Quadratic Residues and Difference Sets

Vsevolod F. Lev

The University of Haifa

Singapore, May 24, 2016

(Joint work with Jack Sonn, Quart. J. Math., 2016)

Sárközy's Conjecture

Notation: $\mathbb{F}_{\rho} = \mathcal{R}_{\rho} \cup \mathcal{N}_{\rho} \cup \{0\}$ – quadratic residues / non-residues.

Conjecture (Sárközy, 2012) We have $\mathcal{R}_p \neq A + B$ whenever $A, B \subseteq \mathbb{F}_p$, min{|A|, |B|} > 1.

Theorem (Shkredov, 2014: the case A = B)

We have $\mathcal{R}_p \neq A + A$ whenever $A \subseteq \mathbb{F}_p$ (except if p = 3 and $A = \{2\}$). Also, $\mathcal{R}_p \neq \{a' + a'' : a', a'' \in A, a' \neq a''\}$.

The difference case (B = -A)

Is it true that $\mathcal{R}_p \neq \{a' - a'' : a', a'' \in A, a' \neq a''\}$ with $A \subseteq \mathbb{F}_p$?

The anticipated answer is NO: conjecturally, $A - A \subseteq \mathcal{R}_p \cup \{0\}$ implies $|A| \ll_{\varepsilon} p^{\varepsilon}$, and then $|A - A| \ll_{\varepsilon} p^{2\varepsilon} < |\mathcal{R}_p|$ for $\varepsilon < 0.25$ and p large.

Sárközy's Conjecture

Notation: $\mathbb{F}_{\rho} = \mathcal{R}_{\rho} \cup \mathcal{N}_{\rho} \cup \{0\}$ – quadratic residues / non-residues.

Conjecture (Sárközy, 2012) We have $\mathcal{R}_p \neq A + B$ whenever $A, B \subseteq \mathbb{F}_p$, min{|A|, |B|} > 1.

Theorem (Shkredov, 2014: the case A = B)

We have $\mathcal{R}_p \neq A + A$ whenever $A \subseteq \mathbb{F}_p$ (except if p = 3 and $A = \{2\}$). Also, $\mathcal{R}_p \neq \{a' + a'' : a', a'' \in A, a' \neq a''\}$.

The difference case (B = -A)

Is it true that $\mathcal{R}_{\rho} \neq \{a' - a'' \colon a', a'' \in A, a' \neq a''\}$ with $A \subseteq \mathbb{F}_{\rho}$?

The anticipated answer is NO: conjecturally, $A - A \subseteq \mathcal{R}_p \cup \{0\}$ implies $|A| \ll_{\varepsilon} p^{\varepsilon}$, and then $|A - A| \ll_{\varepsilon} p^{2\varepsilon} < |\mathcal{R}_p|$ for $\varepsilon < 0.25$ and p large.

Sárközy's Conjecture

Notation: $\mathbb{F}_{\rho} = \mathcal{R}_{\rho} \cup \mathcal{N}_{\rho} \cup \{0\}$ – quadratic residues / non-residues.

Conjecture (Sárközy, 2012) We have $\mathcal{R}_p \neq A + B$ whenever $A, B \subseteq \mathbb{F}_p$, min{|A|, |B|} > 1.

Theorem (Shkredov, 2014: the case A = B)

We have $\mathcal{R}_p \neq A + A$ whenever $A \subseteq \mathbb{F}_p$ (except if p = 3 and $A = \{2\}$). Also, $\mathcal{R}_p \neq \{a' + a'' : a', a'' \in A, a' \neq a''\}$.

The difference case (B = -A)

Is it true that $\mathcal{R}_{p} \neq \{a' - a'' \colon a', a'' \in A, a' \neq a''\}$ with $A \subseteq \mathbb{F}_{p}$?

The anticipated answer is NO: conjecturally, $A - A \subseteq \mathcal{R}_p \cup \{0\}$ implies $|A| \ll_{\varepsilon} p^{\varepsilon}$, and then $|A - A| \ll_{\varepsilon} p^{2\varepsilon} < |\mathcal{R}_p|$ for $\varepsilon < 0.25$ and p large.

Do there exist $A \subseteq \mathbb{F}_p$ such that $\mathcal{R}_p = \{a' - a'' : a', a'' \in A, a' \neq a''\}$ and indeed, the differences a' - a'' with $a', a'' \in A, a' \neq a''$ list all elements of \mathcal{R}_p exactly once?

Notation:
$$A - A \stackrel{!}{=} \mathcal{R}_p$$

Examples

- For $A_5 := \{2, 3\} \subseteq \mathbb{F}_5$, we have $A_5 A_5 \stackrel{!}{=} \mathcal{R}_5$;
- For $A_{13} := \{2, 5, 6\} \subseteq \mathbb{F}_{13}$, we have $A_{13} A_{13} \stackrel{!}{=} \mathcal{R}_{13}$.

Conjecture (Lev-Sonn, 2016)

For p > 13, there do not exist $A \subseteq \mathbb{F}_p$ with $A - A \stackrel{!}{=} \mathcal{R}_p$.

Theorem (Lev–Sonn, 2016)

Do there exist $A \subseteq \mathbb{F}_p$ such that $\mathcal{R}_p = \{a' - a'' \colon a', a'' \in A, a' \neq a''\}$ and indeed, the differences a' - a'' with $a', a'' \in A, a' \neq a''$ list all elements of \mathcal{R}_p exactly once?

Notation:
$$A - A \stackrel{!}{=} \mathcal{R}_p$$

Examples

- For $A_5 := \{2, 3\} \subseteq \mathbb{F}_5$, we have $A_5 A_5 \stackrel{!}{=} \mathcal{R}_5$;
- For $A_{13} := \{2, 5, 6\} \subseteq \mathbb{F}_{13}$, we have $A_{13} A_{13} \stackrel{!}{=} \mathcal{R}_{13}$.

Conjecture (Lev-Sonn, 2016)

For p > 13, there do not exist $A \subseteq \mathbb{F}_p$ with $A - A \stackrel{!}{=} \mathcal{R}_p$.

