Quadratic Residues and Difference Sets

Vsevolod F. Lev
The University of Haifa

Singapore, May 24, 2016
(Joint work with Jack Sonn, Quart. J. Math., 2016)

Sárközy's Conjecture

Notation: $\mathbb{F}_{p}=\mathcal{R}_{p} \cup \mathcal{N}_{p} \cup\{0\}$ - quadratic residues / non-residues.
Conjecture (Sárközy, 2012)
We have $\mathcal{R}_{p} \neq A+B$ whenever $A, B \subseteq \mathbb{F}_{p}, \min \{|A|,|B|\}>1$.
Theorem (Shkredov, 2014: the case $A=B$)
We have $\mathcal{R}_{p} \neq A+A$ whenever $A \subseteq \mathbb{F}_{p}$ (except if $p=3$ and $A=\{2\}$). Also, $\mathcal{R}_{p} \neq\left\{a^{\prime}+a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}\right\}$.

Sárközy's Conjecture

Notation: $\mathbb{F}_{p}=\mathcal{R}_{p} \cup \mathcal{N}_{p} \cup\{0\}$ - quadratic residues / non-residues.
Conjecture (Sárközy, 2012)
We have $\mathcal{R}_{p} \neq A+B$ whenever $A, B \subseteq \mathbb{F}_{p}, \min \{|A|,|B|\}>1$.
Theorem (Shkredov, 2014: the case $A=B$)
We have $\mathcal{R}_{p} \neq A+A$ whenever $A \subseteq \mathbb{F}_{p}$ (except if $p=3$ and $A=\{2\}$). Also, $\mathcal{R}_{p} \neq\left\{a^{\prime}+a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}\right\}$.

The difference case ($B=-A$)
Is it true that $\mathcal{R}_{p} \neq\left\{a^{\prime}-a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}\right\}$ with $A \subseteq \mathbb{F}_{p}$?

Sárközy's Conjecture

Notation: $\mathbb{F}_{p}=\mathcal{R}_{p} \cup \mathcal{N}_{p} \cup\{0\}$ - quadratic residues / non-residues.
Conjecture (Sárközy, 2012)
We have $\mathcal{R}_{p} \neq A+B$ whenever $A, B \subseteq \mathbb{F}_{p}, \min \{|A|,|B|\}>1$.
Theorem (Shkredov, 2014: the case $A=B$)
We have $\mathcal{R}_{p} \neq A+A$ whenever $A \subseteq \mathbb{F}_{p}$ (except if $p=3$ and $A=\{2\}$). Also, $\mathcal{R}_{p} \neq\left\{a^{\prime}+a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}\right\}$.

The difference case ($B=-A$)
Is it true that $\mathcal{R}_{p} \neq\left\{a^{\prime}-a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}\right\}$ with $A \subseteq \mathbb{F}_{p}$?

The anticipated answer is NO: conjecturally, $A-A \subseteq \mathcal{R}_{p} \cup\{0\}$ implies $|A|<_{\varepsilon} p^{\varepsilon}$, and then $|A-A|<_{\varepsilon} p^{2 \varepsilon}<\left|\mathcal{R}_{p}\right|$ for $\varepsilon<0.25$ and p large.

A Should-be-Easier Problem

Do there exist $A \subseteq \mathbb{F}_{p}$ such that $\mathcal{R}_{p}=\left\{a^{\prime}-a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}\right\}$ and indeed, the differences $a^{\prime}-a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}$ list all elements of \mathcal{R}_{p} exactly once?

Notation: $A-A=\mathcal{R}_{p}$

```
- For \(A_{5}:=\{2,3\} \subseteq \mathbb{F}_{5}\), we have \(A_{5}-A_{5} \stackrel{1}{=} \mathcal{R}_{5}\); - For \(A_{13}:=\{2,5,6\} \subseteq \mathbb{F}_{13}\), we have \(A_{13}-A_{13} \stackrel{!}{=} \mathcal{R}_{13}\).
```


A Should-be-Easier Problem

Do there exist $A \subseteq \mathbb{F}_{p}$ such that $\mathcal{R}_{p}=\left\{a^{\prime}-a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}\right\}$ and indeed, the differences $a^{\prime}-a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}$ list all elements of \mathcal{R}_{p} exactly once?

Notation: $A-A \stackrel{!}{=} \mathcal{R}_{p}$

A Should-be-Easier Problem

Do there exist $A \subseteq \mathbb{F}_{p}$ such that $\mathcal{R}_{p}=\left\{a^{\prime}-a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}\right\}$ and indeed, the differences $a^{\prime}-a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}$ list all elements of \mathcal{R}_{p} exactly once?

Notation: $A-A \stackrel{!}{=} \mathcal{R}_{p}$

Examples

- For $A_{5}:=\{2,3\} \subseteq \mathbb{F}_{5}$, we have $A_{5}-A_{5} \stackrel{!}{=} \mathcal{R}_{5}$;
- For $A_{13}:=\{2,5,6\} \subseteq \mathbb{F}_{13}$, we have $A_{13}-A_{13} \stackrel{1}{=} \mathcal{R}_{13}$.

A Should-be-Easier Problem

Do there exist $A \subseteq \mathbb{F}_{p}$ such that $\mathcal{R}_{p}=\left\{a^{\prime}-a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}\right\}$ and indeed, the differences $a^{\prime}-a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}$ list all elements of \mathcal{R}_{p} exactly once?

Notation: $A-A \stackrel{!}{=} \mathcal{R}_{p}$

Examples

- For $A_{5}:=\{2,3\} \subseteq \mathbb{F}_{5}$, we have $A_{5}-A_{5} \stackrel{!}{=} \mathcal{R}_{5}$;
- For $A_{13}:=\{2,5,6\} \subseteq \mathbb{F}_{13}$, we have $A_{13}-A_{13} \stackrel{!}{=} \mathcal{R}_{13}$.

