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General formulation

I Observed data:

Yi = X(ti ) + εi , i = 1, . . . , n; (1)

where ti ∈ [T0,T1].

I Parametric ODE model:

d

dt
X(t) = G (X(t), t; θ) (2)

subject to an initial condition X(T0) = X0.

I If G (x, t; θ) ≡ G (x, θ), then the system is autonomous.



Estimating θ by regression

I Treat X(t) as a function of (θ,X0).

I If X0 is known, the trajectory for X(t) = X(t, θ) can be
determined for all t ∈ [T0,T1], up to a given level of precision
by numerically solving (2), for example by Runge-Kutta
method.

I One obvious approach is to estimate θ by solving the least
squares problem:

θ̂LS = arg min
θ∈Θ

n∑
i=1

wi‖Yi − X(ti ; θ)‖2 (3)

based on some known weights {wi}ni=1.



Computational bottleneck

I Typically, (3) is solved by iteratively solving a sequence of
linearized regression problem (e.g., Levenberg-Marquardt
method). This involves, at each step of the iterations,

1. Solve for X(t; θ) on [T0,T1] given the current value of θ.
2. Solve for d

dtX(t; θ) on the same interval, by solving the
corresponding ODE.

I Both these steps need knowledge of X0, and evaluation of the
trajectory on a fine grid.



Alternative approaches : Two-stage estimation

I The first stage involves estimating X (t) and X ′(t) separately
using local polynomial method.

I The second stage involves nonlinear regression based on the
following description:

X̂′(ti ) = G (X̂(ti ), ti ; θ) + ei , i = 1, . . . , n.

I The method has been analyzed in detail by Chen and Wu
(2008a, 2008b).

I Choice of weights in the nonlinear regression can impact the
quality of estimation. Brunel (2008) (who used splines rather
than local polynomial regression for smoothing X(t)),
established

√
n-consistency of θ̂ under a careful choice of

weights that vanish at the boundaries.



Alternative approaches : Parameter cascading

I A penalized least squares method whereby the trajectory X is
represented in terms of splines and the ODE itself acts as a
penalty on the trajectory. The parameters of the ODE are
fitted using a parameter cascading method (Ramsay, Hooker,
Campbell and Cao, 2007).

I Specifically, after expressing X̂ (t) =
∑M

j=1 βjΦj(t), they
minimize

n∑
i=1

wi‖Yi − X̂(ti )‖2 + λ

∫
‖X̂′(t)− G (X̂(t), t; θ)‖2dt

for some λ > 0.

I Qi and Zhao (2010) provided theoretical analysis of the
parameter cascading method.



Alternative approaches : Linear functionals

I Hall and Ma (2014) proposed another smoothing-based
estimator by making use of a class of linear test functionals.

I Specifically, if ψj , j = 1, . . . , J are C 1 functions supported on
[c , 1− c] for some c ∈ (0, 1/2), and satisfying
ψj(c) = ψj(1− c) = 0, then estimate θ by minimizing

J∑
j=1

Wj‖
∫ 1−c

c

(
ψj(t)X̂(t) + ψj(t)G (X̂(t), t; θ)

)
dt‖2

where X̂(t) is obtained by local polynomial regression.

I They show that the estimator is
√
n-consistent under

appropriate range of the bandwidth and appropriately chosen
{ψj}Jj=1.



Empirical likelihood framework

I The main idea is to combine the nonparametric smoothing
with the parametric regression of X̂′h(t) on X̂h(t), so that the
bandwidths of smoothers can be chosen simultaneously.

I EL step: Use the following normal equations as the “core
estimating equations”:

n∑
i=1

wi
∂

∂θ
‖X̂′h(ti )− G (X̂h(ti ), ti ; θ)‖2 = 0 (4)

where w := (wi )
n
i=1 ∈ Sn (n-dimensional simplex).

I Need additional estimating equations to control the
bandwidths h and improve stability.