Theorem (Lev–Sonn, 2016)

Do there exist $A \subseteq \mathbb{F}_p$ such that $\mathcal{R}_p = \{a' - a'' \colon a', a'' \in A, a' \neq a''\}$ and indeed, the differences a' - a'' with $a', a'' \in A, a' \neq a''$ list all elements of \mathcal{R}_p exactly once?

Notation:
$$A - A \stackrel{!}{=} \mathcal{R}_{p}$$

Examples

• For $A_5 := \{2,3\} \subseteq \mathbb{F}_5$, we have $A_5 - A_5 \stackrel{!}{=} \mathcal{R}_5$;

• For $A_{13} := \{2, 5, 6\} \subseteq \mathbb{F}_{13}$, we have $A_{13} - A_{13} \stackrel{!}{=} \mathcal{R}_{13}$.

Conjecture (Lev–Sonn, 2016)

For p > 13, there do not exist $A \subseteq \mathbb{F}_p$ with $A - A \stackrel{!}{=} \mathcal{R}_p$.

Theorem (Lev–Sonn, 2016)

Do there exist $A \subseteq \mathbb{F}_p$ such that $\mathcal{R}_p = \{a' - a'' \colon a', a'' \in A, a' \neq a''\}$ and indeed, the differences a' - a'' with $a', a'' \in A, a' \neq a''$ list all elements of \mathcal{R}_p exactly once?

Notation:
$$A - A \stackrel{!}{=} \mathcal{R}_{p}$$

Examples

- For $A_5 := \{2,3\} \subseteq \mathbb{F}_5$, we have $A_5 A_5 \stackrel{!}{=} \mathcal{R}_5$;
- For $A_{13} := \{2, 5, 6\} \subseteq \mathbb{F}_{13}$, we have $A_{13} A_{13} \stackrel{!}{=} \mathcal{R}_{13}$.

Conjecture (Lev–Sonn, 2016)

For p > 13, there do not exist $A \subseteq \mathbb{F}_p$ with $A - A \stackrel{!}{=} \mathcal{R}_p$.

Theorem (Lev–Sonn, 2016)

Do there exist $A \subseteq \mathbb{F}_p$ such that $\mathcal{R}_p = \{a' - a'' : a', a'' \in A, a' \neq a''\}$ and indeed, the differences a' - a'' with $a', a'' \in A, a' \neq a''$ list all elements of \mathcal{R}_p exactly once?

Notation:
$$A - A \stackrel{!}{=} \mathcal{R}_{p}$$

Examples

• For $A_5 := \{2,3\} \subseteq \mathbb{F}_5$, we have $A_5 - A_5 \stackrel{!}{=} \mathcal{R}_5$;

• For $A_{13} := \{2, 5, 6\} \subseteq \mathbb{F}_{13}$, we have $A_{13} - A_{13} \stackrel{!}{=} \mathcal{R}_{13}$.

Conjecture (Lev-Sonn, 2016)

For p > 13, there do not exist $A \subseteq \mathbb{F}_p$ with $A - A \stackrel{!}{=} \mathcal{R}_p$.

Theorem (Lev–Sonn, 2016)

Do there exist $A \subseteq \mathbb{F}_p$ such that $\mathcal{R}_p = \{a' - a'' : a', a'' \in A, a' \neq a''\}$ and indeed, the differences a' - a'' with $a', a'' \in A, a' \neq a''$ list all elements of \mathcal{R}_p exactly once?

Notation:
$$A - A \stackrel{!}{=} \mathcal{R}_{p}$$

Examples

• For $A_5 := \{2,3\} \subseteq \mathbb{F}_5$, we have $A_5 - A_5 \stackrel{!}{=} \mathcal{R}_5$;

• For $A_{13} := \{2, 5, 6\} \subseteq \mathbb{F}_{13}$, we have $A_{13} - A_{13} \stackrel{!}{=} \mathcal{R}_{13}$.

Conjecture (Lev-Sonn, 2016)

For p > 13, there do not exist $A \subseteq \mathbb{F}_p$ with $A - A \stackrel{!}{=} \mathcal{R}_p$.

Theorem (Lev-Sonn, 2016)

• If $q = p^m$ with *m* even, then the subfield $A := \mathbb{F}_{\sqrt{q}} < \mathbb{F}_q$ satisfies $A - A \subseteq \mathcal{R}_q$. However, $A - A \stackrel{!}{=} \mathcal{R}_q$ does not hold!

Back to \mathbb{F}_p with p prime:

- If $A A \stackrel{!}{=} \mathcal{R}_p$, then $\mathcal{R}_p = -\mathcal{R}_p$, whence $p \equiv 1 \pmod{4}$. This sieves out all primes $p \equiv 3 \pmod{4}$.
- Writing n := |A|, for $A A \stackrel{!}{=} \mathcal{R}_p$ to hold, one needs to have $n(n-1) = \frac{p-1}{2}$; that is,

$$p = 2n(n-1) + 1$$
, $n = |A|$.

(This also shows, in particular, that $p \equiv 1 \pmod{4}$.)

Affine equivalence: if A − A = R_p, then, indeed, for each µ ∈ R_p and g ∈ F_p, letting A' := µ * A + g, we will have A' − A' = R_p.

• If $q = p^m$ with *m* even, then the subfield $A := \mathbb{F}_{\sqrt{q}} < \mathbb{F}_q$ satisfies $A - A \subseteq \mathcal{R}_q$. However, $A - A \stackrel{!}{=} \mathcal{R}_q$ does not hold!

Back to \mathbb{F}_p with p prime:

- If $A A \stackrel{!}{=} \mathcal{R}_p$, then $\mathcal{R}_p = -\mathcal{R}_p$, whence $p \equiv 1 \pmod{4}$. This sieves out all primes $p \equiv 3 \pmod{4}$.
- Writing n := |A|, for $A A \stackrel{!}{=} \mathcal{R}_p$ to hold, one needs to have $n(n-1) = \frac{p-1}{2}$; that is,

$$p = 2n(n-1) + 1$$
, $n = |A|$.

