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Strongly regular graphs

A (finite) graph Γ = (V ,E) is a (v , k , λ, µ) strongly regular graph
if

it has v vertices;
each vertex is adjacent to k vertices;
every two adjacent vertices have λ common neighbors;
every two non-adjacent vertices have µ common
neighbors.

Important graphs with links to geometry, coding theory, group
theory, design theory, . . .
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Let Γ be a strongly regular graph with parameters (v , k , λ, µ).
Then its adjacency matrix A has eigenvalues

ν1 := k ,

ν2 :=
1
2

(λ− µ+
√

∆),

ν3 :=
1
2

(λ− µ−
√

∆),

where ∆ = (λ− µ)2 + 4(k − µ).

These eigenvalues are integers, except for
srg(v , v−1

2 , v−5
4 , v−1

4 ) with v not a perfect square.
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The multiplicities of these eigenvalues are

m1 := 1,

m2 :=
1
2

(
v − 1− 2k + (v − 1)(λ− µ)√

∆

)
and

m3 =
1
2

(
v − 1 +

2k + (v − 1)(λ− µ)√
∆

)
.
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Cayley graphs

Let G be a finite group and let S be an inverse-closed subset of
G \ {e}. Then the Cayley graph Γ := Γ(G,S) is the graph with
vertices the elements of G in which two vertices g and h are
adjacent iff gh−1 ∈ S.

The Cayley graph Γ admits G as a group of automorphisms
acting sharply transitively on the vertices of Γ.
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Partial difference sets

A (v , k , λ, µ)-partial difference set (for short (v , k , λ, µ)-PDS) D
in a finite group G of order v is a k -subset D of G with the
property that the expressions gh−1, g,h ∈ D represent

each nonidentity element in D exactly λ times,
each nonidentity element of G not in D exactly µ times.

PDS were introduced by Bose and Cameron, and named by
Chakravarti. A systematic study started with S.L. Ma. PDS are
a generalization of difference sets (which are PDS with λ = µ).



UD-Math-logo

If D(−1) = D and e /∈ D then D is called regular. A regular PDS
is called trivial if D ∪ {e} or G \ D is a subgroup of G.

If λ 6= µ then D(−1) = D is automatically fulfilled.

If D is a regular PDS in G, then so is G \ (D ∪ {e}).

Importance of PDS: The Cayley graph Γ(G,D) is a strongly
regular graph if and only if D is a regular PDS.

Study PDS through the associated SRG and its sharply
transitive group of automorphisms
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Theorem 1 (SDW - Kamischke - Wang ’15)

Let Γ be a strongly regular graph srg(v , k , λ, µ) with integer
eigenvalues. Let φ be an automorphism of order n of Γ, and let µ() be
the Möbius function. Then there are non-negative integers ad such
that

k − ν3 +
∑
d|n

adµ(d)(ν2 − ν3) = −ν3f + g, (1)

and consequently

k − ν3 ≡ −ν3f + g (mod ν2 − ν3), (2)

where f is the number of fixed vertices of φ, and g is the number of
vertices that are adjacent to their image under φ.
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Sketch of proof. Let A be the adjacency matrix of Γ, and let P
the permutation matrix corresponding to the automorphism φ.
Compute the trace of P(A− ν3I) once as the sum of the
eigenvalues, and once as the sum of the diagonal entries.

The integer ad in the statement of the theorem equals the
multiplicity of the eigenvalue ξd (ν2 − ν3) of the matrix
P(A− ν3I), where ξd is a primitive d th root of unity.
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History of Theorem 1

1970 Benson’s theorem for GQ(s, t):
(1 + t)f + g ≡ (1 + s)(1 + t) (mod s + t).

2006 SDW: a generalization for partial geometries.
2010 Temmermans, Thas, Van Maldeghem: further

generalizations for partial quadrangles (no nice
congruence anymore).

All the above geometries have a strongly regular point graph,
and hence these results are special cases of our Theorem 1.
The main difference in our proof of Theorem 1 and the proofs of
the above results is that we use the adjacency matrix of the
graph, rather than the incidence matrix of some geometry.
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Corollary
Let Γ be a strongly regular graph srg(v , k , λ, µ) with integer
eigenvalues, and let φ be an automorphism of order n of Γ. Let
s be an integer coprime with n. Then φ and φs map the same
number of vertices to adjacent vertices.

