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Sampling bias

The probability of a datum being selected into a sample
depends on the datum’s magnitude

a.k.a. size bias, selection bias, ascertainment bias (in
genetics), visibility bias (in animal studies)

P(X ∗is selected|X ∗ = x) ∝ w(x)

w(x) = x : length bias, e.g. family size; time
w(x) = x3: ‘volume’ bias, e.g. factories sampling 3-D objects
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Two-sample framework

Due to sampling bias, instead of observing samples from
Fj = 1− Sj directly (j = 1, 2), we observe samples from a
biased version of Fj :

Gj(x) =

∫ x

0

wj(u)

Wj
dFj(u)

according to some biasing or weight function wj(·) > 0, where
Wj =

∫∞
0 wj(u)dFj(u) <∞ is the normalizing constant

Fj : unbiased distribution function; Gj : biased distribution
function

Want to compare F1 and F2
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Literature review

For groups of size-biased data, NPMLE for the unbiased
distribution function and its weak convergence have been
established [Vardi, 1982, Vardi, 1985, Gill et al., 1988]

A two-sample test based on the NPMLEs from each sample:
only point-wise comparison feasible

EL has been applied to biased sampling problems [Qin, 1993,
El Barmi and Rothmann, 1998, Davidov et al., 2010]

However, simultaneous confidence bands and hypothesis
testing have not been considered

We develop an EL test that compares the underlying
distribution functions uniformly
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Motivating example

Compare blood alcohol concentration of young and old drivers
drivers with higher alcohol levels are more likely to be sampled
125 drunken drivers, 67 young and 58 old (cutoff age: 30)
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Figure: The empirical cdf of observed BAC values for drivers of age
less than 30 (solid) and at least 30 (dashed).
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Motivating example (cont.)

Bias differs btwn young & old [Raḿırez and Vidakovic, 2010]

Consider wo(x) = x , wy (x) = x r (r ∈ (0, 1))

to upweight sampling at lower levels of BAC in the younger
group
r = 1/2 in [Raḿırez and Vidakovic, 2010]
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Motivating example (cont.)
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Figure: The NPMLE for the underlying distribution function of BAC
values for drivers of age less than 30 (solid) and at least 30 (dashed); the
weight functions for the NPMLEs are taken to be wy (x) =

√
x and

wo(x) = x , respectively.
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Stochastic ordering

Goal: to detect whether the survival function is uniformly
higher in one group than the other

Framed in terms of the classical notion of stochastic ordering:

a survival function S1 is said to be stochastically larger than
another survival function S2 if S1(t) ≥ S2(t) for all t ≥ 0
�: ≥ for all t and > for some t

We will be testing

H0 : S1 = S2 versus H1 : S1 � S2

based on size-biased random samples from each population
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Empirical likelihood (EL)

EL involves forming a ratio of two nonparametric likelihoods
subject to constraints on the parameters of interest

Two early papers: [Thomas and Grunkemeier, 1975],
[Owen, 1988]

Produces highly accurate confidence regions [Owen, 2001] and
tests with optimal power [Kitamura et al., 2012]
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The usual EL without sampling bias

Given X1, . . . ,Xn i.i.d. from some unknown cdf F0 and let FX be
the space of all distribution functions supported on {X1, . . . ,Xn}:

The nonparametric likelihood ratio for H0 : θ = θ0 versus
H1 : θ 6= θ0, where θ = θ(F0):

R(θ) =
sup {L(F ) : θ(F ) = θ0,F ∈ F}

sup {L(F ) : F ∈ F}

For example, for the mean µ ≡ E (X1), the (empirical)
likelihood ratio for H0 : µ = µ0:

R(µ0) =
sup {

∏n
i=1 pi |

∑n
i=1 piXi = µ0, pi ≥ 0,

∑n
i=1 pi = 1}

sup {
∏n

i=1 pi |pi ≥ 0,
∑n

i=1 pi = 1}
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The usual EL without sampling bias (cont.)

If 0 < Var(Xi ) <∞, then

−2 log (R(µ0))
d−→χ2

(1)

as n→∞
Hypothesis testing can be conducted and the level 1− α
confidence interval for µ is{

µ0 : −2 log (R(µ0)) ≤ χ2,1−α
(1)

}
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Idea behind the procedure

First construct the EL test statistic for testing the “local”
hypotheses Ht

0 : S1(t) = S2(t) versus Ht
1 : S1(t) > S2(t) for a

given t

The local EL ratio at t is

R(t) =
sup {L(S1, S2) : S1(t) = S2(t)}
sup {L(S1, S2) : S1(t) ≥ S2(t)}

Then use the maximally selected localized statistic for the
general hypothesis
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Nonparametric likelihood for size-biased data

Nonparametric likelihood can be written as

2∏
j=1

nj∏
i=1

wijpij
Wj

,

where wij ≡ wj(Xij) and pij ≡ dFj(Xij)

