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Abstract. We will consider a finite set embedded in some geometry, which has a geo-
metrical property. For example, a set S of points in a finite projective plane, with the
property that every line is incident with a point of S. The polynomial method involves
defining a polynomial f , or a set of polynomials, which translates to geometric property
of S to an algebraic property of f . The hope is that one can gain information from
the algebraic property of f . This information is then translated back to the geometrical
setting to obtain information about S. For example, suppose that we have constructed a
polynomial f of degree |S| and that the geometrical property of S implies some algebraic
property of f . If the algebraic property of f implies a lower bound on the degree of f
then we obtain a lower bound for |S|.

The geometric objects we will consider will, for the most part, be embedded in projec-
tive and affine spaces over finite fields and will often have some link to error-correcting
codes. In some examples, we will also consider finite sets of points and lines embedded
in projective and affine spaces over other fields, the reals for example.

The algebraic methods we shall use include applications of Bezout’s theorem, the
resultant method, Hasse derivatives, combinatorial nullstellensatz, group characters, in-
terpolation.

1. Basic objects and definitions

Let K denote an arbitrary field.

Let Fq denote the finite field with q elements, where q is the power of a prime p.

Let Vk(K) denote the k-dimensional vector space over K.

Let PGk−1(K) denote the (k − 1)-dimensional projective space over K.

Let AGk(K) denote the k-dimensional affine space over K.

An affine point of AGk(K) is simply of vector of Vk(K) which, with respect to a basis, has

coordinates (x1, . . . , xk). A projective point of PGk−1(K) is a one-dimensional subspace

of Vk(K) which, with respect to a basis, is 〈(x1, . . . , xk)〉, where 〈u1, . . . , ur〉 denotes the

subspace spanned by the vectors u1, . . . , ur.
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The weight of a vector is the number of non-zero coordinates it has with respect to a fixed

canonical basis.

A k-dimensional linear code of length n and minimum distance d is a k-dimensional

subspace of Vn(Fq) in which every non-zero vector has weight at least d.

The greatest common divisor of two polynomials f and g is denoted by (f, g).

2. Lacunary polynomials

A lacunary polynomial is a polynomial that in the sequence of its coefficients has a run

of zeros. If a lacunary polynomial in K[X] factorises into linear factors in K[X], then one

can usually say something further about the polynomial.

Lemma 1. Let

f(X) = g(X)Xq + h(X)

be a polynomial in Fq[X] which factorises into linear factors in Fq[X].

If deg g, deg h 6 1
2
(q − 1) then either

f(X) = g(X)(Xq −X)

or

f(X) = (g, h)e(Xp),

for some polynomial e ∈ Fq[X].

Example 2. (q odd). g(X) = 1, h(X) = X(q+1)/2. Then

f(X) = Xq +X(q+1)/2 = X(q+1)/2(X(q−1)/2 + 1),

factorises into linear factors.

Example 3. (q odd). g(X) = X(q−1)/2 − 3, h(X) = 3X(q+1)/2 −X. Then

f(X) = X(X(q−1)/2 − 1)3,

factorises into linear factors.

Theorem 4. Let S be a set of points of PG2(Fq) with the property that every line is

incident with at least one point of S. If |S| < 3(q + 1)/2 and q is prime then S contains

all the points of a line.
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A blocking set B is a set of points of PGk−1(Fq) in which every hyperplane is incident

with at least a point of B. More generally a t-fold blocking set B is a set of points of

PGk−1(Fq) in which every hyperplane is incident with at least t points of B.

A blocking set is called trivial if it contains a line.

A spread of V2k(Fq) is a set of k-dimensional subspaces which partition the non-zero

vectors. From a spread one can make projective planes amongst other things. A partial

spread of V4(Fq) gives rise to a blocking set of PG2(Fq) which is trivial if and only if the

partial spread is not maximal.

Many of the results for blocking sets in PG2(Fq) are easily extendable to PGk−1(Fq).

Let G be a matrix whose rows form a basis for a k-dimensional linear code of length n

and minimum distance d. Then the columns of G are a set T of vectors of Vk(Fq) with

the property that any hyperplane contains at most n−d vectors of T . Considering the set

as points in the corresponding projective space PGk−1(Fq), this gives a set S of n points

with the property that any hyperplane contains at most n− d points of S. If S contains

no multiple points, which is equivalent to the dual code having minimum distance at least

three, then the complement of S is a ((qk−1 − 1)/(q − 1) − n + d)-fold blocking set of

PGk−1(Fq). Thus any constructions or bounds on such t-fold blocking sets is in one to

one correspondence with linear codes whose dual has minimum distance at least three.

