Distance sets on circles and Kneser's addition theorem

Koji Momihara (Kumamoto University)
momihara@educ.kumamoto-u.ac.jp
joint work with
Masashi Shinohara, Shiga University
Distance sets on circles, to appear in Amer. Math. Monthly

> 27-May-2016

8 points on the unit circle with 5 distances

Such 8 points lie on a decagon or a hendecagon.

$\boldsymbol{R}_{\boldsymbol{n}}$: a regular \boldsymbol{n}-sided polygon

100 points on the unit circle with 70 distances

Can you say anything about the structure of the set of such 100-points?

100 points on the unit circle with 70 distances

Can you say anything about the structure of the set of such 100-points?

Yes! Such 100 points lie on $\boldsymbol{R}_{\mathbf{1 4 0}}$ or $\boldsymbol{R}_{\mathbf{1 4 1}}$!

How about the general case?

Background

Conjecture (Erdős, AMM, 1946)
Every convex \boldsymbol{n}-gon has at least $\lfloor\boldsymbol{n} / \mathbf{2}\rfloor$ different distances between distinct vertices.

Background

Conjecture (Erdős, AMM, 1946)

Every convex \boldsymbol{n}-gon has at least $\lfloor\boldsymbol{n} / \mathbf{2}\rfloor$ different distances between distinct vertices.

- Altman (1963)
- $k \geq(n-1) / 2$
- If $n=2 k+1$, then $X=R_{2 k+1}$.

Background

Conjecture (Erdős, AMM, 1946)

Every convex \boldsymbol{n}-gon has at least $\lfloor\boldsymbol{n} / \mathbf{2}\rfloor$ different distances between distinct vertices.

- Altman (1963)
- $k \geq(n-1) / 2$
- If $n=2 k+1$, then $X=R_{2 k+1}$.
- Fishburn (1995)
- If $n=2 k$, then $X=R_{2 k}$ or $X \subset R_{2 k+1}$.
- For $(n, k)=(7,4), X \subset R_{2 k}$ or $X \subset R_{2 k+1}$.

Background

Conjecture (Erdős, AMM, 1946)

Every convex \boldsymbol{n}-gon has at least $\lfloor\boldsymbol{n} / \mathbf{2}\rfloor$ different distances between distinct vertices.

- Altman (1963)

$$
\begin{aligned}
& \text { - } k \geq(n-1) / 2 \\
& \text { - If } n=2 k+1 \text {, then } X=R_{2 k+1} \text {. }
\end{aligned}
$$

- Fishburn (1995)
- If $n=2 k$, then $X=R_{2 k}$ or $X \subset R_{2 k+1}$.
- For $(n, k)=(7,4), X \subset R_{2 k}$ or $X \subset R_{2 k+1}$.

Conjecture (Fishburn, 1995)

If $\boldsymbol{n}=\mathbf{2 k}-\mathbf{1}$, then $X \subset \boldsymbol{R}_{\mathbf{2}}$ or $\boldsymbol{X} \subset \boldsymbol{R}_{\mathbf{2} \boldsymbol{k + 1}}$.
This conjecture is correct for $(\boldsymbol{n}, \boldsymbol{k})=(\mathbf{9}, \mathbf{5})$ and $(\mathbf{1 1 , 6})$ (Erdős-Fishburn, 1996).

Background

Problem

For which \boldsymbol{s}, does it hold that $\boldsymbol{X} \subset \boldsymbol{R}_{\mathbf{2 k}}$ or $\boldsymbol{X} \subset \boldsymbol{R}_{\mathbf{2 k + 1}}$ if $\boldsymbol{n}=\mathbf{2 k} \boldsymbol{-} \boldsymbol{s}$?

Background

Problem

For which s, does it hold that $\boldsymbol{X} \subset \boldsymbol{R}_{\mathbf{2 k}}$ or $\boldsymbol{X} \subset \boldsymbol{R}_{\mathbf{2 k + 1}}$ if $n=\mathbf{2 k}-\boldsymbol{s}$?

We can construct infinite many examples of sets of n points not lying on regular polygons if $s \geq 2 k / 3$ (or $n \leq 4 k / 3$).

Counterexamples

6-points 4-distances

8-points 6-distances

Remark

For a set \boldsymbol{X} of points on \boldsymbol{S}^{1}, the number of Euclidean distances between distinct points in \boldsymbol{X} is equal to that of (shorter) arc lengths.

Counterexamples

6-points 4-distances

8-points 6-distances

Remark

For a set \boldsymbol{X} of points on \boldsymbol{S}^{1}, the number of Euclidean distances between distinct points in X is equal to that of (shorter) arc lengths.