The NPMLE (the unconstrained maximizer of L(S1,S2)) is
given by S̃j(t) ≡ 1−

∑nj
i=1 p̃ij IXij≤t , where p̃ij = W̃j/(njwij)

and W̃j = nj/
∑nj

i=1(1/wij)

Hsin-wen Chang Stochastic ordering under biased sampling



Introduction
Method

Simulation study
Discussion

Bibliography

Two-sample framework

Due to sampling bias, instead of observing samples from
Fj = 1− Sj directly (j = 1, 2), we observe samples from a
biased version of Fj :

Gj(x) =

∫ x

0

wj(u)

Wj
dFj(u)

according to some biasing or weight function wj(·) > 0, where
Wj =

∫∞
0 wj(u)dFj(u) <∞ is the normalizing constant

Fj : unbiased distribution function; Gj : biased distribution
function

Want to compare F1 and F2
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Deriving R(t)

When S̃1(t) ≥ S̃2(t):

the denominator of R(t) is the unconstrained maximum given
by
∏nj

i=1(wij p̃ij)/W̃j =
∏nj

i=1(1/nj)
the numerator can be obtained by the method of Lagrange
multipliers

When S̃1(t) < S̃2(t):

the constrained maximum in the denominator is attained on
the boundary of the constraint set, and then R(t) = 1
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Deriving R(t) (cont.)

Numerator of R(t):
first maximize

L(S1,S2) =
2∏

j=1

nj∏
i=1

wijpij∑nj
i=1 wijpij

subject to

nj∑
i=1

pij = 1,

nj∑
i=1

pij
(
IXij≤t − F0(t)

)
= 0, and

nj∑
i=1

pij (wij −Wj) = 0,

for fixed Wj and F0(t), j = 1, 2.
then plugging the resulting pij(Wj ,F0(t)) to get a profile
log-likelihood
maximize the profile log-likelihood over (W1,W2,F0(t))
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R(t) =

{
1 if S̃1(t) < S̃2(t),∏2

j=1

∏nj
i=1

njwij p̂ij
Ŵj

if S̃1(t) ≥ S̃2(t),

where p̂ij , Ŵj , λ̂, and F̂0(t) satisfy the system of equations

p̂ij =
1

n

1

(κjwij)/Ŵj + λ̂(−1)j−1(IXij≤t − F̂0(t))
,

nj∑
i=1

p̂ij

(
wij − Ŵj

)
= 0,

nj∑
i=1

p̂ij

(
IXij≤t − F̂0(t)

)
= 0.

Under Ht
0, F̂0(t) is the maximum EL estimate of the common

distribution function at t.
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Large sample properties of −2 logR(t) under H0

We can show

−2 logR(t) = U2
n(t)IUn(t)≥0 + op(1),

where Un(t) = σ̂−
1
2 (t, t) [V2(t)− V1(t)] ,

Vj(t) =
Wj√
nj
√
κj

nj∑
i=1

IXij≤t − F0(t)

wij

and the op term holds uniformly in t over [t1, t2], for t1 and t2
satisfying 0 < F0(tl) < 1 (l = 1, 2)

σ̂(t, t) =
∑2

j=1(Ŵ 2
j /κj)

∑nj
i=1[(IXij≤t − F̂0(t))/wij ]

2/nj
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Large sample properties of −2 logR(t) under H0 (cont.)

Can show
Un(t)

d−→U(t)

in l∞[t1, t2], where U(t) is a mean 0 Gaussian process with
covariance cov(U(s),U(t)) = σ(s, t)/

√
σ(s, s)σ(t, t)

By continuous mapping theorem, we have

−2 logR(t)
d−→U2

+(t)

in l∞[t1, t2], where U+ = max(U, 0)
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For the general hypotheses

To test for the alternative of stochastic ordering, consider the
maximally selected EL statistic Mn ≡ supt∈[t1,t2] [−2 logR(t)]

Connections to the one-sided two-sample
Kolmogorov–Smirnov statistic supt∈[t1,t2] [Fn22(t)− Fn11(t)]+:

because Un(t) is asymptotically equivalent to

σ̂−
1
2 (t, t)

√
n
[
F̃2(t)− F̃1(t)

]
,

F̃j(t) reduces to Fnj j(t) when there is no size bias (i.e.,
wj(·) ≡ 1)
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Asymptotic null distribution of our test statistic

Theorem 1

Suppose 0 < F0(t1) < F0(t2) < 1 and
∫∞
0 wj(u)−1 dF0(u) <∞.