Example 5. (The bubble construction) Let Fs be a subfield of Fq, where q = st. The

vector space V3(Fq) is also a vector space over Fs, isomorphic to V3t(Fs). The one-

dimensional subspaces of V3(Fq) become a spread of t-dimensional subspaces of V3t(Fs)
and the two-dimensional subspaces of V3(Fq) become a spread of 2t-dimensional subspaces

of V3t(Fs). Let U be a (t+1)-dimensional subspace of V3t(Fs). A point of PG2(Fq) is a one-

dimensional subspaces of V3(Fq) and therefore a t-dimensional subspaces of V3t(Fs). Let

B be the set of points of PG2(Fq) which intersect U non-trivally, under this identification.

Then B is a blocking set, since any line of PG2(Fq) corresponds to a 2t-dimenisonal

subspace of V3t(Fs) and therefore intersect U non-trivially.

Conjecture 6. All minimal blocking set of PGk−1(Fq) with less than 3(q + 1)/2 points

come from the bubble construction (Example 5).

Example 7. (The coset construction) Let H be a multiplicative subgroup of Fq. The set

{〈(a, 0, 1)〉 | a ∈ H} ∪ {〈(0, b, 1)〉 | b 6∈ H} ∪ {〈(1, d, 0)〉 | d 6∈ H}



4 SIMEON BALL AND AART BLOKHUIS

is a blocking set of PG2(Fq) of size 2q + 1 − (q − 1)/r, where |H| = (q − 1)/r. Observe

that if r = 2 then this blocking set has size 3(q + 1)/2.

3. Functions which determine few directions

Let φ be a function from Fq to Fq.

Let

D(φ) = {d ∈ Fq | there exist x, y ∈ Fq such that d =
φ(y)− φ(x)

y − x
},

denote the set of directions determined by φ.

Observe that for d ∈ Fq, the function φ(x) + dx is a permutation if and only if −d is not

a direction determined by φ.

The graph of the function φ is a set of q affine points in AG2(Fq). This set of points

we can consider as a set of points in the affine part of the projective plane PG2(Fq),
where the infinte point 〈(0, 1, 0)〉 is not determined. Thus, by changing basis, or applying

symmetry, the graph of a function is equivalent to a set of q affine points for which at

least one direction is not determined. We have the following examples.

Example 8. (The bubble construction). By choosing the subspace U in Example 5

carefully, we can construct a function φ which determines between q/r+1 and (q−1)/(r−1)

directions, where Fr is a subfield of Fq.

Example 9. (The coset construction). Considering only the affine points of Example 7

we obtain a function φ which determines q + 1− |H| directions.

Exercise 1. Prove directly that the function φ(x) = x(q+1)/2 determines (q + 3)/2 direc-

tions when q is odd.

The k-th Hasse derivative of a polynomial

f(X) =
∑

ciX
i,

is
∂kf

∂X
=
∑(

i

k

)
ciX

i−k.

Exercise 2. Prove that

∂k(fg)

∂X
=

k∑
i=0

∂if

∂X

∂k−ig

∂X
.
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Exercise 3. Prove that if a is a zero of f of multiplicity m then a is a zero of ∂kf
∂X

of

multiplicity at least m− k.

Exercise 4. By Lemma 1, if Xq + h(X) factorises into linear factors and 2 6 deg h 6
1
2
(q − 1) then h = e(Xp) for some polynomial e. Prove that

deg h >
q + s

s+ 1
,

for some s dividing q.

Theorem 10. A function φ that determines at most (q+ 1)/2 directions comes from the

bubble construction.

More can be said in the case that q is prime. Suppose φ determines N directions. Then

the function x → φ(x)i (the i-th power of φ(x)), when considered as a polynomial, has

degree bounded by approx. N + i. This property can be used to prove the following

theorem.

Theorem 11. (q prime) A function f which determines less than (2q + 1)/3 directions

comes from the coset construction, Example 9.

4. Complex characters

Let w ∈ G = Fkp.

