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Sárközy’s Conjecture

Notation: Fp = Rp ∪Np ∪ {0} – quadratic residues / non-residues.

Conjecture (Sárközy, 2012)
We have Rp 6= A + B whenever A,B ⊆ Fp, min{|A|, |B|} > 1.

Theorem (Shkredov, 2014: the case A = B)
We have Rp 6= A + A whenever A ⊆ Fp (except if p = 3 and A = {2}).
Also, Rp 6= {a′ + a′′ : a′,a′′ ∈ A, a′ 6= a′′}.

The difference case (B = −A)
Is it true that Rp 6= {a′ − a′′ : a′,a′′ ∈ A, a′ 6= a′′} with A ⊆ Fp?

The anticipated answer is NO: conjecturally, A− A ⊆ Rp ∪ {0} implies
|A| �ε pε, and then |A− A| �ε p2ε < |Rp| for ε < 0.25 and p large.
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A Should-be-Easier Problem
Do there exist A ⊆ Fp such that Rp = {a′ − a′′ : a′,a′′ ∈ A, a′ 6= a′′}
and indeed, the differences a′ − a′′ with a′,a′′ ∈ A, a′ 6= a′′ list all
elements of Rp exactly once?

Notation: A− A !
=Rp

Examples

For A5 := {2,3} ⊆ F5, we have A5 − A5
!

= R5;

For A13 := {2,5,6} ⊆ F13, we have A13 − A13
!

=R13.

Conjecture (Lev–Sonn, 2016)

For p > 13, there do not exist A ⊆ Fp with A− A !
= Rp.

Theorem (Lev–Sonn, 2016)

For 13 < p < 1020, there do not exist A ⊆ Fp with A− A !
= Rp.
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Basic Observations
If q = pm with m even, then the subfield A := F√q < Fq satisfies

A− A ⊆ Rq. However, A− A !
=Rq does not hold!

Back to Fp with p prime:

If A− A !
= Rp, then Rp = −Rp, whence p ≡ 1 (mod 4).

This sieves out all primes p ≡ 3 (mod 4).

Writing n := |A|, for A− A !
= Rp to hold, one needs to have

n(n − 1) = p−1
2 ; that is,

p = 2n(n − 1) + 1, n = |A|.

(This also shows, in particular, that p ≡ 1 (mod 4).)

Affine equivalence: if A− A !
=Rp, then, indeed, for each µ ∈ Rp

and g ∈ Fp, letting A′ := µ ∗ A + g, we will have A′ − A′ !
=Rp.
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What is special about A5 = {2,3} and A13 = {2,5,6}?
Both A5 and A13 are cosets of a subgroup of the multiplicative group of
the corresponding field: A5 is a coset of {1,4} < F×5 , and A13 is a
coset of {1,3,9} < F×13.

In addition, A5 is affinely equivalent to the set {0,1}, which is a union
of 0 and a subgroup of F×5 .

For p > 13, constructions of this sort do not work!

Theorem
For a prime p > 13, there is no coset A = gH, with H < F×p and

g ∈ F×p , such that A− A !
=Rp.

Theorem
For a prime p > 5, there is no coset gH, with H < F×p and g ∈ F×p , such

that, letting A := gH ∪ {0}, we have A− A !
=Rp.
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Sketch of the Proof
Suppose, for instance, that H − H !

=Rp with some H < F×p .

For all h1,h2 ∈ H with h1 6= ±h2 we have then h1 − h2 ∈ Rp, but
also h1 + h2 = (h2

1 − h2
2)/(h1 − h2) ∈ Rp. It follows that the sums

σ(x) :=
∑
h∈H

(
χp(x + h) + χp(x − h)

)
, x ∈ Fp

where χp is the quadratic character mod p, are very large for x ∈ H
and also for x ∈ −H.
(One needs to show that −1 /∈ H, so that −H is disjoint from H.)

As a result, the sum ∑
x∈H∪(−H)

σ2(x)

is very large – in fact, larger than the complete sum∑
x∈Fp

σ2(x) = 2n(2n2 − 4n + 1), n = |H|.
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Multipliers

Definition
An element µ ∈ F×p is a multiplier of the set A ⊆ Fp if µ ∗ A = A + g
for some g ∈ Fp, where µ ∗ A := {µa : a ∈ A}.

