Combining Parametric and Empirical Likelihoods

Ian McKeague

June 22, 2016
(ongoing work, with Nils Hjort and Ingrid Van Keilegom)

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Theme: Combining parametrics with nonparametrics Observe $y_{1}, \ldots, y_{n} \sim$ i.i.d. f, and suppose inference is needed for a focus parameter $\psi=\psi(f)$.
Parametric likelihood approach (perfect if model is perfect):
Fit f to $\left\{f_{\theta}: \theta \in \Theta\right\}$ via maximum likelihood, $\widehat{\theta}_{\text {ML }}$ maximising \log-likelihood $\ell_{n}(\theta)=\log L_{n}(\theta)$. Then

$$
\sqrt{n}\left(\widehat{\theta}_{\mathrm{ML}}-\theta\right) \rightarrow_{d} \mathrm{~N}_{p}\left(0, J^{-1}\right)
$$

Delta method gives

$$
\sqrt{n}\left(\widehat{\psi}_{\mathrm{ML}}-\psi\right) \rightarrow_{d} \mathrm{~N}\left(0, \kappa^{2}\right)
$$

with $\kappa^{2}=c^{\top} J^{-1} c$ and $c=\partial \psi(\theta) / \partial \theta$. Wilks theorem.
Nonparametric likelihood approach (no conditions needed): Identify ψ via $\mathbb{E}_{f} m(Y, \psi)=0$. EL function $R_{n}(\psi)$ is the max of $\prod_{i=1}^{n} n w_{i}$ under $\sum_{i=1}^{n} w_{i}=1, \sum_{i=1}^{n} w_{i} m\left(y_{i}, \psi\right)=0, w_{i}>0$.

$$
-2 \log R_{n}(\psi) \rightarrow_{d} \chi_{1}^{2} .
$$

How to combine parametric and empirical likelihood?

Main idea (with details and variations and applications to come):

- Decide on control parameters $\mu=\left(\mu_{1}, \ldots, \mu_{q}\right)$, identified via $\mathbb{E} m_{j}(Y, \mu)=0$ for $j=1, \ldots, q$;
- put the parametric model through the EL, giving $R_{n}(\mu(\theta))$; and form

$$
H_{n}(\theta)=L_{n}(\theta)^{1-a} R_{n}(\mu(\theta))^{a} .
$$

We will show that the hybrid likelihood estimator $\widehat{\theta}_{\mathrm{HL}}$ maximising

$$
h_{n}(\theta)=(1-a) \ell_{n}(\theta)+a \log R_{n}(\mu(\theta))
$$

along with focus parameter estimator $\widehat{\psi}_{\mathrm{HL}}=\psi\left(f\left(\cdot, \widehat{\theta}_{\mathrm{HL}}\right)\right)$, have good properties.

FIC type schemes to assist in selecting balance parameter a in $[0,1]$ and the control parameters μ_{1}, \ldots, μ_{q}.

Plan

General setup (so far for i.i.d., extensions later): With working model $f(y, \theta)$, leading to log-likelihood $\ell_{n}(\theta)$, and control parameters μ :

$$
h_{n}(\theta)=(1-a) \ell_{n}(\theta)+a \log R_{n}(\mu(\theta)) .
$$

A Examples
B Basics for the EL
C Theory: under the model
D Theory: outside the model
E Fine-tuning the balance parameter a
F Choosing the control parameters μ_{1}, \ldots, μ_{q}
G Concluding remarks (and questions)

A: Examples

Example 1. Let f_{θ} be the normal $\left(\xi, \sigma^{2}\right)$, and use

$$
m_{j}\left(y, \mu_{j}\right)=I\left\{y \leq \mu_{j}\right\}-j / 4 \quad \text { for } j=1,2,3
$$

Then HL means estimating (ξ, σ) factoring in that the three quartiles ought to be estimated well too.

Example 2. Let f_{θ} be the Beta with parameters (b, c). ML means moment matching for $\log y_{i}$ and $\log \left(1-y_{i}\right)$. Add to these functions $m_{1}\left(y, \mu_{1}\right)=y-\mu_{1}$ and $m_{2}\left(y, \mu_{2}\right)=y^{2}-\mu_{2}$. Then HL is Beta fitting with getting mean and variance not far from

$$
\mathbb{E}_{\text {Beta }} Y=\frac{b}{b+c} \quad \text { and } \quad \operatorname{Var}_{\text {Beta }} Y=\frac{1}{b+c+1} \frac{b}{b+c} \frac{c}{b+c}
$$

