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Theme: Combining parametrics with nonparametrics
Observe y1, . . . , yn ∼ i.i.d. f , and suppose inference is needed for a
focus parameter ψ = ψ(f ).

Parametric likelihood approach (perfect if model is perfect):

Fit f to {fθ : θ ∈ Θ} via maximum likelihood, θ̂ML maximising
log-likelihood `n(θ) = log Ln(θ). Then

√
n(θ̂ML − θ)→d Np(0, J−1).

Delta method gives
√
n(ψ̂ML − ψ)→d N(0, κ2),

with κ2 = cTJ−1c and c = ∂ψ(θ)/∂θ. Wilks theorem.

Nonparametric likelihood approach (no conditions needed):

Identify ψ via Efm(Y , ψ) = 0. EL function Rn(ψ) is the max of∏n
i=1 nwi under

∑n
i=1 wi = 1,

∑n
i=1 wim(yi , ψ) = 0, wi > 0.

−2 logRn(ψ)→d χ
2
1.



How to combine parametric and empirical likelihood?

Main idea (with details and variations and applications to come):

• Decide on control parameters µ = (µ1, . . . , µq), identified via
Emj(Y , µ) = 0 for j = 1, . . . , q;

• put the parametric model through the EL, giving Rn(µ(θ));

and form
Hn(θ) = Ln(θ)1−aRn(µ(θ))a.

We will show that the hybrid likelihood estimator θ̂HL maximising

hn(θ) = (1− a)`n(θ) + a logRn(µ(θ)),

along with focus parameter estimator ψ̂HL = ψ(f (·, θ̂HL)), have
good properties.

FIC type schemes to assist in selecting balance parameter a in
[0, 1] and the control parameters µ1, . . . , µq.



Plan

General setup (so far for i.i.d., extensions later): With working
model f (y , θ), leading to log-likelihood `n(θ), and control
parameters µ:

hn(θ) = (1− a)`n(θ) + a logRn(µ(θ)).
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A: Examples

Example 1. Let fθ be the normal (ξ, σ2), and use

mj(y , µj) = I{y ≤ µj} − j/4 for j = 1, 2, 3.

Then HL means estimating (ξ, σ) factoring in that the three
quartiles ought to be estimated well too.

Example 2. Let fθ be the Beta with parameters (b, c). ML means
moment matching for log yi and log(1− yi ). Add to these
functions m1(y , µ1) = y − µ1 and m2(y , µ2) = y2 − µ2. Then HL
is Beta fitting with getting mean and variance not far from

EBeta Y =
b

b + c
and VarBeta Y =

1

b + c + 1

b

b + c

c

b + c
.



Example 3. f (y , θ) = θyθ−1, y ∈ (0, 1), θ > 0. The log-likelihood
is n{log θ − (θ − 1)Zn}, with Zn = (1/n)

∑n
i=1 log(1/yi ), and

θ̂ML = 1/Zn. Then put the EL for the mean µ through the model,
yielding Rn(µ(θ)) with µ(θ) = θ/(θ + 1). This is HL with a = 1
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Example 4. Newcomb’s 1889 speed of light data

n = 66 and two grand outliers at −44 and −2. True value is 33.02.

Normal model: estimates of mean and variance are (26.21, 10.75).
and after removing outliers (27.75, 5.08).

Now use HL with histogram associated control parameters, with
k = 6 cells

(−∞, 10.5], (10.5, 20.5], (20.5, 25.5], (25.5, 30.5], (30.5, 35.5], (35.5,∞).

The HL, with a = 0.50: (28.23, 6.37).

a = 1: Close to minimum chi-squared.





Two (related) viewpoints

Which µ1, . . . , µq should we use in (1− a)`n(θ) + a logRn(µ(θ))?
Robustify a parametric model, and/or helping to focus the
nonparametric method?

Viewpoint One (focused robustness): Using control parameters to
help the parametric fit do well for these too. – For the normal
(ξ, σ2), we might want not only mean and standard deviation to be
ok, but also ξ̂ − 0.675 σ̂, ξ̂ + 0.675 σ̂ to reasonably match quartiles
F−1
n (14),F−1

n (34).