Then, under H0

Mn
d−→ sup

t∈[t1,t2]

[
U2
+(t)

]
.
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Equivalent form of U(t)

U(t)
d
=

√
c

σ(t, t)

{
B(x) +

[
x − F0(H−1(x))

]
Z
}
,

where B is a standard Brownian bridge on [0, 1], Z ∼ N(0, 1),
x = H(t),

H(t) =
2∑

j=1

W 2
j

cκj
EGj

(
IXij≤t

w2
ij

)

and c =
∑2

j=1W
2
j /κj × EGj

(1/w2
ij ) as the sum of normalizing

constants
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Calibration: a Gaussian multiplier bootstrap approach

Define a Gaussian multiplier bootstrap for Mn by
M∗n ≡ supt∈[t1,t2]

[
U∗2n (t)IU∗

n (t)≥0
]
, where

U∗n(t) = σ̂−
1
2 (t, t) [V ∗2 (t)− V ∗1 (t)] ,

V ∗j (t) =
Ŵj√
nj
√
κj

nj∑
i=1

ξij
IXij≤t − F̂0(t)

wij
,

ξij (i = 1, . . . , nj , j = 1, 2) are i.i.d. N(0, 1) RVs |= {Xij}
To calibrate the test:

compare the empirical quantiles of these bootstrap values M∗n
with our test statistic Mn
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Large sample properties of −2 logR(t) under H0

We can show

−2 logR(t) = U2
n(t)IUn(t)≥0 + op(1),

where Un(t) = σ̂−
1
2 (t, t) [V2(t)− V1(t)] ,

Vj(t) =
Wj√
nj
√
κj

nj∑
i=1

IXij≤t − F0(t)

wij

and the op term holds uniformly in t over [t1, t2], for t1 and t2
satisfying 0 < F0(tl) < 1 (l = 1, 2)

σ̂(t, t) =
∑2

j=1(Ŵ 2
j /κj)

∑nj
i=1[(IXij≤t − F̂0(t))/wij ]

2/nj
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Bootstrap consistency theorem

Theorem 2

Assume the conditions of Theorem 1. Then conditionally on
X11,X21, . . . ,X12, X22, . . .,

M∗n
d−→ sup

t∈[t1,t2]

[
U2
+(t)

]
a.s.
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Simulation study

Tests for comparison

1 M ign
n : counterpart of Mn when size bias is ignored (i.e.

mistaking Gj as Fj)
2 Wald: supt∈[t1,t2][U

2
n (t)IUn(t)≥0], with Wj and F0(t) replaced

by their consistent estimate Ŵj and F̂0(t), respectively

Power comparisons:
Underlying distributions:

Model A: smaller difference
Model B: larger difference

Biasing functions: w1(x) =
√
x and w2(x) = x

The weight functions make the difference between G1 and G2

smaller than the difference between F1 and F2

M ign
n is expected have lower power
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Figure: For power comparisons, the underlying (gray) and weighted
(black) distribution (top row) and density (bottom row) functions in
Scenario A (first column) and Scenario B (second column): F1 and G1
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Scenario group α = 0.05 α = 0.01

size Mn M ign
n Wald Mn M ign

n Wald

A
50 0.600 0.345 0.524 0.329 0.132 0.242
80 0.791 0.484 0.736 0.530 0.229 0.440

B
50 0.757 0.405 0.674 0.494 0.176 0.365
80 0.906 0.561 0.858 0.722 0.290 0.619

Table: Power simulation results based on 10,000 replications, each with
1000 bootstrap samples. Scenario A: smaller difference. Scenario B:
larger difference.
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back to motivating example
summary and future directions

Applying the proposed EL test

Testing H0: young= old vs H1: young � old:
wy (x) =

√
x and wo(x) = x [Raḿırez and Vidakovic, 2010]

Mn = 4.46 (p = 0.109)
M ign

n (p = 0.841) and Wald (p = 0.168)
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Figure: The NPMLE for the underlying distribution function of BAC
values for drivers of age less than 30 (solid) and at least 30 (dashed); the
weight functions for the NPMLEs are taken to be wy (x) =

√
x and

wo(x) = x , respectively.
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back to motivating example
summary and future directions

Summary

We develop an EL-based test for stochastic ordering in biased
sampling models

A simulation study shows that our test can be more powerful
than the Wald test, and that considering size bias can result
in a much more powerful inference than ignoring it

We apply our test to blood alcohol measurements of drivers
involved in car accidents and found a more significant result
than the Wald test and test ignoring sampling bias
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Future directions

Explore the use of EL for size-biased data in other types of
ordering between two distributions:

increasing convex ordering
uniform stochastic ordering (or hazard rate ordering)

Develop a test for stochastic ordering in the k-sample case
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back to motivating example
summary and future directions

Thank you!
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Size simulation results

Table: Empirical significance levels based on 10,000 replications, each
with 1000 bootstrap samples. Scenario C: w1(x) = x and w2(x) =

√
x .

Scenario D: w1(x) =
√
x and w2(x) = x .

Scenario group α = 0.05 α = 0.01

size Mn M ign
n Wald Mn M ign

n Wald

C
50 0.053 0.153 0.053 0.012 0.044 0.012
80 0.052 0.192 0.055 0.010 0.059 0.010

D
50 0.054 0.012 0.032 0.011 0.002 0.005
80 0.055 0.010 0.032 0.011 0.001 0.005
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