Example

Let

$$
M_{n}= \begin{cases}3 t, & \text { if } n=4 t \text { or } 4 t-1 \\ 3 t-2, & \text { if } n=4 t-2 \text { or } 4 t-3\end{cases}
$$

Then, there exist (infinitely many) \boldsymbol{n}-point sets with $\boldsymbol{k}=\boldsymbol{M}_{\boldsymbol{n}}$ distances on $S^{\mathbf{1}}$ not lying on regular polygons.

Can you construct counter-examples for $k<M_{n}$?

Theorem (M.-Shinohara, 2016)

Let

$$
M_{n}= \begin{cases}3 t, & \text { if } n=4 t \text { or } 4 t-1 \\ 3 t-2, & \text { if } n=4 t-2 \text { or } 4 t-3\end{cases}
$$

If $\boldsymbol{k}<\boldsymbol{M}_{\boldsymbol{n}}$, then any \boldsymbol{n}-point set on $\boldsymbol{S}^{\mathbf{1}}$ with \boldsymbol{k} distances lies on $\boldsymbol{R}_{\mathbf{2}} \boldsymbol{k}$ or $\boldsymbol{R}_{\mathbf{2 k + 1}}$.

Can you construct counter-examples for $k<M_{n}$?

Theorem (M.-Shinohara, 2016)

Let

$$
M_{n}= \begin{cases}3 t, & \text { if } n=4 t \text { or } 4 t-1 \\ 3 t-2, & \text { if } n=4 t-2 \text { or } 4 t-3\end{cases}
$$

If $\boldsymbol{k}<\boldsymbol{M}_{\boldsymbol{n}}$, then any \boldsymbol{n}-point set on $\boldsymbol{S}^{\mathbf{1}}$ with \boldsymbol{k} distances lies on $\boldsymbol{R}_{\mathbf{2}} \boldsymbol{k}$ or $\boldsymbol{R}_{\mathbf{2 k + 1}}$.

Proposition 1

If $\boldsymbol{k}<\boldsymbol{M}_{\boldsymbol{n}}$, then any \boldsymbol{n}-point set on $\boldsymbol{S}^{\mathbf{1}}$ with \boldsymbol{k} distances lies on $\boldsymbol{R}_{\boldsymbol{m}}$ for some integer \boldsymbol{m}.

Proposition 2

Assume that $\boldsymbol{k}<\boldsymbol{M}_{\boldsymbol{n}}$ and an \boldsymbol{n}-point set on $\boldsymbol{S}^{\mathbf{1}}$ with \boldsymbol{k} distances lies on $\boldsymbol{R}_{\boldsymbol{m}}$. Then, $\boldsymbol{m} \in\{2 k, 2 k+1\}$.

Proposition 1: cut \& join method

Assume the existence of a $4 t+1$-point set X with $k<3 t+1$ distances.

- We can cut the circle into two half circles so that each of them contains exactly $2 t+1$ of the points in X.
- We can classify $2 t+1$-point sets on \mathbb{R} with $k<3 t+\mathbf{1}$ distances having both rational and irrational intervals.
- We can show that the circle as a join of such two distance sets on \mathbb{R} satisfies $\boldsymbol{k} \geq \mathbf{3 t + 1}$.

Proposition 2

Proposition 2 is due to Kneser's addition theorem.

Remark

A subset \boldsymbol{X} of points of $\boldsymbol{R}_{\boldsymbol{m}}$ can be viewed as a subset $\overline{\boldsymbol{X}}$ of $\mathbb{Z}_{\boldsymbol{m}}$.

Proposition 2

Proposition 2 is due to Kneser's addition theorem.

Remark

A subset \boldsymbol{X} of points of $\boldsymbol{R}_{\boldsymbol{m}}$ can be viewed as a subset $\overline{\boldsymbol{X}}$ of $\mathbb{Z}_{\boldsymbol{m}}$. Then, \# of distances between points in $\bar{X} \subset \boldsymbol{R}_{m}$ is equal to (\# of differences between elements in $\bar{X} \subset \mathbb{Z}_{m}+\boldsymbol{\epsilon}$) $/ \mathbf{2}$, where $\boldsymbol{\epsilon}=\mathbf{1}$ or $\mathbf{0}$ depending on whether \boldsymbol{X} contains a point having its antipodal in \boldsymbol{X} or not.

Kneser's addition theorem

Theorem (Kneser, 1953)

\boldsymbol{G} : a finite abelian group
$A, B \subseteq G$
$\Longrightarrow \exists H \leq G$ s.t. $|A+B| \geq \min \{|G|,|A|+|B|-|H|\}$.

Kneser's addition theorem

Theorem (Kneser, 1953)

\boldsymbol{G} : a finite abelian group
$A, B \subseteq G$
$\Longrightarrow \exists H \leq G$ s.t. $|A+B| \geq \min \{|G|,|A|+|B|-|H|\}$.