A Should-be-Easier Problem

Do there exist $A \subseteq \mathbb{F}_{p}$ such that $\mathcal{R}_{p}=\left\{a^{\prime}-a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}\right\}$ and indeed, the differences $a^{\prime}-a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}$ list all elements of \mathcal{R}_{p} exactly once?

Notation: $A-A \stackrel{!}{=} \mathcal{R}_{p}$

Examples

- For $A_{5}:=\{2,3\} \subseteq \mathbb{F}_{5}$, we have $A_{5}-A_{5} \stackrel{!}{=} \mathcal{R}_{5}$;
- For $A_{13}:=\{2,5,6\} \subseteq \mathbb{F}_{13}$, we have $A_{13}-A_{13} \stackrel{!}{=} \mathcal{R}_{13}$.

Conjecture (Lev-Sonn, 2016)

For $p>13$, there do not exist $A \subseteq \mathbb{F}_{p}$ with $A-A \stackrel{!}{=} \mathcal{R}_{p}$.

A Should-be-Easier Problem

Do there exist $A \subseteq \mathbb{F}_{p}$ such that $\mathcal{R}_{p}=\left\{a^{\prime}-a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}\right\}$ and indeed, the differences $a^{\prime}-a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in A, a^{\prime} \neq a^{\prime \prime}$ list all elements of \mathcal{R}_{p} exactly once?

Notation: $A-A \stackrel{!}{=} \mathcal{R}_{p}$

Examples

- For $A_{5}:=\{2,3\} \subseteq \mathbb{F}_{5}$, we have $A_{5}-A_{5} \stackrel{!}{=} \mathcal{R}_{5}$;
- For $A_{13}:=\{2,5,6\} \subseteq \mathbb{F}_{13}$, we have $A_{13}-A_{13} \stackrel{!}{=} \mathcal{R}_{13}$.

Conjecture (Lev-Sonn, 2016)

For $p>13$, there do not exist $A \subseteq \mathbb{F}_{p}$ with $A-A \stackrel{!}{=} \mathcal{R}_{p}$.
Theorem (Lev-Sonn, 2016)
For $13<p<10^{20}$, there do not exist $A \subseteq \mathbb{F}_{p}$ with $A-A \stackrel{!}{=} \mathcal{R}_{p}$.

Basic Observations

- If $q=p^{m}$ with m even, then the subfield $A:=\mathbb{F}_{\sqrt{q}}<\mathbb{F}_{q}$ satisfies $A-A \subseteq \mathcal{R}_{q}$. However, $A-A \stackrel{!}{=} \mathcal{R}_{q}$ does not hold!

Back to \mathbb{F}_{p} with p prime:

- If $A-A \stackrel{1}{=} \mathcal{R}_{p}$, then $\mathcal{R}_{p}=-\mathcal{R}_{p}$, whence $p \equiv 1(\bmod 4)$. This sieves out all primes $p \equiv 3(\bmod 4)$.
- Writing $n:=|A|$, for $A-A \stackrel{+}{=} \mathcal{R}_{p}$ to hold, one needs to have $n(n-1)=\frac{p-1}{2}$; that is,

$$
p=2 n(n-1)+1, \quad n=|A|
$$

(This also shows, in particular, that $p \equiv 1(\bmod 4)$.)

- Affine equivalence: if $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then, indeed, for each $\mu \in \mathcal{R}_{p}$ and $g \in \mathbb{F}_{p}$, letting $A^{\prime}:=\mu * A+g$, we will have $A^{\prime}-A^{\prime}=\mathcal{R}_{p}$.

Basic Observations

- If $q=p^{m}$ with m even, then the subfield $A:=\mathbb{F}_{\sqrt{q}}<\mathbb{F}_{q}$ satisfies $A-A \subseteq \mathcal{R}_{q}$. However, $A-A \stackrel{!}{=} \mathcal{R}_{q}$ does not hold!

Back to \mathbb{F}_{p} with p prime:

- If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then $\mathcal{R}_{p}=-\mathcal{R}_{p}$, whence $p \equiv 1(\bmod 4)$. This sieves out all primes $p \equiv 3(\bmod 4)$.

(This also shows, in particular, that $p \equiv 1(\bmod 4)$.)
- Affine equivalence: if $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then, indeed, for each $\mu \in \mathcal{R}_{p}$ and $g \in \mathbb{F}_{p}$, letting $A^{\prime}:=\mu * A+g$, we will have $A^{\prime}-A^{\prime}=\mathcal{R}_{p}$.

Basic Observations

- If $q=p^{m}$ with m even, then the subfield $A:=\mathbb{F}_{\sqrt{q}}<\mathbb{F}_{q}$ satisfies $A-A \subseteq \mathcal{R}_{q}$. However, $A-A \stackrel{!}{=} \mathcal{R}_{q}$ does not hold!

Back to \mathbb{F}_{p} with p prime:

- If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then $\mathcal{R}_{p}=-\mathcal{R}_{p}$, whence $p \equiv 1(\bmod 4)$. This sieves out all primes $p \equiv 3(\bmod 4)$.
- Writing $n:=|A|$, for $A-A \stackrel{!}{=} \mathcal{R}_{p}$ to hold, one needs to have $n(n-1)=\frac{p-1}{2}$; that is,

$$
p=2 n(n-1)+1, \quad n=|A| .
$$

(This also shows, in particular, that $p \equiv 1(\bmod 4)$.)

Basic Observations

- If $q=p^{m}$ with m even, then the subfield $A:=\mathbb{F}_{\sqrt{q}}<\mathbb{F}_{q}$ satisfies
$A-A \subseteq \mathcal{R}_{q}$. However, $A-A \stackrel{!}{=} \mathcal{R}_{q}$ does not hold!

Back to \mathbb{F}_{p} with p prime:

- If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then $\mathcal{R}_{p}=-\mathcal{R}_{p}$, whence $p \equiv 1(\bmod 4)$.

This sieves out all primes $p \equiv 3(\bmod 4)$.