Viewpoint Two (with focus parameter): We wish the fitted model
to give a particularly good estimate of ψ = ψ(f ) via
ψ̂HL = ψ(f (·, θ̂HL)). Then we use the HL with p + 1 parameters,
the working model plus the focus ψ. – For the normal, we may put
in m(y , µ) = I{y ≤ µ} − 3/4, and use ξ̂HL + 0.675 σ̂HL to
estimate F−1(34).



B: Empirical likelihood
For q-vectors m1, . . . ,mn, consider

Rn = max
{ n∏
i=1

nwi :
n∑

i=1

wi = 1,
n∑

i=1

wimi = 0, each wi > 0
}
.

Let

Gn(λ) =
n∑

i=1

2 log(1 + λTmi/
√
n) and G ∗

n (λ) = 2λTVn − λTWnλ,

where Vn = n−1/2
∑n

i=1mi and Wn = n−1
∑n

i=1mim
T
i .

Dual optimization: −2 logRn = maxλ Gn(λ) = Gn(λ̂).

With the mi random; eigenvalues of Wn away from zero and
infinity; n−1/2 maxi≤n ‖mi‖ →pr 0; Vn bounded in probability: then
Gn ≈ G ∗

n where it matters, and

−2 logRn = V T
n W−1

n Vn + opr(1).

This machinery is then used with mi = m(Yi , µ(θ)).



C: Theory: under the model
First aim: working out how the HL behaves under model
conditions (it will lose some to ML there, but how much?). With

hn(θ) = (1− a)`n(θ) + a logRn(µ(θ)),

and θ0 the true value, define

An(s) = hn(θ0 + s/
√
n)− hn(θ0).

Understanding behavior of An =⇒ understanding behaviour of θ̂HL

(et al.). With u(·, θ) = ˙̀
θ as the score function,(

Un,0

Vn,0

)
=

(
n−1/2

∑n
i=1 u(Yi , θ0)

n−1/2
∑n

i=1m(Yi , µ(θ0))

)
→d

(
U0

V0

)
∼ Np+q(0,

(
J C
CT W

)
)

where J = Jfish is the Fisher information matrix.



Local asymptotic normality (LAN)

Theorem: There is a limiting quadratic process:

An(s) = hn(θ0 + s/
√
n)− hn(θ0)→d A(s) = sTU∗ − 1

2s
TJ∗s

over compacta, where

U∗ = (1− a)U0 − aξT0 W
−1V0,

J∗ = (1− a)J + aξT0 W
−1ξ0.

Here ξ0 = E ∂m(Y , µ(θ0))/∂θ. Also, U∗ ∼ Np(0,K ∗) with

K ∗ = (1− a)2J + a2ξT0 W
−1ξ0 − a(1− a)(CW−1ξ0 + ξT0 W

−1CT).

The most important aspects of how θ̂HL behaves can now be read
off from An(s)→d A(s).



Fact 1 [using argmax(An)→d argmax(A)]:

√
n(θ̂HL − θ0)→d (J∗)−1U∗ ∼ Np(0, (J∗)−1K ∗(J∗)−1).

Fact 2 [using maxAn →d maxA]:

Zn(θ0) = 2{hn(θ̂HL)− hn(θ0)} →d Z = (U∗)T(J∗)−1U∗.

Fact 3 [applying the delta method]: With ψ̂HL = ψ(θ̂HL) and
ψ0 = ψ(θ0) at true value,

√
n(ψ̂HL − ψ0)→d N(0, κ2),

with κ2 = cT(J∗)−1K ∗(J∗)−1c and c = ∂ψ(θ0)/∂θ.

Result: HL loses rather little compared to the ML under model
conditions:

(J∗)−1K ∗(J∗)−1 = J−1
fish + O(a2).



LAN for the parametric likelihood

`n(θ0 + s/
√
n)− `n(θ0) = sTUn,0 − 1

2s
TJs + opr(1)

See, for example, van der Vaart’s Asymptotic Statistics:

LAN for the hybrid likelihood will then hold since

An(s) = hn(θ0 + s/
√
n)− hn(θ0)

= (1− a){`n(θ0 + s/
√
n)− `n(θ0)}

+a{logRn(µ(θ0 + s/
√
n))− logRn(µ(θ0))},

provided we also have LAN jointly for the empirical likelihood.



