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8 points on the unit circle with 5 distances

Such 8 points lie on a decagon or a hendecagon.

Rn: a regular n-sided polygon
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100 points on the unit circle with 70 distances

Can you say anything about the structure of the set of such
100-points?

Yes! Such 100 points lie on R140 or R141!

How about the general case?
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Background

.
Conjecture (Erdős, AMM, 1946)
..

.
Every convex n-gon has at least ⌊n/2⌋ different distances between
distinct vertices.

Altman (1963)
k ≥ (n − 1)/2
If n = 2k + 1, then X = R2k+1.

Fishburn (1995)
If n = 2k, then X = R2k or X ⊂ R2k+1.
For (n, k) = (7, 4), X ⊂ R2k or X ⊂ R2k+1.

.
Conjecture (Fishburn, 1995)
..
.If n = 2k − 1, then X ⊂ R2k or X ⊂ R2k+1.

This conjecture is correct for (n, k) = (9, 5) and (11, 6)
(Erdős-Fishburn, 1996).
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Background

.
Problem
..
.For which s, does it hold that X ⊂ R2k or X ⊂ R2k+1 if n = 2k − s?

We can construct infinite many examples of sets of n points not
lying on regular polygons if s ≥ 2k/3 (or n ≤ 4k/3).
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Counterexamples

6-points 4-distances 8-points 6-distances
.
Remark
..

.

For a set X of points on S1, the number of Euclidean distances
between distinct points in X is equal to that of (shorter) arc lengths.

.
Example
..

.

Let

Mn =

3t, if n = 4t or 4t − 1,

3t − 2, if n = 4t − 2 or 4t − 3.

Then, there exist (infinitely many) n-point sets with k = Mn

distances on S1 not lying on regular polygons.
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Can you construct counter-examples for k < Mn?
.
Theorem (M.-Shinohara, 2016)
..

.

Let

Mn =

3t, if n = 4t or 4t − 1,

3t − 2, if n = 4t − 2 or 4t − 3.

If k < Mn, then any n-point set on S1 with k distances lies on R2k

or R2k+1.

.
Proposition 1
..

.

If k < Mn, then any n-point set on S1 with k distances lies on Rm

for some integer m.

.
Proposition 2
..

.

Assume that k < Mn and an n-point set on S1 with k distances lies
on Rm. Then, m ∈ {2k, 2k + 1}.
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Proposition 1: cut & join method

Assume the existence of a 4t + 1-point set X with k < 3t + 1
distances.

We can cut the circle into two half circles so that each of them
contains exactly 2t + 1 of the points in X.

We can classify 2t + 1-point sets on R with k < 3t + 1
distances having both rational and irrational intervals.

We can show that the circle as a join of such two distance
sets on R satisfies k ≥ 3t + 1.
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Proposition 2

Proposition 2 is due to Kneser’s addition theorem.
.
Remark
..

.

A subset X of points of Rm can be viewed as a subset X of Zm.

Then, # of distances between points in X ⊂ Rm is equal to

(# of differences between elements in X ⊂ Zm + ϵ)/2, where ϵ = 1
or 0 depending on whether X contains a point having its antipodal
in X or not.
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Kneser’s addition theorem

.
Theorem (Kneser, 1953)
..

.

G: a finite abelian group
A, B ⊆ G
=⇒ ∃H ≤ G s.t. |A + B| ≥ min{|G|, |A| + |B| − |H |}.

.
Corollary
..

.

G: a finite abelian group
A, B ⊆ G
=⇒ ∃H ≤ G s.t. |A + B| ≥ |A + H | + |B + H | − |H |.
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Application of Kneser’s addition theorem

.
Proposition 3
..

.

A: an n-subset of G = Zm s.t. ⟨A⟩ = Zm

=⇒ |A − A| ≥ min{m, sn}, where

sn =

3n/2, if n ≡ 0 (mod 2),

3(n + 1)/2, if n ≡ 1 (mod 2).

The even case was already proved by Hamidoune-Plagne, 2002.
The odd case needs a bit complicated modification.
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Application of Kneser’s addition theorem

.
Proposition 4
..

.

X: an n-point subset of Rm with k distances satisfying ⟨X⟩ = Zm

=⇒ If k < Mn, then m ∈ {2k, 2k + 1}, where

Mn =

3t, if n = 4t or 4t − 1,

3t − 2, if n = 4t − 2 or 4t − 3.

Sketch of proof:

|X − X| ∈ {2k, 2k + 1}
2k+ 1 ≥ |X − X| ≥ min{m, sn} ⇐⇒ k ≥ min{⌈(m− 1)/2⌉, Mn}
Since k < Mn, we have ⌈(m− 1)/2⌉ ≤ k < Mn.

⌈(m− 1)/2⌉ < Mn⇐⇒ n > 4⌈(m− 1)/2⌉/3− 1 > ⌊m/2⌋
X have k = ⌊m/2⌋ distances.
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Open problem

.
Problem
..

.

How about the case where k ≥ Mn?
For example, can you say anything about the structure of
100-points with 75 distances on S1?
(Can you show that if k = Mn, X lies on a regular polygon or
Rm ∪ σc(Rm)?)

Can you find a high dimensional(?) analogy of our result?

Thank you very much for your attention!
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