- Writing $n:=|A|$, for $A-A \stackrel{!}{=} \mathcal{R}_{p}$ to hold, one needs to have $n(n-1)=\frac{p-1}{2}$; that is,

$$
p=2 n(n-1)+1, \quad n=|A| .
$$

(This also shows, in particular, that $p \equiv 1(\bmod 4)$.)

- Affine equivalence: if $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then, indeed, for each $\mu \in \mathcal{R}_{p}$ and $g \in \mathbb{F}_{p}$, letting $A^{\prime}:=\mu * A+g$, we will have $A^{\prime}-A^{\prime} \stackrel{!}{=} \mathcal{R}_{p}$.

What is special about $A_{5}=\{2,3\}$ and $A_{13}=\{2,5,6\}$?
Both A_{5} and A_{13} are cosets of a subgroup of the multiplicative group of the corresponding field: A_{5} is a coset of $\{1,4\}<\mathbb{F}_{5}^{\times}$, and A_{13} is a coset of $\{1,3,9\}<\mathbb{F}_{13}^{\times}$.
In addition, A_{5} is affinely equivalent to the set $\{0,1\}$, which is a union of 0 and a subgroup of \mathbb{F}_{5}^{\times}.

For $p>13$, constructions of this sort do not work!

Theorem
For a prime $p>13$, there is no coset $A=g H$, with $H<\mathbb{F}_{p}^{\times}$and $g \in \mathbb{F}_{p}^{\times}$, such that $A-A \stackrel{!}{=} \mathcal{R}_{p}$.

Theorem
For a prime $p>5$, there is no coset $g H$, with $H<\mathbb{F}_{p}^{\times}$and $g \in \mathbb{F}_{p}^{\times}$, such that, letting $A:=g H \cup\{0\}$, we have $A-A \stackrel{!}{=} \mathcal{R}_{p}$.

What is special about $A_{5}=\{2,3\}$ and $A_{13}=\{2,5,6\}$?
Both A_{5} and A_{13} are cosets of a subgroup of the multiplicative group of the corresponding field: A_{5} is a coset of $\{1,4\}<\mathbb{F}_{5}^{\times}$, and A_{13} is a coset of $\{1,3,9\}<\mathbb{F}_{13}^{\times}$.
In addition, A_{5} is affinely equivalent to the set $\{0,1\}$, which is a union of 0 and a subgroup of \mathbb{F}_{5}^{\times}.

For $p>13$, constructions of this sort do not work!
\square

What is special about $A_{5}=\{2,3\}$ and $A_{13}=\{2,5,6\}$?
Both A_{5} and A_{13} are cosets of a subgroup of the multiplicative group of the corresponding field: A_{5} is a coset of $\{1,4\}<\mathbb{F}_{5}^{\times}$, and A_{13} is a coset of $\{1,3,9\}<\mathbb{F}_{13}^{\times}$.
In addition, A_{5} is affinely equivalent to the set $\{0,1\}$, which is a union of 0 and a subgroup of \mathbb{F}_{5}^{\times}.

For $p>13$, constructions of this sort do not work!

What is special about $A_{5}=\{2,3\}$ and $A_{13}=\{2,5,6\}$?
Both A_{5} and A_{13} are cosets of a subgroup of the multiplicative group of the corresponding field: A_{5} is a coset of $\{1,4\}<\mathbb{F}_{5}^{\times}$, and A_{13} is a coset of $\{1,3,9\}<\mathbb{F}_{13}^{\times}$.
In addition, A_{5} is affinely equivalent to the set $\{0,1\}$, which is a union of 0 and a subgroup of \mathbb{F}_{5}^{\times}.

For $p>13$, constructions of this sort do not work!
Theorem
For a prime $p>13$, there is no $\operatorname{coset} A=g H$, with $H<\mathbb{F}_{p}^{\times}$and $g \in \mathbb{F}_{p}^{\times}$, such that $A-A \stackrel{!}{=} \mathcal{R}_{p}$.

Theorem

For a prime $p>5$, there is no coset $g H$, with $H<\mathbb{F}_{p}^{\times}$and $g \in \mathbb{F}_{p}^{\times}$, such that, letting $A:=g H \cup\{0\}$, we have $A-A \stackrel{!}{=} \mathcal{R}_{p}$.

Sketch of the Proof

Suppose, for instance, that $H-H \stackrel{!}{=} \mathcal{R}_{p}$ with some $H<\mathbb{F}_{p}^{\times}$.
For all $h_{1}, h_{2} \in H$ with $h_{1} \neq \pm h_{2}$ we have then $h_{1}-h_{2} \in \mathcal{R}_{p}$, but also $h_{1}+h_{2}=\left(h_{1}^{2}-h_{2}^{2}\right) /\left(h_{1}-h_{2}\right) \in \mathcal{R}_{p}$. It follows that the sums

$$
\sigma(x):=\sum_{h \in H}\left(\chi_{p}(x+h)+\chi_{p}(x-h)\right), \quad x \in \mathbb{F}_{p}
$$

where χ_{p} is the quadratic character $\bmod p$, are very large for $x \in H$ and also for $x \in-H$.
(One needs to show that $-1 \notin H$, so that $-H$ is disjoint from H.)
is very large - in fact, larger than the complete sum

Sketch of the Proof

Suppose, for instance, that $H-H \stackrel{!}{=} \mathcal{R}_{p}$ with some $H<\mathbb{F}_{p}^{\times}$.
For all $h_{1}, h_{2} \in H$ with $h_{1} \neq \pm h_{2}$ we have then $h_{1}-h_{2} \in \mathcal{R}_{p}$, but also $h_{1}+h_{2}=\left(h_{1}^{2}-h_{2}^{2}\right) /\left(h_{1}-h_{2}\right) \in \mathcal{R}_{p}$. It follows that the sums

$$
\sigma(x):=\sum_{h \in H}\left(\chi_{p}(x+h)+\chi_{p}(x-h)\right), \quad x \in \mathbb{F}_{p}
$$

where χ_{p} is the quadratic character $\bmod p$, are very large for $x \in H$ and also for $x \in-H$.
(One needs to show that $-1 \notin H$, so that $-H$ is disjoint from H.)
As a result, the sum

$$
\sum_{x \in H \cup(-H)} \sigma^{2}(x)
$$

is very large - in fact, larger than the complete sum

$$
\sum_{x \in \mathbb{F}_{p}} \sigma^{2}(x)=2 n\left(2 n^{2}-4 n+1\right), \quad n=|H| .
$$