Define a character χw as a map from G to C by

χw(x) = e(2πi/p)(w·x),

where · is the standard scalar product.

Lemma 12. If g(x) is an integer combination of characters and has the property that

g(x) = 0 for all x 6= 0, then |G| divides g(0).

Exercise 5. Let S be a set of n points in AG2(Fq) with the property that any line is

incident with at most t points of S. Prove that n 6 (t−1)q+ t and that if n = (t−1)q+ t

then every line is incident with either 0 or t points of S and t divides q.

Exercise 6. Let S be a set of n points in AGk(Fq) with the property that any hyperplane

is incident with at most t points of S. Prove that n 6 max(tq, (t− k + 2)q + t).
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Define

f(X, x) =
∏
u∈S

(X − χu(x)),

so that it is a polynomial whose coefficients are integer combinations of complex charac-

ters, and for every x ∈ G this defines a polynomial f(X, x) ∈ C[X].

Using the fact that f(X, x) divides (Xp− 1)t and its coefficients are integer combinations

of complex characters one can prove the following theorem.

Theorem 13. Let S be a set of n points in AGk(Fp) with the property that any hyperplane

is incident with at most t points of S. Then the coefficient of X tp−n+ε in

(X − 1)−n(Xp − 1)t

is divisible by pk, for all ε > 1.

The previous theorem allows one to prove the following theorem.

Theorem 14. Let S be a set of n points in AGk(Fp) with the property that any hyperplane

is incident with at most t points of S. Then

n 6 (t− e)p+ e,

where e ∈ {0, 1, . . . , k − 1} is maximal with the property that(
t

e

)
6= 0 (mod pk−e).

Exercise 7. Let S be a set of n points in AGk(Fp) with the property that any r-dimensional

subspace is incident with at most t points of S. Then the coefficient of X tpn−r−n+ε in

(X − 1)−n(Xpn−r − 1)t

is divisible by pk, for all ε > 1.

5. Combinatorial Nullstellensatz

Let Si be a finite subset of K, for i = 1, . . . , k. Let

gi(Xi) =
∏
a∈Si

(Xi − a).

Theorem 15. Let f ∈ K[X1, . . . , Xk]. If f is zero on S1 × · · · × Sk then

f =
k∑
i=1

gi(Xi)hi(X1, . . . , Xk),
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for some polynomials hi, where deg hi 6 deg f − |Si|.

Let Di be a non-empty subset of Si. Let

`i(Xi) =
∏
a∈Di

(Xi − a).

Theorem 16. Let f ∈ K[X1, . . . , Xk]. If f is zero on S1× · · · ×Sk \ (D1× · · · ×Dk) and

non-zero at at least one point of D1 × · · · ×Dk then

f =
k∑
i=1

gi(Xi)hi(X1, . . . , Xk) + u(X1, . . . , uk)
k∏
i=1

gi(Xi)

`i(Xi)
,

for some polynomials u 6= 0 and hi, where deg hi 6 deg f − |Si|. This implies

deg f >
k∑
i=1

(|Si| − |Di|).

An affine blocking set B is a set of points of AGk(Fq) in which every hyperplane is incident

with at least a point of B. More generally a t-fold affine blocking set B is a set of points

of AGk(Fq) in which every hyperplane is incident with at least t points of B.

Let m be the maximum weight of a linear code. Then by shortening the code by n −m
which may reduce the minimum distance by n − m, one obtains a code which contains

the all-1 vector. As before, we consider the set of columns of a generator matrix for this

code and observe now that this is a set S of points of AGk−1(Fq). The complement of S is

t-fold blocking set of AGk−1(Fq). In difference to the projective case, if there are mutliple

points occurring in the set of points obtained from the the set of columns of the generator

matrix we take the complement with respect to w copies of the points, where w is the

maximum multiplicity occurring. The reason for this is that allowing multiple points in

an affine blocking set does not affect any of the proofs we shall consider, so we shall also

allow multiple points in constructions, although this does not appear to help.

The following example is for t < q.

Example 17. The set B of (t + k − 1)(q − 1) + 1 points on t + k − 1 concurrent lines

of AGk(Fq) is a t-fold blocking set of AGk(Fq), provided that the directions of the lines,

when viewed as a set S of points of PGk−1(Fq) form an arc, i.e. any k points of S span

the whole space.