LAN for the empirical likelihood

By the quadratic approximation to −2 logRn,

logRn(µ(θn)) = −1
2V

T
n W−1

n Vn + opr(1)

where θn = θ0 + s/
√
n,

Vn = n−1/2
n∑

i=1

m(Yi , µ(θn)) = Vn,0 + ξns + opr(1)

[if, say, m(y , µ(θ)) has a first-order Taylor expansion in θ],

Wn = n−1
n∑

i=1

m(Yi , µ(θn))m(Yi , µ(θn))T = Wn,0 + opr(1).

Vn,0 →d V0, and ξn = Pnξ → Eξ(Y ) = ξ0, Wn,0 →W (by LLN).



HL can be as good as ML

Example 5. Let fθ = N(θ, 1) and use the median as the control
parameter, so µ(θ) = θ and we take

m(y , µ) = I{y ≤ µ} − 1/2.

Note: m(y , µ(θ)) has no Taylor expansion in θ. Donsker gives

Vn − Vn,0 = n−1/2
n∑

i=1

1{θ0 < Yi ≤ θ0 + s/
√
n} →pr 0

so we still have LAN for the HL, and find that ξ0 = 0.

This implies that θ̂HL and θ̂ML have the same asymp variance:

(J∗)−1K ∗(J∗)−1 = J−1
fish for all choices of a.



D: Theory: outside the model

Results so far: behaviour of θ̂HL and consequent ψ̂HL well
understood under parametric model conditions, where they may
lose a little, but not much compared to ML.

Will now show (though a bigger machinery and more efforts are
required) that HL is (often) better than ML just outside the
parametric model.

Framework: extend f (y , θ) model (with dim(θ) = p) to a bigger
f (y , θ, γ) model (with dim(γ) = r), and such that γ = γ0
corresponds to the start model; f (y , θ, γ0) = f (y , θ).

Local neighborhood model framework:

ftrue(y) = f (y , θ0, γ0 + δ/
√
n).

Thus ψtrue = ψ(θ0, γ0 + δ/
√
n), etc.



Under f (y , θ0, γ0 + δ/
√
n), suppose an estimation strategy θ̂ has

the property √
n(θ̂ − θ0)→d Np(Bδ,Ω),

for appropriate B (p × r matrix, related to how the model bias
affects the estimator) and Ω.

For ψ = ψ(f ) = ψ(θ, γ), may use ψ̂ = ψ(θ̂, γ0). Then analysis
leads to √

n(ψ̂ − ψtrue)→d N(bTδ, τ2),

with
b = BT ∂ψ

∂θ −
∂ψ
∂γ and τ2 = (∂ψ∂θ )TΩ∂ψ

∂θ

with derivatives at narrow model (θ0, γ0). Hence limit mean
squared error is

mse
ψ̂

(δ) = (bTδ)2 + τ2.

Next: Examining estimation strategies ML and HL, to find B and
Ω, and hence the mse

ψ̂
(δ). For ML: as in Hjort and Claeskens

(2003); for HL: new.



The story for the ML: Essentially from Hjort and Claeskens (2003,
2008). Need the (p + r)× (p + r) Fisher information matrix

Jwide =

(
J00 J01
J10 J11

)
at the narrow model. From this (via various efforts):

√
n(θ̂ML − θ0)→d Np(J−1

00 J01δ, J
−1
00 ).

This implies √
n(ψ̂ML − ψtrue)→d N(ωTδ, τ20 )

with
ω = J10J

−1
00

∂ψ
∂θ −

∂ψ
∂γ and τ20 = (∂ψ∂θ )TJ−1

00
∂ψ
∂θ .

Hence we know
mseML(δ) = (ωTδ)2 + τ20

and should compare this with what we may find for the HL.



The story for the HL: For S(y) = ∂ log f (y , θ0, γ0)/∂γ, let

K01 = Em(Y , µ(θ0))S(Y )

of dimension q × r , along with

L01 = (1− a)J01 − a(∂ψ∂θ )TW−1K01.