Multipliers

Definition

An element $\mu \in \mathbb{F}_{p}^{\times}$is a multiplier of the set $A \subseteq \mathbb{F}_{\boldsymbol{p}}$ if $\mu * A=A+g$ for some $g \in \mathbb{F}_{p}$, where $\mu * A:=\{\mu a: a \in A\}$.
Let $M_{A} \subseteq \mathbb{F}_{p}^{\times}$denote the set of all multipliers of A (notice that $1 \in M_{A}$).

$$
\begin{aligned}
& \text { If } \mu_{1}, \mu_{2} \in M_{A} \text {, then also } \mu_{1} \mu_{2} \in M_{A} \text {; hence, } M_{A}<\mathbb{F}_{p}^{\times} \text {; } \\
& \text { If } A^{\prime}=\mu A+g \text { for some } \mu \in \mathbb{F}_{p}^{\times} \text {and } g \in \mathbb{F}_{p} \text {, then } M_{A^{\prime}}=M_{A} \text {; } \\
& \text { every } A \subseteq \mathbb{F}_{p} \text { has a translate which is fixed by all multipliers of } A \text { : } \\
& \text { namely, if } g \in \mathbb{F}_{p} \text { is so chosen that the elements of } A^{\prime}:=A+g \\
& \text { add up to } 0 \text {, then } \mu * A^{\prime}=A^{\prime} \text { for each } \mu \in M_{A^{\prime}}=M_{A} \text {. }
\end{aligned}
$$

Multipliers

Definition

An element $\mu \in \mathbb{F}_{p}^{\times}$is a multiplier of the set $A \subseteq \mathbb{F}_{p}$ if $\mu * A=A+g$ for some $g \in \mathbb{F}_{p}$, where $\mu * A:=\{\mu a: a \in A\}$.
Let $M_{A} \subseteq \mathbb{F}_{p}^{\times}$denote the set of all multipliers of A (notice that $1 \in M_{A}$).

- If $\mu_{1}, \mu_{2} \in M_{A}$, then also $\mu_{1} \mu_{2} \in M_{A}$; hence, $M_{A}<\mathbb{F}_{p}^{\times}$;
- every $A \subseteq \mathbb{F}_{p}$ has a translate which is fixed by all multipliers of A : namely, if $g \in \mathbb{F}_{p}$ is so chosen that the elements of $A^{\prime}:=A+g$ add up to 0 , then $\mu * A^{\prime}=A^{\prime}$ for each $\mu \in M_{A^{\prime}}=M_{A}$.

Multipliers

Definition

An element $\mu \in \mathbb{F}_{p}^{\times}$is a multiplier of the set $A \subseteq \mathbb{F}_{p}$ if $\mu * A=A+g$ for some $g \in \mathbb{F}_{p}$, where $\mu * A:=\{\mu a: a \in A\}$.
Let $M_{A} \subseteq \mathbb{F}_{p}^{\times}$denote the set of all multipliers of A (notice that $1 \in M_{A}$).

- If $\mu_{1}, \mu_{2} \in M_{A}$, then also $\mu_{1} \mu_{2} \in M_{A}$; hence, $M_{A}<\mathbb{F}_{p}^{\times}$;
- If $A^{\prime}=\mu A+g$ for some $\mu \in \mathbb{F}_{p}^{\times}$and $g \in \mathbb{F}_{p}$, then $M_{A^{\prime}}=M_{A}$;

Multipliers

Definition

An element $\mu \in \mathbb{F}_{p}^{\times}$is a multiplier of the set $A \subseteq \mathbb{F}_{\boldsymbol{p}}$ if $\mu * A=A+g$ for some $g \in \mathbb{F}_{p}$, where $\mu * A:=\{\mu a: a \in A\}$.
Let $M_{A} \subseteq \mathbb{F}_{p}^{\times}$denote the set of all multipliers of A (notice that $1 \in M_{A}$).

- If $\mu_{1}, \mu_{2} \in M_{A}$, then also $\mu_{1} \mu_{2} \in M_{A}$; hence, $M_{A}<\mathbb{F}_{p}^{\times}$;
- If $A^{\prime}=\mu A+g$ for some $\mu \in \mathbb{F}_{p}^{\times}$and $g \in \mathbb{F}_{p}$, then $M_{A^{\prime}}=M_{A}$;
- every $A \subseteq \mathbb{F}_{p}$ has a translate which is fixed by all multipliers of A : namely, if $g \in \mathbb{F}_{p}$ is so chosen that the elements of $A^{\prime}:=A+g$ add up to 0 , then $\mu * A^{\prime}=A^{\prime}$ for each $\mu \in M_{A^{\prime}}=M_{A}$.

Multipliers

Definition

An element $\mu \in \mathbb{F}_{p}^{\times}$is a multiplier of the set $A \subseteq \mathbb{F}_{\boldsymbol{p}}$ if $\mu * A=A+g$ for some $g \in \mathbb{F}_{p}$, where $\mu * A:=\{\mu a: a \in A\}$.
Let $M_{A} \subseteq \mathbb{F}_{p}^{\times}$denote the set of all multipliers of A (notice that $1 \in M_{A}$).