(This also shows, in particular, that $p \equiv 1 \pmod{4}$.)

Affine equivalence: if A − A = R_p, then, indeed, for each µ ∈ R_p and g ∈ F_p, letting A' := µ * A + g, we will have A' − A' = R_p.

• If $q = p^m$ with *m* even, then the subfield $A := \mathbb{F}_{\sqrt{q}} < \mathbb{F}_q$ satisfies $A - A \subseteq \mathcal{R}_q$. However, $A - A \stackrel{!}{=} \mathcal{R}_q$ does not hold!

Back to \mathbb{F}_p with p prime:

- If $A A \stackrel{!}{=} \mathcal{R}_p$, then $\mathcal{R}_p = -\mathcal{R}_p$, whence $p \equiv 1 \pmod{4}$. This sieves out all primes $p \equiv 3 \pmod{4}$.
- Writing n := |A|, for $A A \stackrel{!}{=} \mathcal{R}_p$ to hold, one needs to have $n(n-1) = \frac{p-1}{2}$; that is,

$$p = 2n(n-1) + 1$$
, $n = |A|$.

(This also shows, in particular, that $p \equiv 1 \pmod{4}$.)

Affine equivalence: if A − A = R_p, then, indeed, for each µ ∈ R_p and g ∈ F_p, letting A' := µ * A + g, we will have A' − A' = R_p.

• If $q = p^m$ with *m* even, then the subfield $A := \mathbb{F}_{\sqrt{q}} < \mathbb{F}_q$ satisfies $A - A \subseteq \mathcal{R}_q$. However, $A - A \stackrel{!}{=} \mathcal{R}_q$ does not hold!

Back to \mathbb{F}_p with p prime:

- If $A A \stackrel{!}{=} \mathcal{R}_p$, then $\mathcal{R}_p = -\mathcal{R}_p$, whence $p \equiv 1 \pmod{4}$. This sieves out all primes $p \equiv 3 \pmod{4}$.
- Writing n := |A|, for $A A \stackrel{!}{=} \mathcal{R}_p$ to hold, one needs to have $n(n-1) = \frac{p-1}{2}$; that is,

$$p = 2n(n-1) + 1$$
, $n = |A|$.

(This also shows, in particular, that $p \equiv 1 \pmod{4}$.)

• Affine equivalence: if $A - A \stackrel{!}{=} \mathcal{R}_p$, then, indeed, for each $\mu \in \mathcal{R}_p$ and $g \in \mathbb{F}_p$, letting $A' := \mu * A + g$, we will have $A' - A' \stackrel{!}{=} \mathcal{R}_p$.

Both A_5 and A_{13} are cosets of a subgroup of the multiplicative group of the corresponding field: A_5 is a coset of $\{1,4\} < \mathbb{F}_5^{\times}$, and A_{13} is a coset of $\{1,3,9\} < \mathbb{F}_{13}^{\times}$.

In addition, A_5 is affinely equivalent to the set $\{0, 1\}$, which is a union of 0 and a subgroup of \mathbb{F}_5^{\times} .

For p > 13, constructions of this sort do not work!

Theorem

For a prime p > 13, there is no coset A = gH, with $H < \mathbb{F}_p^{\times}$ and $g \in \mathbb{F}_p^{\times}$, such that $A - A \stackrel{!}{=} \mathcal{R}_p$.

Theorem

Both A_5 and A_{13} are cosets of a subgroup of the multiplicative group of the corresponding field: A_5 is a coset of $\{1,4\} < \mathbb{F}_5^{\times}$, and A_{13} is a coset of $\{1,3,9\} < \mathbb{F}_{13}^{\times}$.

In addition, A_5 is affinely equivalent to the set $\{0, 1\}$, which is a union of 0 and a subgroup of \mathbb{F}_5^{\times} .

For p > 13, constructions of this sort do not work!

Theorem

For a prime p > 13, there is no coset A = gH, with $H < \mathbb{F}_p^{\times}$ and $g \in \mathbb{F}_p^{\times}$, such that $A - A \stackrel{!}{=} \mathcal{R}_p$.

Theorem

Both A_5 and A_{13} are cosets of a subgroup of the multiplicative group of the corresponding field: A_5 is a coset of $\{1,4\} < \mathbb{F}_5^{\times}$, and A_{13} is a coset of $\{1,3,9\} < \mathbb{F}_{13}^{\times}$.

In addition, A_5 is affinely equivalent to the set $\{0, 1\}$, which is a union of 0 and a subgroup of \mathbb{F}_5^{\times} .

For p > 13, constructions of this sort do not work!

Theorem

For a prime p > 13, there is no coset A = gH, with $H < \mathbb{F}_p^{\times}$ and $g \in \mathbb{F}_p^{\times}$, such that $A - A \stackrel{!}{=} \mathcal{R}_p$.

Theorem

Both A_5 and A_{13} are cosets of a subgroup of the multiplicative group of the corresponding field: A_5 is a coset of $\{1,4\} < \mathbb{F}_5^{\times}$, and A_{13} is a coset of $\{1,3,9\} < \mathbb{F}_{13}^{\times}$.

In addition, A_5 is affinely equivalent to the set $\{0, 1\}$, which is a union of 0 and a subgroup of \mathbb{F}_5^{\times} .

For p > 13, constructions of this sort do not work!

Theorem

For a prime p > 13, there is no coset A = gH, with $H < \mathbb{F}_p^{\times}$ and $g \in \mathbb{F}_p^{\times}$, such that $A - A \stackrel{!}{=} \mathcal{R}_p$.

Theorem

Sketch of the Proof

Suppose, for instance, that $H - H \stackrel{!}{=} \mathcal{R}_p$ with some $H < \mathbb{F}_p^{\times}$.