Exercise 8. Let B be a set of n points of AGk(Fq) with the property that every hyperplane

is incident with at least t points of B. Prove that n > max(tq, (t+ k − 2− qk−2)q + t).
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By applying the Combinatorial nullstellensatz (generalised to zeros of multipicity and

then punctured) one can improve on the trivial bound for t 6 (k − 1)(q − 1).

Theorem 18. Let B be a set of n points of AGk(Fq) with the property that every hyper-

plane is incident with at least t points of B. Then n > (t+ k − 1)(q − 1) + 1.

Using Theorem 14 one obtains the following theorem in the case q is prime.

Theorem 19. Let B be a set of n points of AGk(Fq) with the property that every hyper-

plane is incident with at least t points of B. If q is prime, then

|B| > tq + e(q − 1),

where e ∈ {0, 1, . . . , k − 1} is maximal with the property that(
−t
e

)
6≡ 0 (mod qk−e).

One can improve on these bounds in the case that q is not a prime by using p-adic lifting,

see Theorem 21.

6. The p-adic numbers

Let Zp denote the p-adic integers. Let f ∈ Zp[X] be a polynomial of degree h whose

reduction modulo p is irreducible. Then f itself is irreducible, since any factorization

would give a factorization modulo p. Let R = Zp[X]/(f) be the quotient ring of Zp[X]

by the ideal (f). Let

p = Rp = {x ∈ R | x = 0 (mod p)}.

The ideal p is the maximal ideal of R and R/p is isomorphic to the finite field Fq.

Let S be a finite subset of R whose elements are distinct modulo p and define

g(X) =
∏
u∈S

(X − u).

Lemma 20. Let f ∈ R[X] be the product of linear factors. If, for each u ∈ S, there are

at least t factors X − a of f for which a = u modulo p, then

f(X) =
t∑

j=0

g(X)t−jpjhj(X),

for some polynomials hj, where deg hj 6 deg f − (t− j)|S|.
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Theorem 21. Let B be a set of n points of AGk(Fq) with the property that every hyper-

plane is incident with at least t points of B. If

n 6 (t+ k + 1− e)q − k − 1− ε

for some e ∈ {1, . . . , t− 1} and ε > 1 then

k−1∑
j=0

(−1)j
(
−t+ e− 1

j

)(
n

(t− e+ 1)q − ε+ j(q − 1)

)
= 0 (mod pe).

7. Extension fields as vector spaces

The field Fqk is a k-dimensional vector space over Fq. Hence, the points of AGk(Fq) can

be considered as elements in Fqk . The hyperplanes of AGk(Fq) are the set of solutions of

equations of the form

Tr(aX) = b,

where

Tr(x) = x+ xq + · · ·+ xq
k−1

,

and a ∈ Fqk and b ∈ Fq.

Three points x, y, z ∈ Fqk are collinear iff

0 =

∣∣∣∣∣∣
1 x xq

1 y yq

1 z zq

∣∣∣∣∣∣ = (x− y)(x− z)

∣∣∣∣∣∣
1 x xq

0 1 (x− y)q−1

0 1 (x− z)q−1

∣∣∣∣∣∣ ,
so if and only if (x− y)q−1 = (x− z)q−1.

Theorem 22. Let S be a set of q + m points of AG2(Fq) and let N be the set of points

with the property that every line incident with a point of N is incident with at least one

point of S. Then |N | 6 m(q − 1).

Exercise 9. Let S be a set of t(q + 1) + m − 1 points of AG2(Fq) and let N be the set

of points with the property that every line incident with a point of N is incident with at

least t points of S. Prove that if (
t+m− 1

m

)
6= 0,

then |N | 6 m(q − 1).
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Exercise 10. Let S be a set of points of AG2(Fq) with the property that every line incident

is incident with at least t points of S. Prove that

|S| > (t+ 1)q − pe,

where e is maximal such that pe divides t.

Exercise 11. Let S be a set of points of AG2(Fq) with the property that every line incident

is incident with at most t points of S. Prove that

|S| 6 (t− 1)q + pe,

where e is maximal such that pe divides t.

Theorem 23. Suppose that S is a set of points of AG2(Fq) with the property that every

line incident is incident with either zero or exactly t points of S. If q is odd then S is

either a point or the whole plane.