Corollary

\boldsymbol{G} : a finite abelian group
$A, B \subseteq G$
$\Rightarrow \exists H \leq G$ s.t. $|A+B| \geq|A+H|+|B+H|-|H|$.

Application of Kneser's addition theorem

Proposition 3

\boldsymbol{A} : an \boldsymbol{n}-subset of $\boldsymbol{G}=\mathbb{Z}_{\boldsymbol{m}}$ s.t. $\langle\boldsymbol{A}\rangle=\mathbb{Z}_{\boldsymbol{m}}$
$\Rightarrow|A-A| \geq \min \left\{m, s_{n}\right\}$, where

$$
s_{n}= \begin{cases}3 n / 2, & \text { if } n \equiv 0(\bmod 2) \\ 3(n+1) / 2, & \text { if } n \equiv 1(\bmod 2)\end{cases}
$$

Application of Kneser's addition theorem

Proposition 3

\boldsymbol{A} : an \boldsymbol{n}-subset of $\boldsymbol{G}=\mathbb{Z}_{\boldsymbol{m}}$ s.t. $\langle\boldsymbol{A}\rangle=\mathbb{Z}_{\boldsymbol{m}}$
$\Rightarrow|A-A| \geq \min \left\{m, s_{n}\right\}$, where

$$
s_{n}= \begin{cases}3 n / 2, & \text { if } n \equiv 0(\bmod 2) \\ 3(n+1) / 2, & \text { if } n \equiv 1(\bmod 2)\end{cases}
$$

The even case was already proved by Hamidoune-Plagne, 2002. The odd case needs a bit complicated modification.

Application of Kneser's addition theorem

Proposition 4

\boldsymbol{X} : an \boldsymbol{n}-point subset of $\boldsymbol{R}_{\boldsymbol{m}}$ with \boldsymbol{k} distances satisfying $\langle\boldsymbol{X}\rangle=\mathbb{Z}_{\boldsymbol{m}}$ \Rightarrow If $k<M_{n}$, then $m \in\{2 k, 2 k+1\}$, where

$$
M_{n}= \begin{cases}3 t, & \text { if } n=4 t \text { or } 4 t-1 \\ 3 t-2, & \text { if } n=4 t-2 \text { or } 4 t-3\end{cases}
$$

Application of Kneser's addition theorem

Proposition 4

\boldsymbol{X} : an \boldsymbol{n}-point subset of $\boldsymbol{R}_{\boldsymbol{m}}$ with \boldsymbol{k} distances satisfying $\langle\bar{X}\rangle=\mathbb{Z}_{\boldsymbol{m}}$ \Rightarrow If $k<M_{n}$, then $m \in\{2 k, 2 k+1\}$, where

$$
M_{n}= \begin{cases}3 t, & \text { if } n=4 t \text { or } 4 t-1 \\ 3 t-2, & \text { if } n=4 t-2 \text { or } 4 t-3\end{cases}
$$

Sketch of proof:

- $|\bar{X}-\bar{X}| \in\{2 k, 2 k+1\}$

Application of Kneser's addition theorem

Proposition 4

\boldsymbol{X} : an \boldsymbol{n}-point subset of $\boldsymbol{R}_{\boldsymbol{m}}$ with \boldsymbol{k} distances satisfying $\langle\bar{X}\rangle=\mathbb{Z}_{\boldsymbol{m}}$ \Rightarrow If $k<M_{n}$, then $m \in\{2 k, 2 k+1\}$, where

$$
M_{n}= \begin{cases}3 t, & \text { if } n=4 t \text { or } 4 t-1 \\ 3 t-2, & \text { if } n=4 t-2 \text { or } 4 t-3\end{cases}
$$

Sketch of proof:

- $|\bar{X}-\bar{X}| \in\{2 k, 2 k+1\}$
- $2 k+1 \geq|\bar{X}-\bar{X}| \geq \min \left\{m, s_{n}\right\} \Longleftrightarrow k \geq \min \left\{\lceil(m-1) / 2\rceil, M_{n}\right\}$

Application of Kneser's addition theorem

Proposition 4

\boldsymbol{X} : an \boldsymbol{n}-point subset of $\boldsymbol{R}_{\boldsymbol{m}}$ with \boldsymbol{k} distances satisfying $\langle\bar{X}\rangle=\mathbb{Z}_{\boldsymbol{m}}$ \Rightarrow If $k<M_{n}$, then $m \in\{2 k, 2 k+1\}$, where

$$
M_{n}= \begin{cases}3 t, & \text { if } n=4 t \text { or } 4 t-1 \\ 3 t-2, & \text { if } n=4 t-2 \text { or } 4 t-3\end{cases}
$$

Sketch of proof:

- $|\bar{X}-\bar{X}| \in\{2 k, 2 k+1\}$
- $2 k+1 \geq|\bar{X}-\bar{X}| \geq \min \left\{m, s_{n}\right\} \Longleftrightarrow k \geq \min \left\{\lceil(m-1) / 2\rceil, M_{n}\right\}$
- Since $\boldsymbol{k}<\boldsymbol{M}_{\boldsymbol{n}}$, we have $\lceil(\boldsymbol{m}-\mathbf{1}) / \mathbf{2}\rceil \leq \boldsymbol{k}<\boldsymbol{M}_{\boldsymbol{n}}$.