For all $h_1, h_2 \in H$ with $h_1 \neq \pm h_2$ we have then $h_1 - h_2 \in \mathcal{R}_p$, but also $h_1 + h_2 = (h_1^2 - h_2^2)/(h_1 - h_2) \in \mathcal{R}_p$. It follows that the sums

$$\sigma(\mathbf{x}) := \sum_{h \in H} (\chi_p(\mathbf{x} + h) + \chi_p(\mathbf{x} - h)), \quad \mathbf{x} \in \mathbb{F}_p$$

where χ_p is the quadratic character mod p, are very large for $x \in H$ and also for $x \in -H$.

(One needs to show that $-1 \notin H$, so that -H is disjoint from H.)

As a result, the sum

$$\sum_{\mathbf{x}\in H\cup(-H)}\sigma^2(\mathbf{x})$$

is very large - in fact, larger than the complete sum

$$\sum_{x \in \mathbb{F}_p} \sigma^2(x) = 2n(2n^2 - 4n + 1), \quad n = |H|.$$

Sketch of the Proof

Suppose, for instance, that $H - H \stackrel{!}{=} \mathcal{R}_p$ with some $H < \mathbb{F}_p^{\times}$.

For all $h_1, h_2 \in H$ with $h_1 \neq \pm h_2$ we have then $h_1 - h_2 \in \mathcal{R}_p$, but also $h_1 + h_2 = (h_1^2 - h_2^2)/(h_1 - h_2) \in \mathcal{R}_p$. It follows that the sums

$$\sigma(\mathbf{x}) := \sum_{h \in H} (\chi_p(\mathbf{x} + h) + \chi_p(\mathbf{x} - h)), \quad \mathbf{x} \in \mathbb{F}_p$$

where χ_p is the quadratic character mod p, are very large for $x \in H$ and also for $x \in -H$.

(One needs to show that $-1 \notin H$, so that -H is disjoint from H.)

As a result, the sum

$$\sum_{x\in H\cup (-H)}\sigma^2(x)$$

is very large – in fact, larger than the complete sum

$$\sum_{x \in \mathbb{F}_p} \sigma^2(x) = 2n(2n^2 - 4n + 1), \quad n = |H|.$$

Definition

An element $\mu \in \mathbb{F}_{p}^{\times}$ is a *multiplier* of the set $A \subseteq \mathbb{F}_{p}$ if $\mu * A = A + g$ for some $g \in \mathbb{F}_{p}$, where $\mu * A := \{\mu a : a \in A\}$.

Let $M_A \subseteq \mathbb{F}_p^{\times}$ denote the set of all multipliers of A (notice that $1 \in M_A$).

- If $\mu_1, \mu_2 \in M_A$, then also $\mu_1 \mu_2 \in M_A$; hence, $M_A < \mathbb{F}_p^{\times}$;
- If $A' = \mu A + g$ for some $\mu \in \mathbb{F}_p^{\times}$ and $g \in \mathbb{F}_p$, then $M_{A'} = M_A$;
- every A ⊆ 𝔽_ρ has a translate which is fixed by all multipliers of A: namely, if g ∈ 𝔽_ρ is so chosen that the elements of A' := A + g add up to 0, then μ ∗ A' = A' for each μ ∈ M_{A'} = M_A.

If $H < \mathbb{F}_p^{\times}$ and $A = g_1 H \cup \cdots \cup g_k H$, or $A = \{0\} \cup g_1 H \cup \cdots \cup g_k H$, then $H \leq M_A$.

Definition

An element $\mu \in \mathbb{F}_{p}^{\times}$ is a *multiplier* of the set $A \subseteq \mathbb{F}_{p}$ if $\mu * A = A + g$ for some $g \in \mathbb{F}_{p}$, where $\mu * A := \{\mu a : a \in A\}$.

Let $M_A \subseteq \mathbb{F}_p^{\times}$ denote the set of all multipliers of A (notice that $1 \in M_A$).

• If $\mu_1, \mu_2 \in M_A$, then also $\mu_1 \mu_2 \in M_A$; hence, $M_A < \mathbb{F}_p^{\times}$;

• If $A' = \mu A + g$ for some $\mu \in \mathbb{F}_p^{\times}$ and $g \in \mathbb{F}_p$, then $M_{A'} = M_A$;

 every A ⊆ 𝔽_ρ has a translate which is fixed by all multipliers of A: namely, if g ∈ 𝔽_ρ is so chosen that the elements of A' := A + g add up to 0, then μ * A' = A' for each μ ∈ M_{A'} = M_A.

If $H < \mathbb{F}_p^{\times}$ and $A = g_1 H \cup \cdots \cup g_k H$, or $A = \{0\} \cup g_1 H \cup \cdots \cup g_k H$, then $H \leq M_A$.

Definition

An element $\mu \in \mathbb{F}_{p}^{\times}$ is a *multiplier* of the set $A \subseteq \mathbb{F}_{p}$ if $\mu * A = A + g$ for some $g \in \mathbb{F}_{p}$, where $\mu * A := \{\mu a : a \in A\}$.

Let $M_A \subseteq \mathbb{F}_p^{\times}$ denote the set of all multipliers of A (notice that $1 \in M_A$).

- If $\mu_1, \mu_2 \in M_A$, then also $\mu_1 \mu_2 \in M_A$; hence, $M_A < \mathbb{F}_p^{\times}$;
- If $A' = \mu A + g$ for some $\mu \in \mathbb{F}_p^{\times}$ and $g \in \mathbb{F}_p$, then $M_{A'} = M_A$;
- every A ⊆ 𝔽_ρ has a translate which is fixed by all multipliers of A: namely, if g ∈ 𝔽_ρ is so chosen that the elements of A' := A + g add up to 0, then μ * A' = A' for each μ ∈ M_{A'} = M_A.

If $H < \mathbb{F}_p^{\times}$ and $A = g_1 H \cup \cdots \cup g_k H$, or $A = \{0\} \cup g_1 H \cup \cdots \cup g_k H$, then $H \leq M_A$.