- If $\mu_{1}, \mu_{2} \in M_{A}$, then also $\mu_{1} \mu_{2} \in M_{A}$; hence, $M_{A}<\mathbb{F}_{p}^{\times}$;
- If $A^{\prime}=\mu A+g$ for some $\mu \in \mathbb{F}_{p}^{\times}$and $g \in \mathbb{F}_{p}$, then $M_{A^{\prime}}=M_{A^{\prime}}$;
- every $A \subseteq \mathbb{F}_{p}$ has a translate which is fixed by all multipliers of A : namely, if $g \in \mathbb{F}_{p}$ is so chosen that the elements of $A^{\prime}:=A+g$ add up to 0 , then $\mu * A^{\prime}=A^{\prime}$ for each $\mu \in M_{A^{\prime}}=M_{A}$.

If $H<\mathbb{F}_{p}^{\times}$and $A=g_{1} H \cup \cdots \cup g_{k} H$, or $A=\{0\} \cup g_{1} H \cup \cdots \cup g_{k} H$, then $H \leq M_{A}$.
Conversely, writing $H:=M_{A}$, we have $(A+g) \backslash\{0\}=g_{1} H \cup \cdots \cup g_{k} H$.

Sets $A \subseteq \mathbb{F}_{p}$ with $A-A \stackrel{!}{=} \mathcal{R}_{p}$ Have M_{A} Large

For a prime $p \equiv 1(\bmod 4)$, let

$$
G_{p}:=\operatorname{gcd}\left\{\operatorname{ord}_{p}(q): q \left\lvert\, \frac{p-1}{4}\right., q \text { is prime }\right\}
$$

One can expect G_{p} to be quite large for most p. Computationally, among all primes $p=2 n(n-1)+1<10^{12}$, there are less than 1.4% those with $G_{p}<\sqrt{p}$.

If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then M_{A} lies above the order- G_{p} subgroup of \mathbb{F}_{p}^{\times}; equivalently, $\left|M_{A}\right|$ is divisible by G_{p}.

The proof uses basic algebraic number theory: let $\zeta:=\exp (2 \pi i / p)$ and $\alpha:=\sum_{a \in A} \zeta^{a}$; then $A-A \stackrel{!}{=} \mathcal{R}_{p}$ translates as $|\alpha|^{2}=n+\rho$ with
$\rho=\sum_{r \in \mathcal{R}_{p}} \zeta^{r}=\frac{1}{2}(\sqrt{p}-1)$, and we factor α into a product of prime ideals and consider the action of $\operatorname{Gal}(\mathbb{Q}[\zeta] / \mathbb{Q})$ on these ideals etc.

Sets $A \subseteq \mathbb{F}_{p}$ with $A-A \stackrel{!}{=} \mathcal{R}_{p}$ Have M_{A} Large

For a prime $p \equiv 1(\bmod 4)$, let

$$
G_{p}:=\operatorname{gcd}\left\{\operatorname{ord}_{p}(q): q \left\lvert\, \frac{p-1}{4}\right., q \text { is prime }\right\}
$$

One can expect G_{p} to be quite large for most p. Computationally, among all primes $p=2 n(n-1)+1<10^{12}$, there are less than 1.4% those with $G_{p}<\sqrt{p}$.
 ideals and consider the action of $\operatorname{Gal}(\mathbb{Q}[\zeta] / \mathbb{Q})$ on these ideals etc.

Sets $A \subseteq \mathbb{F}_{p}$ with $A-A \stackrel{!}{=} \mathcal{R}_{p}$ Have M_{A} Large
For a prime $p \equiv 1(\bmod 4)$, let

$$
G_{p}:=\operatorname{gcd}\left\{\operatorname{ord}_{p}(q): q \left\lvert\, \frac{p-1}{4}\right., q \text { is prime }\right\}
$$

One can expect G_{p} to be quite large for most p. Computationally, among all primes $p=2 n(n-1)+1<10^{12}$, there are less than 1.4% those with $G_{p}<\sqrt{p}$.

Theorem

If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then M_{A} lies above the order- G_{p} subgroup of \mathbb{F}_{p}^{\times}; equivalently, $\left|M_{A}\right|$ is divisible by G_{p}.

Sets $A \subseteq \mathbb{F}_{p}$ with $A-A \stackrel{!}{=} \mathcal{R}_{p}$ Have M_{A} Large

For a prime $p \equiv 1(\bmod 4)$, let

$$
G_{p}:=\operatorname{gcd}\left\{\operatorname{ord}_{p}(q): q \left\lvert\, \frac{p-1}{4}\right., q \text { is prime }\right\} .
$$

One can expect G_{p} to be quite large for most p. Computationally, among all primes $p=2 n(n-1)+1<10^{12}$, there are less than 1.4% those with $G_{p}<\sqrt{ }$.

Theorem

If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then M_{A} lies above the order- G_{p} subgroup of \mathbb{F}_{p}^{\times}; equivalently, $\left|M_{A}\right|$ is divisible by G_{p}.

The proof uses basic algebraic number theory: let $\zeta:=\exp (2 \pi i / p)$ and $\alpha:=\sum_{a \in A} S^{a}$; then $A-A \stackrel{!}{=} \mathcal{R}_{p}$ translates as $|\alpha|^{2}=n+\rho$ with $\rho=\sum_{r \in \mathcal{R}_{p}} \zeta^{r}=\frac{1}{2}(\sqrt{p}-1)$, and we factor α into a product of prime ideals and consider the action of $\operatorname{Gal}(\mathbb{Q}[\zeta] / \mathbb{Q})$ on these ideals etc.

Some Consequences

Theorem
If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then M_{A} lies above the order- G_{p} subgroup of \mathbb{F}_{p}^{\times}; equivalently, $\left|M_{A}\right|$ is divisible by G_{p}.

\square For integer $k \geq 1$, let Φ_{k} denote the k-th cyclotomic nolynomial
\square
Suppose that p is "exceptional". If $\operatorname{ord}_{p}(z) \mid G_{p}$ and $\operatorname{ord}_{p}(z) \nmid k$ for some $z \in \mathbb{F}_{p}$ and $k \geq 1$, then $\Phi_{k}(z) \in \mathcal{R}_{p}$. Thus, if $z^{G_{p}}=1, z^{k} \neq 1$, and $\Phi_{k}(z) \in \mathcal{N}_{p}$, then p is not exceptional.

