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Overview
Statistical thinking can be very philosophical.

But practical implementation gets computational. The main tools are

1) Optimization

2) Sampling

Optimization

Convexity makes this much easier and gives gaurantees.

We often have that for parametric MLEs.

Also for empirical likelihood and estimating equations.

But profiling nuisance parameters is still hard.

Sampling

It turns original data (Xi, Yi) into inferential data θ̂j
Harder to know when it works.

I think prospects are good for Bayesian empirical likelihood Lazar (2003).

(E.g., Chaudhury’s talk today.) June 2016, National University of Singapore
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Motivation for today
Dylan Small and Dan Yang (2012) found a case where my old

Levenberg-Marquardt iterations failed. Plain step reduction works better.

New optimization is

1) low dimensional

2) convex

3) unconstrained

4) self-concordant

The new ingredient is self-concordance (described below)

It gives mathematical guarantees of convergence.

Prior to convergence it lets us bound sub-optimality

Also

A quartic log likelihood Corcoran (1998) is also self-concordant.

June 2016, National University of Singapore
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Empirical Likelihood
Provides likelihood inferences without assuming a parametric family

For data Xi
iid∼ F

L(F ) =
n∏
i=1

F ({Xi}) Likelihood

F̂ =
1

n

n∑
i=1

δXi Nonparametric MLE

R(F ) =
n∏
i=1

nwi, wi ≡ F ({Xi}) Empirical likelihood ratio

If L(F ) > 0 then wi > 0. Convenient to assume
∑n
i=1 wi = 1 too.

Then we get a multinomial distribution on n items X1, . . . , Xn.

June 2016, National University of Singapore
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EL properties
Empirical likelihood inherits many properties from parametric likelihoods.

• Wilks style χ2 limit distribution

• automatic shape selection for confidence regions

• Bartlett correctability DiCiccio, Hall & Romano (1991) and Chen & Cui (2006)

• Very high power Kitamura and Lazar & Mykland

• Wide scope Hjort, McKeague & Van Keilegom (2009)

Statistical assumptions: independence and bounded moments.

Oddly

Having n− 1 parameters for n observations does not lead to trouble.

June 2016, National University of Singapore
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Empirical likelihood for the mean

R(µ) = max
{ n∏
i=1

nwi | wi > 0
n∑
i=1

wiXi = µ,
n∑
i=1

wi = 1
}

Wilks-like: −2 log(R(µ0))
d→ χ2

(d) allows confidence regions and tests

Estimating equations E(m(X, θ)) = 0

m(X, θ) = X − θ Mean

m(X, θ) = 1X<θ − 0.5 Median

m(X,Y, θ) = (Y −XTθ)X Regression

m(X, θ) = ∂
∂θ log(f(X, θ)) MLE estimand

June 2016, National University of Singapore
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Computation
Maximize

∑n
i=1 log(nwi) subject to

∑
i wi = 1 and

∑
i wiZi = 0

Here Zi = Xi − µ0 or Zi = m(Xi, θ).

The hull

If 0 is not in the convex hull of Zi then log(R(·)) = −∞

Lagrangian

G =
n∑
i=1

log(nwi)− nλT
n∑
i=1

wiZi + δ

( n∑
i=1

wi − 1

)
∂G

∂wi
=

1

wi
− nλTZi + δ

0 =
n∑
i=1

wi
∂G

∂wi
= n− 0 + δ

Therefore for some λ ∈ Rd

wi =
1

n

1

1 + λTZi

June 2016, National University of Singapore
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Finding λ

wi =
1

n

1

1 + λTZi
, where

n∑
i=1

wi(λ)Zi = 0 ∈ Rd.

We have to solve

1

n

n∑
i=1

Zi
1 + λTZi

= 0

The dual

L(λ) = −
n∑
i=1

log(1 + λTZi)

This function is convex in λ and,

∂L
∂λ

=
1

n

n∑
i=1

Zi
1 + λTZi

.

Minimizing the dual maximizes the likelihood.