Definition

An element $\mu \in \mathbb{F}_{\rho}^{\times}$ is a *multiplier* of the set $A \subseteq \mathbb{F}_{\rho}$ if $\mu * A = A + g$ for some $g \in \mathbb{F}_{\rho}$, where $\mu * A := \{\mu a : a \in A\}$.

Let $M_A \subseteq \mathbb{F}_p^{\times}$ denote the set of all multipliers of A (notice that $1 \in M_A$).

- If $\mu_1, \mu_2 \in M_A$, then also $\mu_1 \mu_2 \in M_A$; hence, $M_A < \mathbb{F}_p^{\times}$;
- If $A' = \mu A + g$ for some $\mu \in \mathbb{F}_{p}^{\times}$ and $g \in \mathbb{F}_{p}$, then $M_{A'} = M_{A}$;
- every A ⊆ 𝔽_ρ has a translate which is fixed by all multipliers of A: namely, if g ∈ 𝔽_ρ is so chosen that the elements of A' := A + g add up to 0, then μ * A' = A' for each μ ∈ M_{A'} = M_A.

If $H < \mathbb{F}_p^{\times}$ and $A = g_1 H \cup \cdots \cup g_k H$, or $A = \{0\} \cup g_1 H \cup \cdots \cup g_k H$, then $H \le M_A$.

Definition

An element $\mu \in \mathbb{F}_{p}^{\times}$ is a *multiplier* of the set $A \subseteq \mathbb{F}_{p}$ if $\mu * A = A + g$ for some $g \in \mathbb{F}_{p}$, where $\mu * A := \{\mu a : a \in A\}$.

Let $M_A \subseteq \mathbb{F}_p^{\times}$ denote the set of all multipliers of A (notice that $1 \in M_A$).

- If $\mu_1, \mu_2 \in M_A$, then also $\mu_1 \mu_2 \in M_A$; hence, $M_A < \mathbb{F}_p^{\times}$;
- If $A' = \mu A + g$ for some $\mu \in \mathbb{F}_{p}^{\times}$ and $g \in \mathbb{F}_{p}$, then $M_{A'} = M_{A}$;
- every A ⊆ 𝔽_ρ has a translate which is fixed by all multipliers of A: namely, if g ∈ 𝔽_ρ is so chosen that the elements of A' := A + g add up to 0, then μ * A' = A' for each μ ∈ M_{A'} = M_A.

If $H < \mathbb{F}_{p}^{\times}$ and $A = g_{1}H \cup \cdots \cup g_{k}H$, or $A = \{0\} \cup g_{1}H \cup \cdots \cup g_{k}H$, then $H \leq M_{A}$.

For a prime $p \equiv 1 \pmod{4}$, let

$G_{\rho} := \operatorname{gcd} \left\{ \operatorname{ord}_{\rho}(q) \colon q \mid \frac{\rho-1}{4}, \ q \text{ is prime} \right\}.$

One can expect G_p to be quite large for most p. Computationally, among all primes $p = 2n(n-1) + 1 < 10^{12}$, there are less than 1.4% those with $G_p < \sqrt{p}$.

Theorem

If $A - A \stackrel{!}{=} \mathcal{R}_p$, then M_A lies above the order- G_p subgroup of \mathbb{F}_p^{\times} ; equivalently, $|M_A|$ is divisible by G_p .

For a prime $p \equiv 1 \pmod{4}$, let

$$G_{p} := \operatorname{gcd} \left\{ \operatorname{ord}_{p}(q) \colon q \mid \frac{p-1}{4}, \ q \text{ is prime} \right\}.$$

One can expect G_p to be quite large for most p. Computationally, among all primes $p = 2n(n-1) + 1 < 10^{12}$, there are less than 1.4% those with $G_p < \sqrt{p}$.

Theorem

If $A - A \stackrel{!}{=} \mathcal{R}_p$, then M_A lies above the order- G_p subgroup of \mathbb{F}_p^{\times} ; equivalently, $|M_A|$ is divisible by G_p .

For a prime $p \equiv 1 \pmod{4}$, let

$$G_{p} := \operatorname{gcd} \left\{ \operatorname{ord}_{p}(q) \colon q \mid \frac{p-1}{4}, \ q \text{ is prime} \right\}.$$

One can expect G_p to be quite large for most p. Computationally, among all primes $p = 2n(n-1) + 1 < 10^{12}$, there are less than 1.4% those with $G_p < \sqrt{p}$.

Theorem

If $A - A \stackrel{!}{=} \mathcal{R}_p$, then M_A lies above the order- G_p subgroup of \mathbb{F}_p^{\times} ; equivalently, $|M_A|$ is divisible by G_p .

For a prime $p \equiv 1 \pmod{4}$, let

$$G_{p} := \operatorname{gcd} \left\{ \operatorname{ord}_{p}(q) \colon q \mid \frac{p-1}{4}, \ q \text{ is prime} \right\}.$$

One can expect G_p to be quite large for most p. Computationally, among all primes $p = 2n(n-1) + 1 < 10^{12}$, there are less than 1.4% those with $G_p < \sqrt{p}$.

Theorem

If $A - A \stackrel{!}{=} \mathcal{R}_p$, then M_A lies above the order- G_p subgroup of \mathbb{F}_p^{\times} ; equivalently, $|M_A|$ is divisible by G_p .

Some Consequences

Theorem

If $A - A \stackrel{!}{=} \mathcal{R}_p$, then M_A lies above the order- G_p subgroup of \mathbb{F}_p^{\times} ; equivalently, $|M_A|$ is divisible by G_p .

Corollary

If p = 2n(n - 1) + 1 is "exceptional", then either G_p is a proper divisor of n, or G_p is a proper divisor of n - 1.

This sieves out over 99.7% of all primes $p = 2n(n-1) + 1 < 10^{12}!$

For integer $k \ge 1$, let Φ_k denote the *k*-th cyclotomic polynomial.

Corollary

Suppose that p is "exceptional". If $\operatorname{ord}_p(z) \mid G_p$ and $\operatorname{ord}_p(z) \nmid k$ for some $z \in \mathbb{F}_p$ and $k \ge 1$, then $\Phi_k(z) \in \mathcal{R}_p$.