Some Consequences

Theorem

If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then M_{A} lies above the order- G_{p} subgroup of \mathbb{F}_{p}^{\times}; equivalently, $\left|M_{A}\right|$ is divisible by G_{p}.

Corollary
If $p=2 n(n-1)+1$ is "exceptional", then either G_{p} is a proper divisor of n, or G_{p} is a proper divisor of $n-1$.

This sieves out over 99.7% of all primes $p=2 n(n-1)+1<10^{12}$!

\square

Some Consequences

Theorem

If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then M_{A} lies above the order- G_{p} subgroup of \mathbb{F}_{p}^{\times}; equivalently, $\left|M_{A}\right|$ is divisible by G_{p}.

Corollary
If $p=2 n(n-1)+1$ is "exceptional", then either G_{p} is a proper divisor of n, or G_{p} is a proper divisor of $n-1$.

This sieves out over 99.7% of all primes $p=2 n(n-1)+1<10^{12}$!
For integer $k \geq 1$, let Φ_{k} denote the k-th cyclotomic polynomial.

Corollary

Suppose that p is "exceptional". If $\operatorname{ord}_{p}(z) \mid G_{p}$ and $\operatorname{ord}_{p}(z) \nmid k$ for some $z \in \mathbb{F}_{p}$ and $k \geq 1$, then $\Phi_{k}(z) \in \mathcal{R}_{p}$.

Thus, if $z^{G_{p}}=1, z^{k} \neq 1$, and $\Phi_{k}(z) \in \mathcal{N}_{p}$, then p is not exceptional.

The Odd Orders

Theorem
If p is "exceptional", then $\operatorname{ord}_{p}(q)$ is odd for every prime $q \left\lvert\, \frac{p-1}{4}\right.$.

> Corollary If $p=2 n(n-1)+1$ is "exceptional", then either $n \equiv 2(\bmod 4)$, or $n \equiv 3(\bmod 4) ;$ hence, $p \equiv 5(\bmod 8)$.

(If we had $n \in\{0,1\}(\bmod 4)$, then $\frac{p-1}{4}$ were even; consequently, $\frac{p-1}{4}$ and $p-1$ would have same prime divisors. Hence, all prime divisors of $p-1$ would be of odd order, while $p-1$ itself has even order.)

Theorem (The previous theorem + biquadratic reciprocity) If $p=2 n(n-1)+1$ is "exceptional", then neither n not $n-1$ have prime divisors congruent to 7 modulo 8. Moreover, of the numbers n and $n-1$, the odd one has no prime divisors congruent to 5 modulo 8, and the even one has no prime divisors congruent to 3 modulo 8.

The Odd Orders

Theorem

If p is "exceptional", then $\operatorname{ord}_{p}(q)$ is odd for every prime $q \left\lvert\, \frac{p-1}{4}\right.$.

Corollary
 If $p=2 n(n-1)+1$ is "exceptional", then either $n \equiv 2(\bmod 4)$, or $n \equiv 3(\bmod 4)$; hence, $p \equiv 5(\bmod 8)$.

(If we had $n \in\{0,1\}(\bmod 4)$), then $\frac{p-1}{4}$ were even; consequently, $\frac{p-1}{4}$ and $p-1$ would have same prime divisors. Hence, all prime divisors of $p-1$ would be of odd order, while $p-1$ itself has even order.)

The Odd Orders

Theorem

If p is "exceptional", then $\operatorname{ord}_{p}(q)$ is odd for every prime $q \left\lvert\, \frac{p-1}{4}\right.$.

Corollary

If $p=2 n(n-1)+1$ is "exceptional", then either $n \equiv 2(\bmod 4)$, or $n \equiv 3(\bmod 4)$; hence, $p \equiv 5(\bmod 8)$.
(If we had $n \in\{0,1\}(\bmod 4)$), then $\frac{p-1}{4}$ were even; consequently, $\frac{p-1}{4}$ and $p-1$ would have same prime divisors. Hence, all prime divisors of $p-1$ would be of odd order, while $p-1$ itself has even order.)
Theorem (The previous theorem + biquadratic reciprocity) If $p=2 n(n-1)+1$ is "exceptional", then neither n not $n-1$ have prime divisors congruent to 7 modulo 8 . Moreover, of the numbers n and $n-1$, the odd one has no prime divisors congruent to 5 modulo 8 , and the even one has no prime divisors congruent to 3 modulo 8.

Computational Evidence

In the range $13<p<10^{20}$, there are only five (!) primes $p=2 n(n-1)+1$ such that $G_{p} \mid n-\delta$ with $\delta \in\{0,1\}$, and the prime divisors of n and $n-1$ satisfy the congruence conditions just stated:

n	δ	$(n-\delta) / G_{p}$	$n-1, n$
51	1	2	$2 \cdot 5^{2}, 3 \cdot 17$
650	0	2	$11 \cdot 59,2 \cdot 5^{2} \cdot 13$
32283	1	2	$2 \cdot 16141,3^{2} \cdot 17 \cdot 211$
57303490	1	3	$3 \cdot 1579 \cdot 12097,2 \cdot 5 \cdot 5730349$
377687811	0	3	$2 \cdot 5 \cdot 17 \cdot 113 \cdot 19661,3 \cdot 1787 \cdot 70451$

These five primes are easily handled using the cyclotomic polynomial test. Thus, there are no exceptional primes in the specified range $13<p<10^{20}$.

Difference Sets

Theorem
If p is "exceptional", then $\operatorname{ord}_{p}(q)$ is odd for every prime $q \left\lvert\, \frac{p-1}{4}\right.$.

> The proof uses the Semi-primitivity Theorem from the theory of difference sets (in the design-theory meaning of this term).