Application of Kneser's addition theorem

Proposition 4

\boldsymbol{X} : an \boldsymbol{n}-point subset of $\boldsymbol{R}_{\boldsymbol{m}}$ with \boldsymbol{k} distances satisfying $\langle\bar{X}\rangle=\mathbb{Z}_{\boldsymbol{m}}$ \Rightarrow If $k<M_{n}$, then $m \in\{2 k, 2 k+1\}$, where

$$
M_{n}= \begin{cases}3 t, & \text { if } n=4 t \text { or } 4 t-1 \\ 3 t-2, & \text { if } n=4 t-2 \text { or } 4 t-3\end{cases}
$$

Sketch of proof:

- $|\bar{X}-\bar{X}| \in\{2 k, 2 k+1\}$
- $2 k+1 \geq|\bar{X}-\bar{X}| \geq \min \left\{m, s_{n}\right\} \Longleftrightarrow k \geq \min \left\{\lceil(m-1) / 2\rceil, M_{n}\right\}$
- Since $k<M_{n}$, we have $\lceil(m-1) / 2\rceil \leq k<M_{n}$.
- $\lceil(m-1) / 2\rceil<M_{n} \Longleftrightarrow n>4\lceil(m-1) / 2\rceil / 3-1>\lfloor m / 2\rfloor$

Application of Kneser's addition theorem

Proposition 4

\boldsymbol{X} : an \boldsymbol{n}-point subset of $\boldsymbol{R}_{\boldsymbol{m}}$ with \boldsymbol{k} distances satisfying $\langle\bar{X}\rangle=\mathbb{Z}_{\boldsymbol{m}}$ \Rightarrow If $k<M_{n}$, then $m \in\{2 k, 2 k+1\}$, where

$$
M_{n}= \begin{cases}3 t, & \text { if } n=4 t \text { or } 4 t-1 \\ 3 t-2, & \text { if } n=4 t-2 \text { or } 4 t-3\end{cases}
$$

Sketch of proof:

- $|\bar{X}-\bar{X}| \in\{2 k, 2 k+1\}$
- $2 k+1 \geq|\bar{X}-\bar{X}| \geq \min \left\{m, s_{n}\right\} \Longleftrightarrow k \geq \min \left\{\lceil(m-1) / 2\rceil, M_{n}\right\}$
- Since $k<M_{n}$, we have $\lceil(m-1) / 2\rceil \leq k<M_{n}$.
- $\lceil(m-1) / 2\rceil<M_{n} \Longleftrightarrow n>4\lceil(m-1) / 2\rceil / 3-1>\lfloor m / 2\rfloor$
- X have $k=\lfloor m / 2\rfloor$ distances.

Open problem

Problem

- How about the case where $\boldsymbol{k} \geq \boldsymbol{M}_{\boldsymbol{n}}$?

For example, can you say anything about the structure of 100-points with 75 distances on S^{1} ?
(Can you show that if $\boldsymbol{k}=\boldsymbol{M}_{\boldsymbol{n}}, \boldsymbol{X}$ lies on a regular polygon or $\boldsymbol{R}_{\boldsymbol{m}} \cup \sigma_{c}\left(\boldsymbol{R}_{m}\right)$?)

Open problem

Problem

- How about the case where $k \geq M_{n}$?

For example, can you say anything about the structure of 100-points with 75 distances on S^{1} ?
(Can you show that if $\boldsymbol{k}=\boldsymbol{M}_{\boldsymbol{n}}, \boldsymbol{X}$ lies on a regular polygon or $\boldsymbol{R}_{m} \cup \sigma_{c}\left(\boldsymbol{R}_{m}\right)$?)

- Can you find a high dimensional(?) analogy of our result?

Open problem

Problem

- How about the case where $k \geq M_{n}$?

For example, can you say anything about the structure of 100-points with 75 distances on S^{1} ?
(Can you show that if $\boldsymbol{k}=\boldsymbol{M}_{\boldsymbol{n}}, \boldsymbol{X}$ lies on a regular polygon or $\boldsymbol{R}_{\boldsymbol{m}} \cup \sigma_{\boldsymbol{c}}\left(\boldsymbol{R}_{m}\right)$?)

- Can you find a high dimensional(?) analogy of our result?

Thank you very much for your attention!