June 2016, National University of Singapore
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n constraints

Recall: L(λ) = −
n∑
i=1

log(1 + λTZi)

Minimizer must have 1 + λTZi > 0, i = 1, . . . , n

This comes from wi > 0.

Sharper

wi < 1 =⇒ 1

n

1

1 + λTZi
< 1

Therefore

1 + λTZi >
1

n
, i = 1, . . . , n

June 2016, National University of Singapore
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Removing the constraints
Replace log(x) by

log∗(x) =

log(x), x > 1/n

Q(x), x < 1/n

where Q is quadratic with

Q(1/n) = log(1/n)

Q′(1/n) = log′(1/n) and

Q′′(1/n) = log′′(1/n)

Q(x) = log(1/n)− 3/2 + 2nx− (nx)2/2

Now minimize

L∗ = −
n∑
i=1

log∗(1 + λTZi)

Same optimum as L. No constraints. Always finite.
June 2016, National University of Singapore
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Newton steps
The gradient is g(λ) ≡ ∂

∂λL∗(λ).

The Hessian is H(λ) ≡ ∂2

∂λ∂λTL∗(λ)

The Newton step is

λ← λ+ s where s = −H−1g

Further analysis

Our H is of the form JTJ and g = JTη

So the Newton step can be solved by least squares (more numerically stable)

Step reductions

Newton steps still require some kind of step reduction methods. If there is not

enough progress to the minimum, take a smaller multiple of s.

Levenberg-Marquardt: if the step gets too small start picking directions more near

to−g.

June 2016, National University of Singapore
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Small and Yang’s example

0 = E(Z1(Y − β1W − α1))

0 = E(Y − β1W − α1)

0 = E(Z2(Y − (β1 + δ)W − α2))

0 = E(Y − (β1 + δ)W − α2)

Residuals Y − β1W − α1 and Y − (β1 + δ)W − α2.

Instrumental variables Z1, Z2 ∈ {0, 1}

Problem arose in a bootstrap sample.

June 2016, National University of Singapore
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Small and Yang’s example
They needed to test the mean of 1000 points in R4.

The specific problem arose in an instrumental variables context.
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Zooming in
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True empirical log likelihood

R(0) = −399.6937

Old algorithm got stuck; stepsize got small ad hoc Levenberg-Marquardt

reductions did not help.

They used step reducing line search instead.

June 2016, National University of Singapore
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Self-concordance
A convex function g from R to R is self-concordant if

|g′′′(x)| 6 2g′′(x)3/2 N.B. g′′ > 0

Nesterov & Nemirovskii (1994) Boyd & Vandeberghe (2004)

A convex function from g from Rd to R is self-concordant if

g(x0 + tx1)

is a self-concordant function of t ∈ R.

Implications

The Hessian of self-concordant g(x) cannot change too rapidly with x.

Newton updates with line search step-reduction are guaranteed to converge.

Also the Newton decrement (below) bounds the suboptimality.

The 2 is not essential

If |g′′′(x)| 6 Cg′′(x)3/2 then C2

4 g is self-concordant. June 2016, National University of Singapore
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Backtracking Newton
1) Select starting point x

2) Repeat until Newton decrement ν(x) below tolerance

a) s← −H(x)−1g(x), t← 1

b) While f(x+ ts) > f(x) + αtsTg

i) t← t× β

3) x← x+ ts

Guaranteed convergence if

α ∈ (0, 1/2), β ∈ (0, 1), f bounded below, sublevel set of x is closed

Newton decrement

ν(x) = (g(x)TH(x)−1g(x))1/2

If f is strictly convex self-concordant and ν(x̃) 6 0.68 then

inf
x
f(x) > f(x̃)− ν(x̃)2

June 2016, National University of Singapore
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Chen, Sitter, Wu
• Biometrika (2002)

• Use backtracking line search with step halving when objective not improved

(i.e., improvement factor α = 0 and step factor β = 1/2)

• Show convergence via results in Polyak (1987)

• Starts k’th search at size t = (k + 1)−1/2.

• Starting with t < 1 will slow Newton from quadratic convergence. They

observe that starting at t = 1 works.