> Definition
> For integer $v, k, \lambda>0$, a (v, k, λ)-difference set is a k-element subset of a v-element group, such that every non-zero group element has exactly λ representations as a difference of two elements of the set.

Difference sets come into the play via the following observation.
\square
Suppose that $A-A=\mathcal{R}_{p}$, and write $n:=|A|$. The for any fixed $\nu \in \mathcal{N}_{p}$, the n^{2} sums $a^{\prime}+\nu a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in A$ are pairwise distinct, and the set D of all these sums is a $\left(p, n^{2}, n(n+1) / 2\right)$-difference set in \mathbb{F}_{p}.

Difference Sets

Theorem
If p is "exceptional", then $\operatorname{ord}_{p}(q)$ is odd for every prime $q \left\lvert\, \frac{p-1}{4}\right.$.
The proof uses the Semi-primitivity Theorem from the theory of difference sets (in the design-theory meaning of this term).

Definition

For integer $v, k, \lambda>0, \mathrm{a}(v, k, \lambda)$-difference set is a k-element subset of a v-element group, such that every non-zero group element has exactly λ representations as a difference of two elements of the set.

Difference sets come into the play via the following observation.

Suppose that $A-A \stackrel{!}{=} \mathcal{R}_{p}$, and write $n:=|A|$. The for any fixed the n^{2} sums $a^{\prime}+\nu a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in A$ are pairwise distinct, and the set D

Difference Sets

Theorem

If p is "exceptional", then $\operatorname{ord}_{p}(q)$ is odd for every prime $q \left\lvert\, \frac{p-1}{4}\right.$.
The proof uses the Semi-primitivity Theorem from the theory of difference sets (in the design-theory meaning of this term).

Definition

For integer $v, k, \lambda>0, \mathrm{a}(v, k, \lambda)$-difference set is a k-element subset of a v-element group, such that every non-zero group element has exactly λ representations as a difference of two elements of the set.

Difference sets come into the play via the following observation.

Claim

Suppose that $A-A \stackrel{!}{=} \mathcal{R}_{p}$, and write $n:=|A|$. The for any fixed $\nu \in \mathcal{N}_{p}$, the n^{2} sums $a^{\prime}+\nu a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in A$ are pairwise distinct, and the set D of all these sums is a $\left(p, n^{2}, n(n+1) / 2\right)$-difference set in \mathbb{F}_{p}.

Proof of the Claim

Claim

Suppose that $A-A \stackrel{!}{=} \mathcal{R}_{p}$, and write $n:=|A|$. The for any fixed $\nu \in \mathcal{N}_{p}$, the n^{2} sums $a^{\prime}+\nu a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in A$ are pairwise distinct, and the set D of all these sums is a $\left(p, n^{2}, n(n+1) / 2\right)$-difference set in \mathbb{F}_{p}.

The group-ring proof

In the group ring $\mathbb{Z} \mathbb{F}_{p}$, we have

$$
D=A A^{(\nu)}, A A^{(-1)}=n+\mathcal{R}_{p}, \mathcal{R}_{p}^{(\nu)}=\mathcal{N}_{p}, \text { and } \mathcal{R}_{p} \mathcal{N}_{p}=\frac{n(n-1)}{2} \mathbb{F}_{p}^{\times}
$$

(the last equality reflecting the fact that for $p \equiv 1(\bmod 4)$, every
element of \mathbb{F}_{p}^{\times}has exactly $\frac{p-1}{4}$ representations as a sum of a quadratic residue and a quadratic non-residue). Hence,

$$
\begin{aligned}
& D D^{(-1)}=A A^{(\nu)} A^{(-1)} A^{(-\nu)}=\left(n+\mathcal{R}_{p}\right)\left(n+\mathcal{R}_{p}\right)^{(\nu)} \\
= & \left(n+\mathcal{R}_{p}\right)\left(n+\mathcal{N}_{p}\right)=n^{2}+n \mathbb{F}_{p}^{\times}+\frac{n(n-1)}{2} \mathbb{F}_{p}^{\times}=n^{2}+\frac{n(n+1)}{2} \mathbb{F}_{p}^{\times} .
\end{aligned}
$$

From Semi-primitivity to " $\operatorname{ord}_{p}(q)$ is odd for $q \left\lvert\, \frac{p-1}{4}\right.$ "

Theorem (Semi-primitivity Theorem)
Suppose that G is a finite abelian group of exponent e. If G possesses a (v, k, λ)-difference set (so that $v=|G|$), then for any prime q with $q \mid k-\lambda$ and $q \nmid v$, the order of q in $(\mathbb{Z} / e \mathbb{Z})^{\times}$is odd.

If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then $D:=\left\{a^{\prime}+\nu a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A\right\}$ is a (v, k, λ)-difference set in \mathbb{F}_{p} with $v=p, k=n^{2}$, and $\lambda=n(n+1) / 2$. Thus, for any prime q dividing $k-\lambda=\frac{n(n-1)}{2}=\frac{p-1}{4}$, the order of q in $(\mathbb{Z} / p \mathbb{Z})^{\times}$is odd.

(instead of the unconditional gcd)

From Semi-primitivity to " $\operatorname{ord}_{p}(q)$ is odd for $q \left\lvert\, \frac{p-1}{4}\right.$ "

Theorem (Semi-primitivity Theorem)
Suppose that G is a finite abelian group of exponent e. If G possesses a (v, k, λ)-difference set (so that $v=|G|$), then for any prime q with $q \mid k-\lambda$ and $q \nmid v$, the order of q in $(\mathbb{Z} / e \mathbb{Z})^{\times}$is odd.

If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then $D:=\left\{a^{\prime}+\nu a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A\right\}$ is a (v, k, λ)-difference set in \mathbb{F}_{p} with $v=p, k=n^{2}$, and $\lambda=n(n+1) / 2$. Thus, for any prime q dividing $k-\lambda=\frac{n(n-1)}{2}=\frac{p-1}{4}$, the order of q in $(\mathbb{Z} / p \mathbb{Z})^{\times}$is odd.