Sketch of proof. Because s is an integer coprime with n, every
vertex fixed by φ is also fixed by φs, and vice versa. Hence fφ = fφs .
From linear algebra it follows that the eigenvalues ad in Equation (1)
are the same for φ and φs. It follows that both φ and φs produce the
same left side of Equation (1). Hence also gφ = gφs .
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Local Multiplier Theorem

This corollary easily translates into the following result for PDS:

Theorem (LMT)
Let D be a regular PDS in the Abelian group G. Assume
Γ(G,D) has integer eigenvalues. Let g ∈ G be an element of
order r . Assume gcd(s, r) = 1. Then g ∈ D if and only if
gs ∈ D.

Proof. An element g ∈ D if and only if the corresponding
automorphism g: h 7→ gh maps all vertices of Γ(G,D) to
adjacent vertices.
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Classical multiplier theorem

The following well known result is an immediate consequence
of our LMT.

Corollary
Let D be a regular PDS in the Abelian group G of order v.
Assume Γ(G,D) has integer eigenvalues. Then D(s) = D for all
s with gcd(s, v) = 1.

This result was originally proved by Ma. Although the LMT
seems to be stronger than the classical multiplier theorem, it
turns out it is possible to prove the LMT directly from this
classical result. However, the LMT turns out to be handier to
work with.
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Application 1: non-existence of PDS with small
parameters

In 1994 S.L. Ma produced a list of all parameter sets (v , k , λ, µ)
with k ≤ 100 that survived the known necessary conditions for
regular PDS in Abelian groups. For all but 32 of these 187
parameter sets the existence of a PDS was known.

In 1997 Ma proved some further necessary conditions for the
existence of PDS, and this excluded the existence of PDS in 13
more cases.

In 1998 Fiedler and Klin discovered a new
(512,73,12,10)-PDS.

This left 18 unresolved cases, and no progress had been made
since then.
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Theorem

Let H = Zr
p, p prime, be a subgroup of G. Assume that

|H ∩ D| = s. There exists a non-negative integer x such that

m2 + sa1 + (pr − 1− s)a′1 = xpr + (m2 − x)pr−1 (3)

where

a1 =
(p − 1)(v + ν3 − k) + m2(ν2 − ν3)

(p − 2)(ν2 − ν3)

and
a′1 =

(p − 1)(ν3 − k) + m2(ν2 − ν3)

(p − 2)(ν2 − ν3)
.

Importance: Equation (3) needs to be satisfied in the integers.
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Combining restrictions on the structure of G previously
obtained by Ma, the LMT, the above equality, and some
counting arguments yields:
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Theorem 2 (SDW - Kamischke - Wang ’15)

v k λ µ existence
100 33 8 12 DNE
100 36 14 12 DNE
144 39 6 12 DNE
144 52 16 20 DNE
144 55 22 20 DNE
196 60 14 20 DNE
196 65 24 20 DNE
196 75 26 30 DNE
196 78 32 30 DNE
216 40 4 8 ?
216 43 10 8 ?
225 48 3 12 DNE
225 80 25 30 DNE
225 84 33 30 DNE
225 96 39 42 DNE
225 98 43 42 DNE
392 51 10 6 DNE
400 84 8 20 DNE
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Application 2: PDS in Abelian groups of order 4p2

Noting that six of the examples from the previous list occur in
groups of order 4p2, and motivated by a question of J. Davis at
the Irsee ’14 conference we started to focus on PDS in Abelian
groups of order 4p2, p an odd prime.

Key problem: The previous approach strongly depends on
knowing the parameters of the hypothetical PDS, and the
number of hypothetical parameters for which existence is not
known in groups of order 4p2 grows rapidly with p.
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The known examples

An (n, r)-PCP P in a group G of order n2 is a set P of r
subgroups of order n of G such that U ∩ V = e for any
U,V ∈ P. Given an (n, r)-PCP P in G, D :=

⋃
U∈P U \ {e} is a

regular PDS in G.

Up to complement, other than trivial examples, there are three
regular PDS known in Abelian groups of order 4p2:

(2p,2)-PCP;
(2p,3)-PCP;
a (36,14,4,6)-PDS in Z2

2 × Z2
3.
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Proposition: [Ma 94] No non-trivial PDS exists in an Abelian
group G with a cyclic Sylow-p-subgroup and o(G) 6= p.