June 2016, National University of Singapore
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Back to L∗

L∗(λ) = −
n∑
i=1

log∗(1+λ
TZi) where log∗(x) =

log(x), x > 1/n

Q(x), x < 1/n

log∗ is self-concordant on (−∞, 1/n) and on (1/n,∞).

But it lacks a third derivative at 1/n

Hence not self-concordant.

June 2016, National University of Singapore
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Higher order approximations

− log(k)(x) =

− log(x), x > ε > 0

hk(x− ε) x < ε

Taylor approx to− log at ε

hk(y) = hk(y; ε) = −
k∑
t=0

log(t)(ε)
yt

t!

k = 2 Convex but not self-concordant (fails at ε) − log(2) = − log∗

k = 3 Not even convex

k = 4 Convex and self-concordant
0 0
^

June 2016, National University of Singapore
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Back to the example
Self-concordant version also gets logR() = −399.6937

Newton decrement

η ≡ (gTH−1g)−1/2 = 6.74277× 10−16

Estimate has log(R) within η2 of true optimum.

I.e. good to within given precision.

June 2016, National University of Singapore
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Sketch of proof
We need to show that h4(y) is self-concordant on (−∞, 0].

• i.e., |h′′′4 | 6 2(h′4)
′3/2

• Suffices to show h4(ε× ·) self-concordant

• h′′′4 (tε) = ε−3(−2 + 6t)

• h′′4(tε) = ε−2((1− t)2 + t2)

• ρ(t) ≡ |h
′′′
4 (tε)|

h′′4(tε)
3/2

=
2− 6t

(t− 1)2 + t2
on t 6 0.

• ρ(0) = 2

• ρ′(t) > 0 for t 6 0

So the ratio ρ increases to 2 as t ↑ 0

June 2016, National University of Singapore
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Quartic log likelihood

use RQ = −
n∑
i=1

l̃og(nwi)

l̃og(1 + z) = z − 1

2
z2 +

1

3
z3 − 1

4
z4

Properties

Bartlett correctable Corcoran (1998)

Match 4 derivatives & match 4 moments

Self-concordant O (2013) [C = 3.92 instead of C = 2]

Convex confidence regions for the mean O (2013)

Lagrange multiplier for
∑
wi = 1 cannot be eliminated.

Primal-dual algorithm in Boyd & Vandeberghe available

June 2016, National University of Singapore
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Duck data
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Larsen & Marx (1986)

June 2016, National University of Singapore
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Next thoughts
Maybe it is not necessary to enforce 1 + λTZi > 1/n

Avoid piece-wise pseudo-logarithm altogether

Step reduction keeps 1 + λTZi > 0

−
∑n
i=1 log(1 + λTZi) also self-concordant

Simpler, but

log(z) may be slightly worse conditioned than z4

Maximizing over nuisance parameters might be easier without linearly

constraining λ

June 2016, National University of Singapore
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Time permitting . . .

Some computational challenges.

June 2016, National University of Singapore
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Profiling for regression
Maximize

∑n
i=1 log(nwi) subject to wi > 0

∑
i wi = 1∑

i

wi(Yi − xT
i β)xi = 0

and βj = βj0.

Not quite convex optimization

The free variables are βk for k 6= j as well as w1, . . . , wn.

The computational challenge comes from bilinearity of the constraint.

If β is held fixed the normal equation constraint is linear in w and vice versa.

June 2016, National University of Singapore
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Multisample EL
Chapter 11.4 of the text “Empirical likelihood” looks at a multi-sample setting.

Observations Xi
iid∼ F for i = 1, . . . , n independent of Y j

iid∼ G for

j = 1, . . . ,m. The likelihood ratio is

n∏
i=1

m∏
j=1

(nui)(mvj)

with ui > 0, vj > 0,
∑
i ui = 1,

∑
j vj = 1 and∑

i

∑
j

uivjh(xi,yj , θ) = 0 (1)

For example: h(X,Y, θ) = 1X−Y >θ − 1/2. The computational problem is a

challenge. The log likelihood is convex but constraint (1) is bilinear. So

computation is awkward.

