min\{m, s_n\}$, where

$$s_n = \begin{cases} 3n/2, & \text{if } n \equiv 0 \pmod{2}, \\ 3(n+1)/2, & \text{if } n \equiv 1 \pmod{2}. \end{cases}$$

The even case was already proved by Hamidoune-Plagne, 2002. The odd case needs a bit complicated modification.

Proposition 4

X: an *n*-point subset of R_m with *k* distances satisfying $\langle X \rangle = \mathbb{Z}_m$ \implies If $k < M_n$, then $m \in \{2k, 2k + 1\}$, where

$$M_n = \begin{cases} 3t, & \text{if } n = 4t \text{ or } 4t - 1, \\ 3t - 2, & \text{if } n = 4t - 2 \text{ or } 4t - 3. \end{cases}$$

Proposition 4

X: an *n*-point subset of R_m with *k* distances satisfying $\langle X \rangle = \mathbb{Z}_m$ \implies If $k < M_n$, then $m \in \{2k, 2k + 1\}$, where

$$M_n = \begin{cases} 3t, & \text{if } n = 4t \text{ or } 4t - 1, \\ 3t - 2, & \text{if } n = 4t - 2 \text{ or } 4t - 3. \end{cases}$$

Sketch of proof:

• $|\overline{X} - \overline{X}| \in \{2k, 2k+1\}$

Proposition 4

X: an *n*-point subset of R_m with *k* distances satisfying $\langle X \rangle = \mathbb{Z}_m$ \implies If $k < M_n$, then $m \in \{2k, 2k + 1\}$, where

$$M_n = \begin{cases} 3t, & \text{if } n = 4t \text{ or } 4t - 1, \\ 3t - 2, & \text{if } n = 4t - 2 \text{ or } 4t - 3. \end{cases}$$

Sketch of proof:

•
$$|X - X| \in \{2k, 2k + 1\}$$

• $2k + 1 \ge |\overline{X} - \overline{X}| \ge \min\{m, s_n\} \iff k \ge \min\{\lceil (m - 1)/2 \rceil, M_n\}$

Proposition 4

X: an *n*-point subset of R_m with *k* distances satisfying $\langle X \rangle = \mathbb{Z}_m$ \implies If $k < M_n$, then $m \in \{2k, 2k + 1\}$, where

$$M_n = \begin{cases} 3t, & \text{if } n = 4t \text{ or } 4t - 1, \\ 3t - 2, & \text{if } n = 4t - 2 \text{ or } 4t - 3. \end{cases}$$

Sketch of proof:

•
$$|X - X| \in \{2k, 2k + 1\}$$

• $2k + 1 \ge |\overline{X} - \overline{X}| \ge \min\{m, s_n\} \iff k \ge \min\{\lceil (m - 1)/2 \rceil, M_n\}$

• Since $k < M_n$, we have $\lceil (m-1)/2 \rceil \le k < M_n$.

Proposition 4

X: an *n*-point subset of R_m with *k* distances satisfying $\langle X \rangle = \mathbb{Z}_m$ \implies If $k < M_n$, then $m \in \{2k, 2k + 1\}$, where

$$M_n = \begin{cases} 3t, & \text{if } n = 4t \text{ or } 4t - 1, \\ 3t - 2, & \text{if } n = 4t - 2 \text{ or } 4t - 3. \end{cases}$$

Sketch of proof:

•
$$|X - X| \in \{2k, 2k + 1\}$$

• $2k + 1 \ge |\overline{X} - \overline{X}| \ge \min\{m, s_n\} \iff k \ge \min\{\lceil (m - 1)/2 \rceil, M_n\}$

• Since $k < M_n$, we have $\lceil (m-1)/2 \rceil \le k < M_n$.

•
$$\lceil (m-1)/2 \rceil < M_n \iff n > 4 \lceil (m-1)/2 \rceil/3 - 1 > \lfloor m/2 \rfloor$$

Proposition 4

X: an *n*-point subset of R_m with *k* distances satisfying $\langle X \rangle = \mathbb{Z}_m$ \implies If $k < M_n$, then $m \in \{2k, 2k + 1\}$, where

$$M_n = \begin{cases} 3t, & \text{if } n = 4t \text{ or } 4t - 1, \\ 3t - 2, & \text{if } n = 4t - 2 \text{ or } 4t - 3. \end{cases}$$

Sketch of proof:

•
$$|X - X| \in \{2k, 2k + 1\}$$

• $2k + 1 \ge |\overline{X} - \overline{X}| \ge \min\{m, s_n\} \iff k \ge \min\{\lceil (m-1)/2 \rceil, M_n\}$

• Since $k < M_n$, we have $\lceil (m-1)/2 \rceil \le k < M_n$.

•
$$\lceil (m-1)/2 \rceil < M_n \iff n > 4 \lceil (m-1)/2 \rceil/3 - 1 > \lfloor m/2 \rfloor$$

• X have
$$k = \lfloor m/2 \rfloor$$
 distances.

• How about the case where $k \ge M_n$? For example, can you say anything about the structure of **100**-points with **75** distances on S^1 ? (Can you show that if $k = M_n$, X lies on a regular polygon or $R_m \cup \sigma_c(R_m)$?)

- How about the case where $k \ge M_n$? For example, can you say anything about the structure of **100**-points with **75** distances on S^1 ? (Can you show that if $k = M_n$, X lies on a regular polygon or $R_m \cup \sigma_c(R_m)$?)
- Can you find a high dimensional(?) analogy of our result?

- How about the case where $k \ge M_n$? For example, can you say anything about the structure of **100**-points with **75** distances on S^1 ? (Can you show that if $k = M_n$, X lies on a regular polygon or $R_m \cup \sigma_c(R_m)$?)
- Can you find a high dimensional(?) analogy of our result?

Thank you very much for your attention!