Thus, if $z^{G_p} = 1$, $z^k \neq 1$, and $\Phi_k(z) \in \mathcal{N}_p$, then *p* is *not* exceptional.

Some Consequences

Theorem

If $A - A \stackrel{!}{=} \mathcal{R}_p$, then M_A lies above the order- G_p subgroup of \mathbb{F}_p^{\times} ; equivalently, $|M_A|$ is divisible by G_p .

Corollary

If p = 2n(n-1) + 1 is "exceptional", then either G_p is a proper divisor of n, or G_p is a proper divisor of n - 1.

This sieves out over 99.7% of all primes $p = 2n(n-1) + 1 < 10^{12}!$

For integer $k \ge 1$, let Φ_k denote the *k*-th cyclotomic polynomial.

Corollary

Suppose that p is "exceptional". If $\operatorname{ord}_p(z) \mid G_p$ and $\operatorname{ord}_p(z) \nmid k$ for some $z \in \mathbb{F}_p$ and $k \ge 1$, then $\Phi_k(z) \in \mathcal{R}_p$.

Thus, if $z^{G_p} = 1$, $z^k \neq 1$, and $\Phi_k(z) \in \mathcal{N}_p$, then *p* is *not* exceptional.

Some Consequences

Theorem

If $A - A \stackrel{!}{=} \mathcal{R}_p$, then M_A lies above the order- G_p subgroup of \mathbb{F}_p^{\times} ; equivalently, $|M_A|$ is divisible by G_p .

Corollary

If p = 2n(n-1) + 1 is "exceptional", then either G_p is a proper divisor of n, or G_p is a proper divisor of n - 1.

This sieves out over 99.7% of all primes $p = 2n(n-1) + 1 < 10^{12}!$

For integer $k \ge 1$, let Φ_k denote the *k*-th cyclotomic polynomial.

Corollary

Suppose that p is "exceptional". If $\operatorname{ord}_p(z) \mid G_p$ and $\operatorname{ord}_p(z) \nmid k$ for some $z \in \mathbb{F}_p$ and $k \ge 1$, then $\Phi_k(z) \in \mathcal{R}_p$.

Thus, if $z^{G_p} = 1$, $z^k \neq 1$, and $\Phi_k(z) \in \mathcal{N}_p$, then *p* is *not* exceptional.

The Odd Orders

Theorem

If p is "exceptional", then $\operatorname{ord}_p(q)$ is odd for every prime $q \mid \frac{p-1}{4}$.

Corollary

If p = 2n(n-1) + 1 is "exceptional", then either $n \equiv 2 \pmod{4}$, or $n \equiv 3 \pmod{4}$; hence, $p \equiv 5 \pmod{8}$.

(If we had $n \in \{0, 1\} \pmod{4}$, then $\frac{p-1}{4}$ were even; consequently, $\frac{p-1}{4}$ and p-1 would have same prime divisors. Hence, all prime divisors of p-1 would be of odd order, while p-1 itself has even order.)

Theorem (The previous theorem + biquadratic reciprocity)

If p = 2n(n - 1) + 1 is "exceptional", then neither n not n - 1 have prime divisors congruent to 7 modulo 8. Moreover, of the numbers n and n - 1, the odd one has no prime divisors congruent to 5 modulo 8, and the even one has no prime divisors congruent to 3 modulo 8.

The Odd Orders

Theorem

If p is "exceptional", then $\operatorname{ord}_p(q)$ is odd for every prime $q \mid \frac{p-1}{4}$.

Corollary

If p = 2n(n-1) + 1 is "exceptional", then either $n \equiv 2 \pmod{4}$, or $n \equiv 3 \pmod{4}$; hence, $p \equiv 5 \pmod{8}$.

(If we had $n \in \{0, 1\} \pmod{4}$, then $\frac{p-1}{4}$ were even; consequently, $\frac{p-1}{4}$ and p-1 would have same prime divisors. Hence, all prime divisors of p-1 would be of odd order, while p-1 itself has even order.)

Theorem (The previous theorem + biquadratic reciprocity)

If p = 2n(n - 1) + 1 is "exceptional", then neither n not n - 1 have prime divisors congruent to 7 modulo 8. Moreover, of the numbers n and n - 1, the odd one has no prime divisors congruent to 5 modulo 8, and the even one has no prime divisors congruent to 3 modulo 8.

The Odd Orders

Theorem

If p is "exceptional", then $\operatorname{ord}_p(q)$ is odd for every prime $q \mid \frac{p-1}{4}$.

Corollary

If p = 2n(n-1) + 1 is "exceptional", then either $n \equiv 2 \pmod{4}$, or $n \equiv 3 \pmod{4}$; hence, $p \equiv 5 \pmod{8}$.

(If we had $n \in \{0, 1\} \pmod{4}$, then $\frac{p-1}{4}$ were even; consequently, $\frac{p-1}{4}$ and p-1 would have same prime divisors. Hence, all prime divisors of p-1 would be of odd order, while p-1 itself has even order.)

Theorem (The previous theorem + biquadratic reciprocity)

If p = 2n(n-1) + 1 is "exceptional", then neither n not n - 1 have prime divisors congruent to 7 modulo 8. Moreover, of the numbers n and n - 1, the odd one has no prime divisors congruent to 5 modulo 8, and the even one has no prime divisors congruent to 3 modulo 8.

Computational Evidence

In the range 13 , there are only five (!) primes <math>p = 2n(n-1) + 1 such that $G_p \mid n - \delta$ with $\delta \in \{0, 1\}$, and the prime divisors of *n* and *n* - 1 satisfy the congruence conditions just stated:

п	δ	$(n-\delta)/G_p$	<i>n</i> – 1, <i>n</i>
51	1	2	$2 \cdot 5^2, \ 3 \cdot 17$
650	0	2	$11 \cdot 59, \ 2 \cdot 5^2 \cdot 13$
32283	1	2	$2 \cdot 16141, \ 3^2 \cdot 17 \cdot 211$
57303490	1	3	3 · 1579 · 12097, 2 · 5 · 5730349
377687811	0	3	$2 \cdot 5 \cdot 17 \cdot 113 \cdot 19661, \ 3 \cdot 1787 \cdot 70451$

These five primes are easily handled using the cyclotomic polynomial test. Thus, there are no exceptional primes in the specified range 13 .