The Big Difference Set Conjecture

If D is a (v, k, λ)-difference set, then every prime q dividing $k-\lambda$ but not dividing v is a multiplier of D; that is, $q * D=D+g$.

> Conditionally to this conjecture, if $p=2 n(n-1)+1$ is "exceptional then either n, or $n-1$ is divisible by $\operatorname{Icm}\left\{\operatorname{ord}_{p}(q): q \left\lvert\, \frac{p-1}{4}\right.\right.$ is prime $\}$ (instead of the unconditional gcd).

From Semi-primitivity to " $\operatorname{ord}_{p}(q)$ is odd for $q \left\lvert\, \frac{p-1}{4}\right.$ "

Theorem (Semi-primitivity Theorem)

Suppose that G is a finite abelian group of exponent e. If G possesses a (v, k, λ)-difference set (so that $v=|G|$), then for any prime q with $q \mid k-\lambda$ and $q \nmid v$, the order of q in $(\mathbb{Z} / e \mathbb{Z})^{\times}$is odd.

If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then $D:=\left\{a^{\prime}+\nu a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A\right\}$ is a (v, k, λ)-difference set in \mathbb{F}_{p} with $v=p, k=n^{2}$, and $\lambda=n(n+1) / 2$. Thus, for any prime q dividing $k-\lambda=\frac{n(n-1)}{2}=\frac{p-1}{4}$, the order of q in $(\mathbb{Z} / p \mathbb{Z})^{\times}$is odd.

The Big Difference Set Conjecture

If D is a (v, k, λ)-difference set, then every prime q dividing $k-\lambda$ but not dividing v is a multiplier of D; that is, $q * D=D+g$.

Conditionally to this conjecture, if $p=2 n(n-1)+1$ is "exceptional", then either n, or $n-1$ is divisible by $\operatorname{lcm}\left\{\operatorname{ord}_{p}(q): q \left\lvert\, \frac{p-1}{4}\right.\right.$ is prime $\}$ (instead of the unconditional gcd).

Summary

- For $A \subseteq \mathbb{F}_{p}$, we write $A-A \stackrel{!}{=} \mathcal{R}_{p}$ to indicate that the differences $a^{\prime \prime}-a^{\prime}\left(a^{\prime}, a^{\prime \prime} \in A\right)$ list all quadratic residues modulo p, every residue being listed exactly once.
- Conjecturally, this never happens, with just two exceptions: $p=5\left(A_{5}=\{2,3\}\right)$ and $p=13\left(A_{13}=\{2,5,6\}\right)$. We prove this for $13<p<10^{20}=100,000,000,000,000,000,000$.
- Our methods involve elementary number theory / combinatorics, algebraic number theory, biquadratic reciprocity, and the theory of difference sets...
- ... which becomes relevant through the following observation: If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then for any fixed quadratic non-residue ν, the set $D:=\left\{a^{\prime}+\nu a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A\right\}$ is a $\left(p, n^{2}, n(n+1) / 2\right)$-difference set.

Summary

- For $A \subseteq \mathbb{F}_{p}$, we write $A-A \stackrel{!}{=} \mathcal{R}_{p}$ to indicate that the differences $a^{\prime \prime}-a^{\prime}\left(a^{\prime}, a^{\prime \prime} \in A\right.$) list all quadratic residues modulo p, every residue being listed exactly once.
- Conjecturally, this never happens, with just two exceptions: $p=5\left(A_{5}=\{2,3\}\right)$ and $p=13\left(A_{13}=\{2,5,6\}\right)$. We prove this for $13<p<10^{20}=100,000,000,000,000,000,000$.
- Our methods involve elementary number theory / combinatorics, algebraic number theory, biquadratic reciprocity, and the theory of difference sets..
- ... which becomes relevant through the following observation: If $A-A \stackrel{ }{=} \mathcal{R}_{p}$, then for any fixed quadratic non-residue ν, the set

Summary

- For $A \subseteq \mathbb{F}_{p}$, we write $A-A \stackrel{!}{=} \mathcal{R}_{p}$ to indicate that the differences $a^{\prime \prime}-a^{\prime}\left(a^{\prime}, a^{\prime \prime} \in A\right)$ list all quadratic residues modulo p, every residue being listed exactly once.
- Conjecturally, this never happens, with just two exceptions: $p=5\left(A_{5}=\{2,3\}\right)$ and $p=13\left(A_{13}=\{2,5,6\}\right)$. We prove this for $13<p<10^{20}=100,000,000,000,000,000,000$.
- Our methods involve elementary number theory / combinatorics, algebraic number theory, biquadratic reciprocity, and the theory of difference sets...
\square

Summary

- For $A \subseteq \mathbb{F}_{p}$, we write $A-A \stackrel{!}{=} \mathcal{R}_{p}$ to indicate that the differences $a^{\prime \prime}-a^{\prime}\left(a^{\prime}, a^{\prime \prime} \in A\right)$ list all quadratic residues modulo p, every residue being listed exactly once.
- Conjecturally, this never happens, with just two exceptions: $p=5\left(A_{5}=\{2,3\}\right)$ and $p=13\left(A_{13}=\{2,5,6\}\right)$. We prove this for $13<p<10^{20}=100,000,000,000,000,000,000$.
- Our methods involve elementary number theory / combinatorics, algebraic number theory, biquadratic reciprocity, and the theory of difference sets...
- ... which becomes relevant through the following observation: If $A-A \stackrel{!}{=} \mathcal{R}_{p}$, then for any fixed quadratic non-residue ν, the set $D:=\left\{a^{\prime}+\nu a^{\prime \prime}: a^{\prime}, a^{\prime \prime} \in A\right\}$ is a $\left(p, n^{2}, n(n+1) / 2\right)$-difference set.

Thank you!