Let MA ⊆ F×p denote the set of all multipliers of A (notice that 1 ∈ MA).

If µ1, µ2 ∈ MA, then also µ1µ2 ∈ MA; hence, MA < F×p ;
If A′ = µA + g for some µ ∈ F×p and g ∈ Fp, then MA′ = MA;
every A ⊆ Fp has a translate which is fixed by all multipliers of A:
namely, if g ∈ Fp is so chosen that the elements of A′ := A + g
add up to 0, then µ ∗ A′ = A′ for each µ ∈ MA′ = MA.

If H < F×p and A = g1H ∪ · · · ∪ gkH, or A = {0} ∪ g1H ∪ · · · ∪ gkH,
then H ≤ MA.

Conversely, writing H := MA, we have (A + g) \ {0} = g1H ∪ · · · ∪ gkH.
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Sets A ⊆ Fp with A− A !
=Rp Have MA Large

For a prime p ≡ 1 (mod 4), let

Gp := gcd
{

ordp(q) : q | p−1
4 , q is prime

}
.

One can expect Gp to be quite large for most p. Computationally,
among all primes p = 2n(n − 1) + 1 < 1012, there are less than
1.4% those with Gp <

√
p.

Theorem

If A− A !
=Rp, then MA lies above the order-Gp subgroup of F×p ;

equivalently, |MA| is divisible by Gp.

The proof uses basic algebraic number theory: let ζ := exp(2πi/p) and
α :=

∑
a∈A ζ

a; then A− A !
=Rp translates as |α|2 = n + ρ with

ρ =
∑

r∈Rp
ζ r = 1

2(
√

p − 1), and we factor α into a product of prime
ideals and consider the action of Gal(Q[ζ]/Q) on these ideals etc.
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among all primes p = 2n(n − 1) + 1 < 1012, there are less than
1.4% those with Gp <

√
p.

Theorem

If A− A !
=Rp, then MA lies above the order-Gp subgroup of F×p ;

equivalently, |MA| is divisible by Gp.

The proof uses basic algebraic number theory: let ζ := exp(2πi/p) and
α :=

∑
a∈A ζ

a; then A− A !
=Rp translates as |α|2 = n + ρ with

ρ =
∑

r∈Rp
ζ r = 1

2(
√

p − 1), and we factor α into a product of prime
ideals and consider the action of Gal(Q[ζ]/Q) on these ideals etc.
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Some Consequences
Theorem (R)

If A− A !
=Rp, then MA lies above the order-Gp subgroup of F×p ;

equivalently, |MA| is divisible by Gp.

Corollary
If p = 2n(n − 1) + 1 is “exceptional”, then either Gp is a proper divisor
of n, or Gp is a proper divisor of n − 1.

This sieves out over 99.7% of all primes p = 2n(n − 1) + 1 < 1012!

For integer k ≥ 1, let Φk denote the k -th cyclotomic polynomial.

Corollary
Suppose that p is “exceptional”. If ordp(z) | Gp and ordp(z) - k for
some z ∈ Fp and k ≥ 1, then Φk (z) ∈ Rp.

Thus, if zGp = 1, zk 6= 1, and Φk (z) ∈ Np, then p is not exceptional.
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The Odd Orders
Theorem

If p is “exceptional”, then ordp(q) is odd for every prime q | p−1
4 .

Corollary
If p = 2n(n − 1) + 1 is “exceptional”, then either n ≡ 2 (mod 4), or
n ≡ 3 (mod 4); hence, p ≡ 5 (mod 8).

(If we had n ∈ {0,1} (mod 4), then p−1
4 were even; consequently, p−1

4
and p− 1 would have same prime divisors. Hence, all prime divisors of
p − 1 would be of odd order, while p − 1 itself has even order.)