Difference Sets

Theorem

If *p* is "exceptional", then $\operatorname{ord}_p(q)$ is odd for every prime $q \mid \frac{p-1}{4}$.

The proof uses the Semi-primitivity Theorem from the theory of *difference sets* (in the design-theory meaning of this term).

Definition

For integer $v, k, \lambda > 0$, a (v, k, λ) -difference set is a *k*-element subset of a *v*-element group, such that every non-zero group element has exactly λ representations as a difference of two elements of the set.

Difference sets come into the play via the following observation.

Claim

Suppose that $A - A \stackrel{!}{=} \mathcal{R}_p$, and write n := |A|. The for any fixed $\nu \in \mathcal{N}_p$, the n^2 sums $a' + \nu a''$ with $a', a'' \in A$ are pairwise distinct, and the set D of all these sums is a $(p, n^2, n(n+1)/2)$ -difference set in \mathbb{F}_p .

Difference Sets

Theorem

If *p* is "exceptional", then $\operatorname{ord}_{p}(q)$ is odd for every prime $q \mid \frac{p-1}{4}$.

The proof uses the Semi-primitivity Theorem from the theory of *difference sets* (in the design-theory meaning of this term).

Definition

For integer $v, k, \lambda > 0$, a (v, k, λ) -difference set is a *k*-element subset of a *v*-element group, such that every non-zero group element has exactly λ representations as a difference of two elements of the set.

Difference sets come into the play via the following observation.

Claim

Suppose that $A - A \stackrel{!}{=} \mathcal{R}_p$, and write n := |A|. The for any fixed $\nu \in \mathcal{N}_p$, the n^2 sums $a' + \nu a''$ with $a', a'' \in A$ are pairwise distinct, and the set D of all these sums is a $(p, n^2, n(n+1)/2)$ -difference set in \mathbb{F}_p .

Difference Sets

Theorem

If *p* is "exceptional", then $\operatorname{ord}_{p}(q)$ is odd for every prime $q \mid \frac{p-1}{4}$.

The proof uses the Semi-primitivity Theorem from the theory of *difference sets* (in the design-theory meaning of this term).

Definition

For integer $v, k, \lambda > 0$, a (v, k, λ) -difference set is a *k*-element subset of a *v*-element group, such that every non-zero group element has exactly λ representations as a difference of two elements of the set.

Difference sets come into the play via the following observation.

Claim

Suppose that $A - A \stackrel{!}{=} \mathcal{R}_{\rho}$, and write n := |A|. The for any fixed $\nu \in \mathcal{N}_{\rho}$, the n^2 sums $a' + \nu a''$ with $a', a'' \in A$ are pairwise distinct, and the set D of all these sums is a $(p, n^2, n(n+1)/2)$ -difference set in \mathbb{F}_{ρ} .

(R)

Proof of the Claim

Claim

Suppose that $A - A \stackrel{!}{=} \mathcal{R}_p$, and write n := |A|. The for any fixed $\nu \in \mathcal{N}_p$, the n^2 sums $a' + \nu a''$ with $a', a'' \in A$ are pairwise distinct, and the set D of all these sums is a $(p, n^2, n(n+1)/2)$ -difference set in \mathbb{F}_p .

The group-ring proof

In the group ring $\mathbb{Z}\mathbb{F}_p$, we have

$$D = AA^{(\nu)}, \ AA^{(-1)} = n + \mathcal{R}_p, \ \mathcal{R}_p^{(\nu)} = \mathcal{N}_p, \ \text{and} \ \mathcal{R}_p \mathcal{N}_p = \frac{n(n-1)}{2} \mathbb{F}_p^{\times}$$

(the last equality reflecting the fact that for $p \equiv 1 \pmod{4}$, every
element of \mathbb{F}_p^{\times} has exactly $\frac{p-1}{4}$ representations as a sum of a quadratic

residue and a quadratic non-residue). Hence,

$$DD^{(-1)} = AA^{(\nu)}A^{(-1)}A^{(-\nu)} = (n + \mathcal{R}_p)(n + \mathcal{R}_p)^{(\nu)}$$

= $(n + \mathcal{R}_p)(n + \mathcal{N}_p) = n^2 + n\mathbb{F}_p^{\times} + \frac{n(n-1)}{2}\mathbb{F}_p^{\times} = n^2 + \frac{n(n+1)}{2}\mathbb{F}_p^{\times}.$

(R

From Semi-primitivity to "ord_p(q) is odd for $q \mid \frac{p-1}{4}$ "

Theorem (Semi-primitivity Theorem)

Suppose that G is a finite abelian group of exponent e. If G possesses a (v, k, λ) -difference set (so that v = |G|), then for any prime q with $q \mid k - \lambda$ and $q \nmid v$, the order of q in $(\mathbb{Z}/e\mathbb{Z})^{\times}$ is odd.

If $A - A \stackrel{!}{=} \mathcal{R}_p$, then $D := \{a' + \nu a'' : a', a'' \in A\}$ is a (v, k, λ) -difference set in \mathbb{F}_p with v = p, $k = n^2$, and $\lambda = n(n+1)/2$. Thus, for any prime q dividing $k - \lambda = \frac{n(n-1)}{2} = \frac{p-1}{4}$, the order of q in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is odd.

The Big Difference Set Conjecture

If *D* is a (v, k, λ) -difference set, then every prime *q* dividing $k - \lambda$ but not dividing *v* is a multiplier of *D*; that is, q * D = D + g.