8. Sets of points as algebraic hypersurfaces

Lemma 24. Let S be a set of points of AGk(Fq). If

|S| <
(
n+ k

k

)
then there exists a polynomial f of degree at most n with the property that

S ⊆ V (f) = {x ∈ AGk(Fq) | f(x) = 0}.

Let N be a positive integer.

Let L be a set of lines of AGk(K), D be the set of directions of these lines and let S be a

set of points in AGk(K) in which every line of L is incident with at least N points of S.

Theorem 25. If (k!|S|) < Nk then D is contained in an algebraic hypersurface of degree

at most (k!|S|)1/k.

We define a Nk−1 grid in PGk−1(K) as a point set, which with respect to a suitable basis,

has the form

{〈(a1, . . . , ak−1, 1)〉 | ai ∈ Ai},

where Ai is a subset of K of size N for all i = 1, . . . , k − 1.

Corollary 26. If D is an Nk−1 grid then |S| > Nk/k!.
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Corollary 27. If K = Fq and D is the set of all directions (i.e. PGk−1(Fq)) then |S| >
qk/k!.

One can construct good examples for n = o(N) using the following theorem.

Theorem 28. Suppose that L is a set of N lines of AG2(K) and let S be a set of points

with the property that every line of L is incident with N points of S. Suppose that there

are N parallel lines mi, which are incident with 1
2
N − εi points of S which themselves are

incident with two lines of L, where ε1, . . . , εN have the property that
N∑
i=1

εi 6 dN,

for some constant d, not depending on N .

Then there is a set L′ of Nn−1 lines in AGn(K), n 6 1
2
N + 1, whose directions contain a

Nn−1 grid and a set of points S ′ with the property that every line of L′ is incident with N

points of S ′ and where S ′ has less than 2(1
2
N)n + c(n)Nn−1 points.

Example 29. If K = Fq and N = q then we can take L to be the lines of a dual conic

(or any oval), where one of the lines is taken to be the line at infinity π2. The points of

S will include the affine points incident with a line of L.

Let x be the point incident with π2 and not incident with a line of L. The lines m1, . . . ,mN

will be the q affine lines incident with x. Suppose q is odd. Since each point not on the

conic but incident with a tangent to the conic is incident with (q − 1)/2 bisecants, we

have ε = 1
2

for all i = 1, . . . , q before we add points to S. Adding N points to S does not

affect the fact that the condition on the εi. If q is even then each point not on the conic

but incident with a tangent to the conic is incident with q/2 bisecants, except one point

which is incident with no bisecants. Therefore, εi = 0 for i = 1, . . . , q − 1 and εq = 1
2
q.

Again, adding N points to S does not affect the condition on the εi.

Example 30. If K = R then we can take L to be the set of lines dual to a regular N -gon.

We dualise in such a way that the line at infinity becomes a point on the line at infinity.

Let S be the set of affine points dual to the bisecants to the N -gon. This gives N − 1

points on each line of L and we arbitrarily add an additional point to S incident with `,

for each line ` ∈ L.

The line joining (cos(2πa/N), sin(2πa/N), 1) and (cos(2πb/N), sin(2πb/N), 1) meets the

line at infinity in the point (− tan(π(a + b)/N), 1, 0), so there are precisely N points on

the line at infinity where the bisecants meet.
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Let p1, . . . , pN be the N points on the line at infinity where the bisecants meet. Let

m1, . . . ,mN be the N (parallel) lines dual to the points p1, . . . , pN . Before we add points

to S we have that ifN is even then εi = 0 for i = 1, . . . , 1
2
N and εi = 1 for i = 1

2
N+1, . . . , N

and if N is odd then εi = 1
2

for i = 1, . . . , N , ordering the lines in a suitable way. Adding

N points to S does not affect the condition on ε1, . . . , εN .

Theorem 31. Suppose that L is a set of lines of AG2(Fq). If q is odd and L has a line for

every direction then |S| > q(q+ 1)/2 + (q− 1)/2. Moreover if |S| = q(q+ 1)/2 + (q− 1)/2

then S comes from Example 29.

9. Bezout’s theorem

Theorem 32. If f, g ∈ K[X, Y ] have no common factor then V (f) ∩ V (g) contains at

most (deg f)(deg g) points.

Theorem 33. If f, g ∈ K[X, Y, Z] have no common factor then V (f) ∩ V (g) contains at

most (deg f)(deg g) lines.