Then (via various efforts):
√
n(θ̂HL − θ0)→d Np(Bδ,Ω)

with B = (J∗)−1L01 and Ω = (J∗)−1K ∗(J∗)−1. This yields
√
n(ψ̂HL − ψtrue)→d N(ωT

HLδ, τ
2
0,HL)

with

ωHL = ωHL,a = L10(J∗)−1 ∂ψ
∂θ −

∂ψ
∂γ ,

τ20,HL = τ20,HL,a = (∂ψ∂θ )T(J∗)−1K ∗(J∗)−1 ∂ψ
∂θ .

Here J∗,K ∗, L10 depend on the balance parameter a.



May then compare

mseML(δ) = (ωTδ)2 + τ20 ,

mseHL,a(δ) = (ωT
HL,aδ)2 + τ20,HL,a,

in different special setups.

0.0 0.2 0.4 0.6 0.8 1.0

0.
27

0
0.

27
5

0.
28

0
0.

28
5

0.
29

0
0.

29
5

0.
30

0

a

ro
ot
−m

se
 fo

r H
L 

an
d 

M
L



E: Fine-tuning the balance parameter
The precision of ψ̂HL for estimating ψtrue depends on the
underlying truth and on the balance parameter a.

In the f (y , θ0, γ0 + δ/
√
n) framework, the best balance a is the

minimiser of

risk(a) = mseHL,a(δ) = (ωT
HL,aδ)2 + τ20,HL,a.

Here

ωHL,a = L10,a(J∗a )−1 ∂ψ
∂θ −

∂ψ
∂γ ,

τ20,HL,a = (∂ψ∂θ )T(J∗a )−1K ∗
a (J∗a )−1 ∂ψ

∂θ .

may be estimated consistently from data, with δ less visible:

Dn =
√
n(γ̂ML − γ0)→d Nr (δ,Q),

with Q = J11 from J−1
wide.



Since Dn =
√
n(γ̂ML − γ0) ≈d Nr (δ,Q), DnD

T
n overestimates δδT,

and
E (cTDn)2

.
= (cTδ)2 + cTQc .

Hence we estimate the squared bias

sqb = (ωT
HL,aδ)2

in the ‘FIC way’, using

ŝqb = max{(ω̂T
HL,aDn)2 − ω̂T

HL,aQ̂ω̂HL,a, 0}

=

{
n{ω̂T

HL,a(γ̂ML − γ0)}2 − ω̂T
HL,aQ̂ω̂HL,a if nonnegative,

0 if else.

This leads to

r̂isk(a) = ( ∂̂ψ∂θ )T(Ĵ∗a )−1K̂ ∗
a (Ĵ∗a )−1 ∂̂ψ

∂θ + ŝqb.

Via this FIC scheme we select balance parameter a as the
minimiser of r̂isk(a).



Example: n = 100 data points on (0, 1), fitted to f (y , θ) = θyθ−1,
with control parameter (now equal to the focus parameter)
µ = EY 2. FIC plot for selecting a in the HL estimation strategy:
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F: Choosing the control parameters
The general hybrid likelihood estimation method is via constructing

hn(θ) = (1− a)`n(θ) + a logRn(µ(θ)),

which starts with choosing control parameters µ1, . . . , µq.

These aim at fitting models such that certain issues are well
calibrated – outside those taken care of by the ML, which
concentrates on the score functions u1(y , θ), . . . , up(y , θ). Can
choose m(y , µ) = g(y)− µ to make sure that the HL incorporates
aspects of µ = E g(Yi ).

• Favourite case: For a given focus parameter ψ = ψ(f ), use
this as the single control parameter.

• For a given focus parameter ψ = ψ(f ), may also select among
candidate µj controls via FIC schemes.

• May ‘stretch the idea’, including a slowly increasing sequence
of µ1, µ2, . . ., with a FIC (or AFIC) stopping criterion.



G: Concluding remarks (and questions)

A. The methodology works for multidimensional data yi , and can
be extended to regression settings.

B. We fine-tune the balance parameter a by minimising the curve
r̂isk(a) over [0, 1]. If the model gives a good fit, r̂isk(a) is minimal
at a = 0, and we use the ML, after all. This is also an implied
goodness-of-fit test.

C. So far: large-sample approximation framework and
methodology, with fixed

• p (dimension of θ),

• q (number of control parameters),

• r (number of extra γj model extension parameters).

It is of interest to let these grow with n – but more difficult
mathematically.