Parametric integral constraint

I We impose the restriction

n∑
i=1

wi

(
X̂′′(ti )−

∂

∂t
G (X̂(t), t; θ) |t=ti

)
= 0. (5)

I Maximize
∏n

i=1 wi subject to (4) and (5), given θ and h, to
obtain

`P(θ,h) :=
n∑

i=1

log ŵi (θ,h).



Nonparametric integral constraints

I Given a set of weights ν := (νi )
n
i=1 ∈ Sn, we require:

n∑
i=1

νi (Yi − X̂(ti )) = 0. (6)

I Based on bias-variance trade-off used to select the optimal
global bandwidth, we also impose:

n∑
i=1

νi

(
(Yj ,i − X̂j ,hj (ti ))2 − c(Kj)nh

5
j (X̂ ′′j ,hj (ti ))2

)
= 0, (7)

for j = 1, ldots, d , where c(Kj) is a constant determined by

the kernel Kj used in obtaining the smoother X̂j ,hj .

I Maximize
∏n

i=1 νi subject to (4) and (5), given h, to obtain

`NP(h) :=
n∑

i=1

log ν̂i (h).



Final penalized loss function

I We minimize the following loss function to obtain the final
estimates of θ and h.

L(θ,h) = −`P(θ,h)− `NP(h) + η

d∑
j=1

trace(S
(1)
j ,hj

) (8)

where η ≥ 0 is a specified constant, and S
(k)
j ,hj

denotes the

smoother matrix used to obtain X̂
(k)
j ,hj

(t) for k = 0, 1, 2.

I We choose either η = 0 (no trace-based penalty), or η = 2
(motivated by AIC).



Simulation study

We use the following Lotka-Volterra system as a testbed for our
procedure. The same system has been studied by Brunel (2008)
and Ramsay et al. (2007).
X(t) = (x(t), y(t))T , where

x ′(t) = θ1x(t)− θ3x(t)y(t)

y ′(t) = −θ2y(t) + θ4x(t)y(t).

Observational errors:

εi = (εxi , ε
y
i )T

i .i .d .∼ N(0, σ2I2).



Detailed settings

I We compare with the results obtained by Brunel (2008). So,
we choose an interval [T0,T1] such that T1 − T0 = 20. Also,
we choose (x(T0), y(T0)) = (1, 3),
(θ1, θ2, θ3, θ4) = (1, 1.5, 1.5, 2) and σ = 0.2.

I We report the results when we have n = 200 equally spaced
time points in the interval.

I The proposed procedure requires a decent initial estimator for
fast convergence. We use a two-step procedure where the first
step involves estimation of (x(t), y(t)) and their derivatives
by local quadratic regression. However, we use cross-validated
bandwidths (hopt1 , hopt2 ) for obtaining (x̂(t), ŷ(t)), and
(hopt1 /2, hopt2 /2) for obtaining (x̂ ′(t), ŷ ′(t)).



Parameter Criterion Brunel Initial Proposed (η = 0) Proposed(η = 2)

θ1 Bias -.08 -.0550 -.0693 -.0345
(SD) (.07) (.0677) (.0806) (.0709)

θ2 Bias -0.10 -.1422 -.0950 -.0716
(SD) (.10) (.1358) (.1266) (.1110)

θ3 Bias -.13 -.1047 -.1117 -.0475
(SD) (.09) (.0718) (.1040) (.0813)

θ4 Bias -.17 -.1845 -.1410 -.0831
(SD) (.12) (.1130) (.1524) (.1073)

σ2
x Bias -.0135 -.0204 -.0185

(SD) (.0035) (.0028) (.0051)
σ2
y Bias -.0132 -0.0215 -.0193

(SD) (.0036) (.0028) (.0048)

ĥx Mean .0106 .0071 .0079

ĥy Mean .0106 .0068 .0076



Summary and future work

I Empirical likelihood method provides a flexible approach for
estimating ODEs without having to evaluate the trajectories
explicitly.

I Appropriate penalization scheme is needed to adjust for
bandwidth, which can also be incorporated by combining the
parametric and nonparametric aspects.

I The method enjoys a certain robustness to noise
characteristics.

I Asymptotic theory needs to developed.
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