Example 3. $f(y, \theta)=\theta y^{\theta-1}, y \in(0,1), \theta>0$. The log-likelihood is $n\left\{\log \theta-(\theta-1) Z_{n}\right\}$, with $Z_{n}=(1 / n) \sum_{i=1}^{n} \log \left(1 / y_{i}\right)$, and $\widehat{\theta}_{\mathrm{ML}}=1 / Z_{n}$. Then put the EL for the mean μ through the model, yielding $R_{n}(\mu(\theta))$ with $\mu(\theta)=\theta /(\theta+1)$. This is HL with $a=\frac{1}{2}$:

Example 4. Newcomb's 1889 speed of light data
$n=66$ and two grand outliers at -44 and -2 . True value is 33.02 .
Normal model: estimates of mean and variance are (26.21, 10.75). and after removing outliers (27.75, 5.08).

Now use HL with histogram associated control parameters, with $k=6$ cells
$(-\infty, 10.5],(10.5,20.5],(20.5,25.5],(25.5,30.5],(30.5,35.5],(35.5, \infty)$.
The HL, with $a=0.50$: $(28.23,6.37)$.
$a=1$: Close to minimum chi-squared.

Two (related) viewpoints

Which μ_{1}, \ldots, μ_{q} should we use in $(1-a) \ell_{n}(\theta)+a \log R_{n}(\mu(\theta))$? Robustify a parametric model, and/or helping to focus the nonparametric method?

Viewpoint One (focused robustness): Using control parameters to help the parametric fit do well for these too. - For the normal (ξ, σ^{2}), we might want not only mean and standard deviation to be ok, but also $\widehat{\xi}-0.675 \widehat{\sigma}, \widehat{\xi}+0.675 \widehat{\sigma}$ to reasonably match quartiles $F_{n}^{-1}\left(\frac{1}{4}\right), F_{n}^{-1}\left(\frac{3}{4}\right)$.
Viewpoint Two (with focus parameter): We wish the fitted model to give a particularly good estimate of $\psi=\psi(f)$ via $\widehat{\psi}_{\mathrm{HL}}=\psi\left(f\left(\cdot, \widehat{\theta}_{\mathrm{HL}}\right)\right)$. Then we use the HL with $p+1$ parameters, the working model plus the focus ψ. - For the normal, we may put in $m(y, \mu)=I\{y \leq \mu\}-3 / 4$, and use $\widehat{\xi}_{\mathrm{HL}}+0.675 \widehat{\sigma}_{\mathrm{HL}}$ to estimate $F^{-1}\left(\frac{3}{4}\right)$.

B: Empirical likelihood

For q-vectors m_{1}, \ldots, m_{n}, consider

$$
R_{n}=\max \left\{\prod_{i=1}^{n} n w_{i}: \sum_{i=1}^{n} w_{i}=1, \sum_{i=1}^{n} w_{i} m_{i}=0, \text { each } w_{i}>0\right\}
$$

Let

$$
G_{n}(\lambda)=\sum_{i=1}^{n} 2 \log \left(1+\lambda^{\top} m_{i} / \sqrt{n}\right) \text { and } G_{n}^{*}(\lambda)=2 \lambda^{\top} V_{n}-\lambda^{\top} W_{n} \lambda
$$

where $V_{n}=n^{-1 / 2} \sum_{i=1}^{n} m_{i}$ and $W_{n}=n^{-1} \sum_{i=1}^{n} m_{i} m_{i}^{\top}$.
Dual optimization: $-2 \log R_{n}=\max _{\lambda} G_{n}(\lambda)=G_{n}(\hat{\lambda})$.
With the m_{i} random; eigenvalues of W_{n} away from zero and infinity; $n^{-1 / 2} \max _{i \leq n}\left\|m_{i}\right\| \rightarrow_{\mathrm{pr}} 0 ; V_{n}$ bounded in probability: then $G_{n} \approx G_{n}^{*}$ where it matters, and

$$
-2 \log R_{n}=V_{n}^{\top} W_{n}^{-1} V_{n}+o_{\mathrm{pr}}(1)
$$

This machinery is then used with $m_{i}=m\left(Y_{i}, \mu(\theta)\right)$,

C: Theory: under the model

First aim: working out how the HL behaves under model conditions (it will lose some to ML there, but how much?). With

$$
h_{n}(\theta)=(1-a) \ell_{n}(\theta)+a \log R_{n}(\mu(\theta))
$$

and θ_{0} the true value, define

$$
A_{n}(s)=h_{n}\left(\theta_{0}+s / \sqrt{n}\right)-h_{n}\left(\theta_{0}\right)
$$