Example 34. Let L′ be the set of N1+2e lines of AG2(R),

L′ = {y = mx+ c | m ∈ {1, . . . , N e}, c ∈ {1, . . . , N1+e}},

and let S ′ be the of 2N2+e points

S ′ = {(x, y) | x ∈ {1, . . . , N}, y ∈ {1, . . . , 2N1+e}}.

Every line of L′ is incident with at least N points of S ′.

By taking the union N1−2e such planar examples one can obtain an example L of N2 lines

of AG3(R) and a set S of 2N3−e lines with the property that every line of L is incident

with at least N points of S.

Theorem 35. Let N be a positive integer and let a, b be positive numbers.

Let L be a set of aN2 lines in AG3(K) with the property that at most bN of the lines of

L are contained in a plane. Let S be a set of points with the property that every line of L

is incident with at least N points of S.

If char(K) = 0 or K = Fp where p is prime, then there is a constant c = c(a, b) such that

|S| > cN3.

The proof of Theorem 35 uses Lemma 36 and Bezout’s theorem. The proof of Lemma 36

uses dyadic pigeon holing and Lemma 24.
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Lemma 36. There is a constant c = c(a, b) such that if |S| < cN3 then there is a

hypersurface V (f), where f is absolutely irreducible of degree d < 1
4
N , subsets S ′′ ⊆ S ′ ⊆

S ∩ V (f) and subsets L′′ ⊆ L′ ⊆ L, with the property that each line of L′ is incident with

at least 4d points of S ′, each point of S ′′ is incident with at least 2m/(aN2) lines of L′,

and each line of L′′ is incident with at least 4d points of S ′′ such that

|L′′| > bdm/N.

Example 37. Using Example 29 and Example 30 lifted to three dimensions by Theo-

rem 28, one can consruct examples of Bourgain sets for which c(1, 1) = 1
4
.

Theorem 35 does not hold if K = Fq and q is not a prime. In the following example q is

assumed to be a square.

Example 38. The Hermitian polar space Hr defined, for example, by the equation

x
√
q+1

1 + x
√
q+1

2 + x
√
q+1

3 = 1,

has q2 lines and q2.5 points (ignoring smaller order terms) and has the property that there

are at most
√
q of the lines contained in any plane

10. The resultant of two polynomials

Let

f(X) =
n∑
i=0

fiX
i, g(X) =

n−1∑
i=0

giX
i

be polynomials in K[X] where f has degree n.

Let

b = Xm +
m−1∑
i=0

biX
i, a(X) =

m−1∑
i=0

aiX
i,

be such that

af + bg = 0.

Considering the coefficients of Xn+m−1, . . . , Xn+m−1 gives 2m lienar equations which in

matrix form are given by the equation

(a0, . . . , am−1, b0, . . . , bm−1)Rm = −(gn−1−2m, . . . , gn−1).

Note that deg g > n−m, so the right-hand side is not zero.

Let h = (f, g).
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Ifm > k+1 then there are multiple solutions (b can be a multiple of f/h and a = −b(g/h)).

Hence detRm = 0.

If m = k then there is a unique solution (b = γf/h, γ is chosen so that b is monic and

a = −b(g/h)). Hence detRm 6= 0.

Suppose that f, g ∈ K[X, Y ]. By writing f and g are polynomials in X whose coefficients

are polynomials in Y , the determinant of Rm is a polynomial in Y .

Lemma 39. Suppose that there is a y0 ∈ K such that

deg(f(X, y0), g(X, y0)) = n−m.

If there are nh elements y ∈ K for which

deg(f(X, y), g(X, y)) = n− (m− h),

then
h∑
i=1

hnh 6 deg(detRm).

Theorem 40. Let S be a set of points of PG2(Fq) and suppose that there is a point

p∞ 6∈ S such that r lines incident with p∞ contain all the points of S. Then the number

of lines incident with S is at most

1 + rq + (|S| − r)(q + 1− r).

11. Arcs

An arc S is a set of vectors of Vk(Fq) in which every subset of S of size k is a basis of the

space, i.e. every k-subset is a set of linearly independent vectors. Equivalently, we define

an arc of PGk−1(Fq) as a set of points in which every subset of size k spans the whole

space.