June 2016, National University of Singapore
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Regression again

Y ≈ xTβ, x ∈ Rd y ∈ R

Estimating equations∗

E
(
(Y − xTβ)x

)
= 0

Normal equations
n∑
i=1

(yi − xT
i β)xi = 0 ∈ Rd

In principle we let zi = zi(β) ≡ (yi − xT
i β)xi ∈ Rd, adjoin zn+1 and

zn+2, and carry on.

∗residuals ε = y − xTβ are uncorrelated with x.

They have mean zero too, when as usual, x contains a constant.

June 2016, National University of Singapore
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Regression hull condition

R(β) = sup

{
n∏
i=1

nwi

∣∣∣ wi > 0,
n∑
i=1

wi = 1,
n∑
i=1

wi(yi−xT
i β)xi = 0

}

P = P(β) = {xi | yi − xT
i β > 0} x with pos resid

N = N (β) = {xi | yi − xT
i β < 0} x with neg resid

Convex hull condition O (2000)

chull(P)
⋂

chull(N ) 6= ∅ =⇒ β ∈ C(0)

For xi = (1, ti)
T ∈ R2 P andN are intervals in {1} × R.

June 2016, National University of Singapore
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Converse
Suppose that τ 6∈ {t1, . . . , tn} and

Sign(yi − β0 − β1ti) =

 1, ti > τ

−1, ti < τ

Suppose also that

∑
i

wi

1

ti

 (yi − β0 − β1ti) =

0

0


Then ∑

i

wi(yi − β0 − β1ti)(ti − τ) = 0

But (yi − β0 − β1ti)(ti − τ) > 0 ∀i

Therefore the hull condition is necessary.

June 2016, National University of Singapore
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Example regression data
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Y = β0 + β1X + σε β = (0, 3)T, σ = 1

β solid β̂ dashed

June 2016, National University of Singapore
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Red line is on boundary of set of (β0, β1) with positive empirical likelihood

June 2016, National University of Singapore
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Another boundary line.
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Example regression data

x

y

Yet another boundary line.

Left side has positive residuals; right side negative.

Wiggle it up and point 3 gets a negative residual =⇒ ok.

Wiggle down =⇒ NOT ok.

June 2016, National University of Singapore
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Example regression data
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All the boundary lines that interpolate two data points.

They are a subset of the boundary.
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Some regression parameters on the boundary
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Boundary points (β0, β1). Region is not convex.

It is convex in β0 (vertical) for fixed β1 (horizontal).
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What is a convex set of lines?
• convex set of (β0, β1)?

• convex set of (ρ, θ)? (polar coordinates)

• convex set of (a, b) (ax+ by = 1)?

June 2016, National University of Singapore
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Polar coordinates of a line

x

y

●

y = mx + b

r

θ
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Boundary pts in polar coords
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Some boundary points (polar coords)
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Not convex here either.
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Intrinsic convexity
There is a geometrically intrinsic notion for a convex set of linear flats.

J. E. Goodman (1998) “When is a set of lines in space convex?”

Maybe · · · that can support some computation.

Dual definition

The set of flats that intersects a convex set C ⊂ Rd is a convex set of flats.

So is the set of flats that intersect all of C1, . . . , Ck ⊂ Rd for convex Cj .

Convex functions

This notion of convex set does not yet seem to have a corresponding notion of

convex function. There could be quasi-convex functions, those where the level

sets are convex. But quasi-convexity is much less powerful computationally than

convexity.
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Bayesian empirical likelihood
Basic idea:

use π(θ)×R(θ), prior times empirical likelihood.

Philosophy

We might have a good idea about the prior but prefer not to specify a likelihood.

Lazar (2003) shows some good frequentist calibrations.

The EL is asymptotically a likelihood on a least favorable family.

Placing the prior on that same family unites the two.

Computation

There have been recent strides in Hamiltonian MCMC.

Faster convergence.

Better user interface via STAN.
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