Understanding behavior of $A_{n} \Longrightarrow$ understanding behaviour of $\widehat{\theta}_{\mathrm{HL}}$ (et al.). With $u(\cdot, \theta)=\dot{\ell}_{\theta}$ as the score function,

$$
\begin{aligned}
&\binom{U_{n, 0}}{V_{n, 0}}=\binom{n^{-1 / 2} \sum_{i=1}^{n} u\left(Y_{i}, \theta_{0}\right)}{n^{-1 / 2} \sum_{i=1}^{n} m\left(Y_{i}, \mu\left(\theta_{0}\right)\right)} \\
& \rightarrow_{d}\binom{U_{0}}{V_{0}} \sim \mathrm{~N}_{p+q}\left(0,\left(\begin{array}{cc}
J & C \\
C^{\top} & W
\end{array}\right)\right)
\end{aligned}
$$

where $J=J_{\text {fish }}$ is the Fisher information matrix.

Local asymptotic normality (LAN)

Theorem: There is a limiting quadratic process:

$$
A_{n}(s)=h_{n}\left(\theta_{0}+s / \sqrt{n}\right)-h_{n}\left(\theta_{0}\right) \rightarrow_{d} A(s)=s^{\top} U^{*}-\frac{1}{2} s^{\top} J^{*} s
$$

over compacta, where

$$
\begin{aligned}
U^{*} & =(1-a) U_{0}-a \xi_{0}^{\top} W^{-1} V_{0} \\
J^{*} & =(1-a) J+a \xi_{0}^{\top} W^{-1} \xi_{0}
\end{aligned}
$$

Here $\xi_{0}=\mathbb{E} \partial m\left(Y, \mu\left(\theta_{0}\right)\right) / \partial \theta$. Also, $U^{*} \sim \mathrm{~N}_{p}\left(0, K^{*}\right)$ with $K^{*}=(1-a)^{2} J+a^{2} \xi_{0}^{\top} W^{-1} \xi_{0}-a(1-a)\left(C W^{-1} \xi_{0}+\xi_{0}^{\top} W^{-1} C^{\top}\right)$.

The most important aspects of how $\widehat{\theta}_{\text {HL }}$ behaves can now be read off from $A_{n}(s) \rightarrow_{d} A(s)$.

Fact 1 [using $\operatorname{argmax}\left(A_{n}\right) \rightarrow_{d} \operatorname{argmax}(A)$]:

$$
\sqrt{n}\left(\widehat{\theta}_{\mathrm{HL}}-\theta_{0}\right) \rightarrow_{d}\left(J^{*}\right)^{-1} U^{*} \sim \mathrm{~N}_{p}\left(0,\left(J^{*}\right)^{-1} K^{*}\left(J^{*}\right)^{-1}\right)
$$

Fact 2 [using $\max A_{n} \rightarrow_{d} \max A$]:

$$
Z_{n}\left(\theta_{0}\right)=2\left\{h_{n}\left(\widehat{\theta}_{\mathrm{HL}}\right)-h_{n}\left(\theta_{0}\right)\right\} \rightarrow_{d} Z=\left(U^{*}\right)^{\top}\left(J^{*}\right)^{-1} U^{*}
$$

Fact 3 [applying the delta method]: With $\widehat{\psi}_{\mathrm{HL}}=\psi\left(\widehat{\theta}_{\mathrm{HL}}\right)$ and $\psi_{0}=\psi\left(\theta_{0}\right)$ at true value,

$$
\sqrt{n}\left(\widehat{\psi}_{\mathrm{HL}}-\psi_{0}\right) \rightarrow_{d} \mathrm{~N}\left(0, \kappa^{2}\right),
$$

with $\kappa^{2}=c^{\top}\left(J^{*}\right)^{-1} K^{*}\left(J^{*}\right)^{-1} c$ and $c=\partial \psi\left(\theta_{0}\right) / \partial \theta$.
Result: HL loses rather little compared to the ML under model conditions:

$$
\left(J^{*}\right)^{-1} K^{*}\left(J^{*}\right)^{-1}=J_{\text {fish }}^{-1}+O\left(a^{2}\right)
$$

LAN for the parametric likelihood

$$
\ell_{n}\left(\theta_{0}+s / \sqrt{n}\right)-\ell_{n}\left(\theta_{0}\right)=s^{\top} U_{n, 0}-\frac{1}{2} s^{\top} J s+o_{\mathrm{pr}}(1)
$$