Exercise 12. Let S be an arc of size n of Vk(Fq). Prove that if k > q then n 6 k + 1

and give an example where n = k + 1.

Exercise 13. Prove that

S = {(1, x, . . . , xk−1) | x ∈ Fq} ∪ {(0, . . . , 0, 1)},

is an arc of Vk(Fq) of size q + 1.
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Exercise 14. Prove that if q = 2h and (e, h) = 1 then

S = {(1, x, x2e) | x ∈ Fq} ∪ {(0, 0, 1), (0, 1, 0)},

is an arc of V3(Fq) of size q + 2.

Exercise 15. Prove that if η4 = −1 then

S = {(1, x, x2 + ηx6, x3, x4) | x ∈ Fq} ∪ {(0, 0, 0, 0, 1)},

is an arc of V5(F9) of size 10.

Let det(v1, . . . , vk) denote the determinant of the matrix whose i-th row is vi, a vector of

Vk(Fq), where we evaluate the determinant with respect to a fixed canonical basis.

If C = {p1, . . . , pk−1} is an ordered set of k − 1 vectors then we write

det(u,C) = det(u, p1, . . . , pk−1).

Let A be a subset of S of size k − 2. Let t = q + k − 1− |S|.

Lemma 41. There are t hyperplanes of Vk(Fq) which contain the vectors of A and no

other vectors of S.

Let α1, . . . , αt be pairwise linearly independent forms with the property that kerαi ∩S =

A. Define

fA(x) =
t∏
i=1

αi(x),

a function from Vk(Fq) to Fq.

Lagrange interpolation gives the following lemma.

Lemma 42. If E is a subset of S of size t+ k containing A then∑
e∈E\A

fA(e)
∏

u∈E\(A∪{e})

det(u, e, A)−1 = 0.

The lemma of tangents is the following.

Lemma 43. For a subset D of S of size k − 3 and a subset {x, y, z} of S \D,

fD∪{x}(y)fD∪{y}(z)fD∪{z}(x) = (−1)t+1fD∪{x}(z)fD∪{y}(x)fD∪{z}(y).

Lemma 42 and Lemma 43 combine to imply that for any subset C of S of size k− 1 there

is an αC ∈ Fq such that the following set of equations holds.



16 SIMEON BALL AND AART BLOKHUIS

Lemma 44. Let S be an arbitrarily ordered arc of size q+ k− 1− t and let E be a subset

of S of size k + t. For any subset A of E of size k − 2,∑
αC

∏
z∈E\C

det(z, C)−1 = 0,

where the sum runs over the subsets C of E of size k − 1 containing A.

Lemma 44 is used to prove the following theorem. Recall that q = ph, for some prime p.

Theorem 45. Let S be an arc of Vk(Fq). If k 6 p then |S| 6 q + 1. Moreover, if k 6 p

and |S| = q + 1 and k 6= (q + 1)/2 then S is a normal rational curve.

For q even, define a polynomial in k − 1 vector variables, so k(k − 1) indeterminates,

φS(Y1, . . . , Yk−1) =
∑
C

αC
∏

z∈E\C

det(z, Y1, . . . , Yk−1)

det(z, C)
,

where the sum runs over all subsets C of size k − 1 of E.

For q odd, define a polynomial in k − 1 vector variables,

φS(Y1, . . . , Yk−1) =
∑
C

α2
C

∏
z∈E\C

det(z, Y1, . . . , Yk−1)

det(z, C)
,

where the sum runs over all subsets C of size k − 1 of E.

Although φS is defined as a polynomial in k − 1 vector variables, a simple change of

variables shows that in fact it can be written as a polynomial in k indeterminates. Let

Zi = (−1)i−1 det(Y1, . . . , Yk−1),

where the i-th coordinate of Yj has been deleted, so the determinant is of a (k−1)×(k−1)

matrix. Then

φS = φS(Z1, . . . , Zk).

Theorem 46. For any subset A = {a1, . . . , ak−2} of S of size k − 2

φS(X, a1, . . . , ak−2) = αAfA(X),

if q is even and

φS(X, a1, . . . , ak−2) = α2
AfA(X)2,

if q is odd.

Theorem 46 implies that the
( |S|
k−2

)
t points which are dual to the hyperplanes containing

exactly k − 2 points of S lie on the algebraic hypersurface V (φS).