Conditionally to this conjecture, if p = 2n(n-1) + 1 is "exceptional", then either *n*, or n-1 is divisible by lcm {ord_p(q): $q \mid \frac{p-1}{4}$ is prime} (instead of the unconditional gcd).

From Semi-primitivity to "ord_p(q) is odd for $q \mid \frac{p-1}{4}$ "

Theorem (Semi-primitivity Theorem)

Suppose that G is a finite abelian group of exponent e. If G possesses a (v, k, λ) -difference set (so that v = |G|), then for any prime q with $q \mid k - \lambda$ and $q \nmid v$, the order of q in $(\mathbb{Z}/e\mathbb{Z})^{\times}$ is odd.

If $A - A \stackrel{!}{=} \mathcal{R}_p$, then $D := \{a' + \nu a'' : a', a'' \in A\}$ is a (v, k, λ) -difference set in \mathbb{F}_p with v = p, $k = n^2$, and $\lambda = n(n+1)/2$. Thus, for any prime q dividing $k - \lambda = \frac{n(n-1)}{2} = \frac{p-1}{4}$, the order of q in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is odd.

The Big Difference Set Conjecture

If *D* is a (v, k, λ) -difference set, then every prime *q* dividing $k - \lambda$ but not dividing *v* is a multiplier of *D*; that is, q * D = D + g.

Conditionally to this conjecture, if p = 2n(n-1) + 1 is "exceptional", then either *n*, or n-1 is divisible by lcm {ord_p(q): $q \mid \frac{p-1}{4}$ is prime} (instead of the unconditional gcd).

From Semi-primitivity to "ord_p(q) is odd for $q \mid \frac{p-1}{4}$ "

Theorem (Semi-primitivity Theorem)

Suppose that G is a finite abelian group of exponent e. If G possesses a (v, k, λ) -difference set (so that v = |G|), then for any prime q with $q \mid k - \lambda$ and $q \nmid v$, the order of q in $(\mathbb{Z}/e\mathbb{Z})^{\times}$ is odd.

If $A - A \stackrel{!}{=} \mathcal{R}_p$, then $D := \{a' + \nu a'' : a', a'' \in A\}$ is a (v, k, λ) -difference set in \mathbb{F}_p with v = p, $k = n^2$, and $\lambda = n(n+1)/2$. Thus, for any prime q dividing $k - \lambda = \frac{n(n-1)}{2} = \frac{p-1}{4}$, the order of q in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is odd.

The Big Difference Set Conjecture

If *D* is a (v, k, λ) -difference set, then every prime *q* dividing $k - \lambda$ but not dividing *v* is a multiplier of *D*; that is, q * D = D + g.

Conditionally to this conjecture, if p = 2n(n-1) + 1 is "exceptional", then either *n*, or n-1 is divisible by lcm {ord_p(q): $q \mid \frac{p-1}{4}$ is prime} (instead of the unconditional gcd).

- For A ⊆ 𝔽_p, we write A − A = 𝔅_p to indicate that the differences a'' − a' (a', a'' ∈ A) list all quadratic residues modulo p, every residue being listed exactly once.
- Conjecturally, this never happens, with just two exceptions: $p = 5 (A_5 = \{2,3\})$ and $p = 13 (A_{13} = \{2,5,6\})$. We prove this for 13 .
- Our methods involve elementary number theory / combinatorics, algebraic number theory, biquadratic reciprocity, and the theory of difference sets...
- ... which becomes relevant through the following observation: If $A - A \stackrel{!}{=} \mathcal{R}_p$, then for any fixed quadratic non-residue ν , the set $D := \{a' + \nu a'' : a', a'' \in A\}$ is a $(p, n^2, n(n+1)/2)$ -difference set.

- For A ⊆ 𝔽_p, we write A − A = 𝔅 𝔅_p to indicate that the differences a'' − a' (a', a'' ∈ A) list all quadratic residues modulo p, every residue being listed exactly once.
- Conjecturally, this never happens, with just two exceptions: $p = 5 (A_5 = \{2,3\})$ and $p = 13 (A_{13} = \{2,5,6\})$. We prove this for 13 .
- Our methods involve elementary number theory / combinatorics, algebraic number theory, biquadratic reciprocity, and the theory of difference sets...
- ... which becomes relevant through the following observation: If $A - A \stackrel{!}{=} \mathcal{R}_p$, then for any fixed quadratic non-residue ν , the set $D := \{a' + \nu a'' : a', a'' \in A\}$ is a $(p, n^2, n(n+1)/2)$ -difference set.

- For A ⊆ 𝔽_p, we write A − A = 𝔅 𝔅_p to indicate that the differences a'' − a' (a', a'' ∈ A) list all quadratic residues modulo p, every residue being listed exactly once.
- Conjecturally, this never happens, with just two exceptions: $p = 5 (A_5 = \{2,3\})$ and $p = 13 (A_{13} = \{2,5,6\})$. We prove this for 13 .
- Our methods involve elementary number theory / combinatorics, algebraic number theory, biquadratic reciprocity, and the theory of difference sets...
- ... which becomes relevant through the following observation: If $A - A \stackrel{!}{=} \mathcal{R}_p$, then for any fixed quadratic non-residue ν , the set $D := \{a' + \nu a'' : a', a'' \in A\}$ is a $(p, n^2, n(n+1)/2)$ -difference set.

- For A ⊆ 𝔽_p, we write A A = 𝔅 𝔅_p to indicate that the differences a'' a' (a', a'' ∈ A) list all quadratic residues modulo p, every residue being listed exactly once.
- Conjecturally, this never happens, with just two exceptions: $p = 5 (A_5 = \{2,3\})$ and $p = 13 (A_{13} = \{2,5,6\})$. We prove this for 13 .
- Our methods involve elementary number theory / combinatorics, algebraic number theory, biquadratic reciprocity, and the theory of difference sets...
- ... which becomes relevant through the following observation:
 If A A [!]= R_p, then for any fixed quadratic non-residue ν, the set D := {a' + νa'': a', a'' ∈ A} is a (p, n², n(n + 1)/2)-difference set.

Thank you!