See, for example, van der Vaart's Asymptotic Statistics:
7.2 Theorem. Suppose that Θ is an open subset of \mathbb{R}^{k} and that the model $\left(P_{\theta}: \theta \in \Theta\right)$ is differentiable in quadratic mean at θ. Then $P_{\theta} \dot{\ell}_{\theta}=0$ and the Fisher information matrix $I_{\theta}=P_{\theta} \dot{\ell}_{\theta} \dot{\ell}_{\theta}^{T}$ exists. Furthermore, for every converging sequence $h_{n} \rightarrow h$, as $n \rightarrow \infty$,

$$
\log \prod_{i=1}^{n} \frac{p_{\theta+h_{n} / \sqrt{n}}}{p_{\theta}}\left(X_{i}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} h^{T} \dot{\ell}_{\theta}\left(X_{i}\right)-\frac{1}{2} h^{T} I_{\theta} h+o_{P_{\theta}}(1)
$$

LAN for the hybrid likelihood will then hold since

$$
\begin{aligned}
A_{n}(s)= & h_{n}\left(\theta_{0}+s / \sqrt{n}\right)-h_{n}\left(\theta_{0}\right) \\
= & (1-a)\left\{\ell_{n}\left(\theta_{0}+s / \sqrt{n}\right)-\ell_{n}\left(\theta_{0}\right)\right\} \\
& \quad+a\left\{\log R_{n}\left(\mu\left(\theta_{0}+s / \sqrt{n}\right)\right)-\log R_{n}\left(\mu\left(\theta_{0}\right)\right)\right\},
\end{aligned}
$$

provided we also have LAN jointly for the empiricallikelihood.

LAN for the empirical likelihood

By the quadratic approximation to $-2 \log R_{n}$,

$$
\log R_{n}\left(\mu\left(\theta_{n}\right)\right)=-\frac{1}{2} V_{n}^{\top} W_{n}^{-1} V_{n}+o_{\mathrm{pr}}(1)
$$

where $\theta_{n}=\theta_{0}+s / \sqrt{n}$,

$$
V_{n}=n^{-1 / 2} \sum_{i=1}^{n} m\left(Y_{i}, \mu\left(\theta_{n}\right)\right)=V_{n, 0}+\xi_{n} s+o_{\mathrm{pr}}(1)
$$

[if, say, $m(y, \mu(\theta))$ has a first-order Taylor expansion in θ],

$$
W_{n}=n^{-1} \sum_{i=1}^{n} m\left(Y_{i}, \mu\left(\theta_{n}\right)\right) m\left(Y_{i}, \mu\left(\theta_{n}\right)\right)^{\top}=W_{n, 0}+o_{\mathrm{pr}}(1)
$$

$V_{n, 0} \rightarrow_{d} V_{0}$, and $\xi_{n}=\mathbb{P}_{n} \xi \rightarrow \mathbb{E} \xi(Y)=\xi_{0}, W_{n, 0} \rightarrow W$ (by LLN).

HL can be as good as ML

Example 5. Let $f_{\theta}=N(\theta, 1)$ and use the median as the control parameter, so $\mu(\theta)=\theta$ and we take

$$
m(y, \mu)=I\{y \leq \mu\}-1 / 2
$$

Note: $m(y, \mu(\theta))$ has no Taylor expansion in θ. Donsker gives

$$
V_{n}-V_{n, 0}=n^{-1 / 2} \sum_{i=1}^{n} 1\left\{\theta_{0}<Y_{i} \leq \theta_{0}+s / \sqrt{n}\right\} \rightarrow_{\mathrm{pr}} 0
$$

so we still have LAN for the HL , and find that $\xi_{0}=0$.
This implies that $\widehat{\theta}_{\mathrm{HL}}$ and $\widehat{\theta}_{\mathrm{ML}}$ have the same asymp variance:

$$
\left(J^{*}\right)^{-1} K^{*}\left(J^{*}\right)^{-1}=J_{\text {fish }}^{-1} \text { for all choices of a. }
$$

D: Theory: outside the model

Results so far: behaviour of $\widehat{\theta}_{\mathrm{HL}}$ and consequent $\widehat{\psi}_{\mathrm{HL}}$ well understood under parametric model conditions, where they may lose a little, but not much compared to ML.