As a consequence we only need to consider G ∼= Z2
2 × Z2

p.
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Let G = Z2
2 × Z2

p, and let D be a regular PDS in G. Denote the
identity of G by g1, and the three elements of order 2 by g2, g3,
and g4. Furthermore, let H1, H2, · · · , Hp+1 denote the p + 1
subgroups of order p in G, and set Sij = giHj \ {gi}, for i = 1, 2,
3, 4 and j = 1, 2, · · · , p + 1.

Lemma
If h ∈ D and h ∈ Sij , then Sij ⊂ D.

Proof. This is immediate from the LMT.
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Definition: The characteristic matrix χ of D is the 4× (p + 1)
matrix whose entry in position (i , j) is a 1 iff Sij ⊂ D and a 0
otherwise.
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Without loss of generality we may assume that D contains
either no elements of order two, or contains exactly one, say g2.

In each case χ uniquely determines D and vice versa.

Let Ri denote the i th row of χ, and let ri = Ri · Ri .

Important observation: Let χ be a 4× (p + 1) matrix with
entries 0 or 1. Let D be the corresponding subset of G. The
number of ways in which an element of Sij can be represented
as a “difference” gh−1 for g,h ∈ D only depends on the column
type of column j .
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For example, under the assumption that D contains no
elements of order 2:

Lemma

If the jth column of χ is


1
1
0
0

 then the elements of Sij can be

written as a difference of elements of D in the following number
of ways:

2p + r1 + r2
2 + r2

3 + r2
4 − 3r1 − 3r2 − r3 − r4 when i = 1;

2(p + r1r2 + r3r4 − r1 − r2 − R1 · R2 − R3 · R4) when i = 2;
2(r1r3 + r2r4 − r3 − r4 − R1 · R3 − R2 · R4) when i = 3;
2(r1r4 + r2r3 − r3 − r4 − R1 · R4 − R2 · R3) when i = 4.
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The key is that if D is supposed to be a PDS then all elements
in D should have the same number λ of representations, while
all elements not in D should have the same number µ of
representations.

This now yields a large system of equations in the rows Ri of χ.
A careful analysis then allows one to solve this system and
hence classify all allowable χ.

Similar arguments are used in the case |Z2
2 ∩ D| = 0 and the

case |Z2
2 ∩ D| = 1.
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Theorem (SDW - Wang ’16)

When Z2
2 ∩ D = ∅ the only possible (up to equivalence)

characteristic matrices are
1 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0




1 . . . 1
0 . . . 0
0 . . . 0
0 . . . 0




1 . . . 1
1 . . . 1
1 . . . 1
1 . . . 1


Zp Zp × Zp complement of Z2 × Z2

0 1 . . . 1
0 1 . . . 1
0 1 . . . 1
0 1 . . . 1




0 0 0 1 . . . 1
0 1 1 1 . . . 1
1 0 1 1 . . . 1
1 1 0 1 . . . 1


complement of Z2 × Z2 × Zp complement of (2p,3)-PCP
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Theorem (continued)

When Z2
2 ∩ D = g2 the only possible (up to equivalence)

characteristic matrices are
0 . . . 0
0 . . . 0
0 . . . 0
0 . . . 0




1 0 . . . 0
1 0 . . . 0
0 0 . . . 0
0 0 . . . 0




1 . . . 1
1 . . . 1
0 . . . 0
0 . . . 0


Z2 Z2 × Zp Z2 × Zp × Zp

0 0 1 . . . 1
1 1 1 . . . 1
0 1 1 . . . 1
1 0 1 . . . 1




1 1 1 0
1 0 0 0
1 1 0 1
1 0 1 1


complement of (2p,2)-PCP complement of (36,14,4,6)-PDS
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Theorem 3 (SDW - Wang ’16)

Every PDS (up to complement) in an Abelian group of order
4p2, with p is an odd prime, is one of the following: a subgroup,
a PCP example, or the (36,14,4,6)-PDS in Z2

2 × Z2
3.
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Some questions and future work

Generalize Theorem 1 to SRG with non-integer
eigenvalues. So far we have partial results for
automorphisms of prime power order. Then apply these
results to Paley type partial difference sets.
We can prove an analogue of Theorem 1 for directed SRG.
Applications to Hadamard matrices?
Do there exist PDS(216,40,4,8) or PDS(216,43,10,8) in
(Z2)3 × (Z3)3?
Use the characteristic matrix approach to classify PDS in
Abelian groups of order p2q2.
How useful is Theorem 1 and possible consequences in
the case of PDS in non-Abelian groups? The LMT does
not hold, but can we prove alternatives?
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THANKS!