Theorem (The previous theorem + biquadratic reciprocity)
If p = 2n(n − 1) + 1 is “exceptional”, then neither n not n − 1 have
prime divisors congruent to 7 modulo 8. Moreover, of the numbers n
and n − 1, the odd one has no prime divisors congruent to 5 modulo 8,
and the even one has no prime divisors congruent to 3 modulo 8.
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Computational Evidence

In the range 13 < p < 1020, there are only five (!) primes
p = 2n(n − 1) + 1 such that Gp | n − δ with δ ∈ {0,1}, and the prime
divisors of n and n − 1 satisfy the congruence conditions just stated:

n δ (n − δ)/Gp n − 1, n
51 1 2 2 · 52, 3 · 17

650 0 2 11 · 59, 2 · 52 · 13
32283 1 2 2 · 16141, 32 · 17 · 211

57303490 1 3 3 · 1579 · 12097, 2 · 5 · 5730349
377687811 0 3 2 · 5 · 17 · 113 · 19661, 3 · 1787 · 70451

These five primes are easily handled using the cyclotomic polynomial
test. Thus, there are no exceptional primes in the specified range
13 < p < 1020.
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Difference Sets
Theorem (R)

If p is “exceptional”, then ordp(q) is odd for every prime q | p−1
4 .

The proof uses the Semi-primitivity Theorem from the theory of
difference sets (in the design-theory meaning of this term).

Definition
For integer v , k , λ > 0, a (v , k , λ)-difference set is a k -element subset
of a v -element group, such that every non-zero group element has
exactly λ representations as a difference of two elements of the set.

Difference sets come into the play via the following observation.

Claim

Suppose that A− A !
=Rp, and write n := |A|. The for any fixed ν ∈ Np,

the n2 sums a′ + νa′′ with a′,a′′ ∈ A are pairwise distinct, and the set D
of all these sums is a (p,n2,n(n + 1)/2)-difference set in Fp.
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Proof of the Claim
Claim (R)

Suppose that A− A !
=Rp, and write n := |A|. The for any fixed ν ∈ Np,

the n2 sums a′ + νa′′ with a′,a′′ ∈ A are pairwise distinct, and the set D
of all these sums is a (p,n2,n(n + 1)/2)-difference set in Fp.

The group-ring proof
In the group ring ZFp, we have

D = AA(ν), AA(−1) = n +Rp, R(ν)
p = Np, and RpNp =

n(n − 1)

2
F×p

(the last equality reflecting the fact that for p ≡ 1 (mod 4), every
element of F×p has exactly p−1

4 representations as a sum of a quadratic
residue and a quadratic non-residue). Hence,

DD(−1) = AA(ν)A(−1)A(−ν) = (n +Rp)(n +Rp)(ν)

= (n +Rp)(n +Np) = n2 + nF×p +
n(n − 1)

2
F×p = n2 +

n(n + 1)

2
F×p .
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From Semi-primitivity to “ordp(q) is odd for q | p−1
4 ”

Theorem (Semi-primitivity Theorem)
Suppose that G is a finite abelian group of exponent e. If G possesses
a (v , k , λ)-difference set (so that v = |G|), then for any prime q with
q | k − λ and q - v, the order of q in (Z/eZ)× is odd.

If A− A !
=Rp, then D := {a′ + νa′′ : a′,a′′ ∈ A} is a (v , k , λ)-difference

set in Fp with v = p, k = n2, and λ = n(n + 1)/2. Thus, for any prime q
dividing k − λ = n(n−1)

2 = p−1
4 , the order of q in (Z/pZ)× is odd.

The Big Difference Set Conjecture
If D is a (v , k , λ)-difference set, then every prime q dividing k − λ but
not dividing v is a multiplier of D; that is, q ∗ D = D + g.

Conditionally to this conjecture, if p = 2n(n − 1) + 1 is “exceptional”,
then either n, or n − 1 is divisible by lcm {ordp(q) : q | p−1

4 is prime}
(instead of the unconditional gcd).
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Summary

For A ⊆ Fp, we write A− A !
=Rp to indicate that the differences

a′′ − a′ (a′,a′′ ∈ A) list all quadratic residues modulo p, every
residue being listed exactly once.
Conjecturally, this never happens, with just two exceptions:
p = 5 (A5 = {2,3}) and p = 13 (A13 = {2,5,6}). We prove this
for 13 < p < 1020 = 100,000,000,000,000,000,000.
Our methods involve elementary number theory / combinatorics,
algebraic number theory, biquadratic reciprocity, and the theory
of difference sets...
... which becomes relevant through the following observation:
If A− A !

=Rp, then for any fixed quadratic non-residue ν, the set
D := {a′ + νa′′ : a′,a′′ ∈ A} is a (p,n2,n(n + 1)/2)-difference set.
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Thank you!