Will now show (though a bigger machinery and more efforts are required) that HL is (often) better than ML just outside the parametric model.
Framework: extend $f(y, \theta)$ model (with $\operatorname{dim}(\theta)=p$) to a bigger $f(y, \theta, \gamma)$ model (with $\operatorname{dim}(\gamma)=r$), and such that $\gamma=\gamma_{0}$ corresponds to the start model; $f\left(y, \theta, \gamma_{0}\right)=f(y, \theta)$.
Local neighborhood model framework:

$$
f_{\text {true }}(y)=f\left(y, \theta_{0}, \gamma_{0}+\delta / \sqrt{n}\right) .
$$

Thus $\psi_{\text {true }}=\psi\left(\theta_{0}, \gamma_{0}+\delta / \sqrt{n}\right)$, etc.

Under $f\left(y, \theta_{0}, \gamma_{0}+\delta / \sqrt{n}\right)$, suppose an estimation strategy $\widehat{\theta}$ has the property

$$
\sqrt{n}\left(\widehat{\theta}-\theta_{0}\right) \rightarrow_{d} \mathrm{~N}_{p}(B \delta, \Omega)
$$

for appropriate B ($p \times r$ matrix, related to how the model bias affects the estimator) and Ω.
For $\psi=\psi(f)=\psi(\theta, \gamma)$, may use $\widehat{\psi}=\psi\left(\widehat{\theta}, \gamma_{0}\right)$. Then analysis leads to

$$
\sqrt{n}\left(\widehat{\psi}-\psi_{\text {true }}\right) \rightarrow_{d} \mathrm{~N}\left(b^{\top} \delta, \tau^{2}\right)
$$

with

$$
b=B^{\top} \frac{\partial \psi}{\partial \theta}-\frac{\partial \psi}{\partial \gamma} \quad \text { and } \quad \tau^{2}=\left(\frac{\partial \psi}{\partial \theta}\right)^{\top} \Omega \frac{\partial \psi}{\partial \theta}
$$

with derivatives at narrow model $\left(\theta_{0}, \gamma_{0}\right)$. Hence limit mean squared error is

$$
\operatorname{mse}_{\widehat{\psi}}(\delta)=\left(b^{\top} \delta\right)^{2}+\tau^{2}
$$

Next: Examining estimation strategies ML and HL, to find B and Ω, and hence the $\operatorname{mse}_{\widehat{\psi}}(\delta)$. For ML: as in Hjort and Claeskens (2003); for HL: new.

The story for the ML: Essentially from Hjort and Claeskens (2003, 2008). Need the $(p+r) \times(p+r)$ Fisher information matrix

$$
J_{\text {wide }}=\left(\begin{array}{ll}
J_{00} & J_{01} \\
J_{10} & J_{11}
\end{array}\right)
$$

at the narrow model. From this (via various efforts):

$$
\sqrt{n}\left(\widehat{\theta}_{\mathrm{ML}}-\theta_{0}\right) \rightarrow_{d} \mathrm{~N}_{p}\left(J_{00}^{-1} J_{01} \delta, J_{00}^{-1}\right)
$$

This implies

$$
\sqrt{n}\left(\widehat{\psi}_{\mathrm{ML}}-\psi_{\text {true }}\right) \rightarrow_{d} \mathrm{~N}\left(\omega^{\top} \delta, \tau_{0}^{2}\right)
$$

with

$$
\omega=J_{10} J_{00}^{-1} \frac{\partial \psi}{\partial \theta}-\frac{\partial \psi}{\partial \gamma} \quad \text { and } \quad \tau_{0}^{2}=\left(\frac{\partial \psi}{\partial \theta}\right)^{\top} J_{00}^{-1} \frac{\partial \psi}{\partial \theta} .
$$

Hence we know

$$
\operatorname{mse}_{M L}(\delta)=\left(\omega^{\top} \delta\right)^{2}+\tau_{0}^{2}
$$

and should compare this with what we may find for the HL.

The story for the HL: For $S(y)=\partial \log f\left(y, \theta_{0}, \gamma_{0}\right) / \partial \gamma$, let

$$
K_{01}=\mathbb{E} m\left(Y, \mu\left(\theta_{0}\right)\right) S(Y)
$$

of dimension $q \times r$, along with

$$
L_{01}=(1-a) J_{01}-a\left(\frac{\partial \psi}{\partial \theta}\right)^{\top} W^{-1} K_{01}
$$

Then (via various efforts):

$$
\sqrt{n}\left(\widehat{\theta}_{\mathrm{HL}}-\theta_{0}\right) \rightarrow_{d} \mathrm{~N}_{p}(B \delta, \Omega)
$$

with $B=\left(J^{*}\right)^{-1} L_{01}$ and $\Omega=\left(J^{*}\right)^{-1} K^{*}\left(J^{*}\right)^{-1}$. This yields

$$
\sqrt{n}\left(\widehat{\psi}_{\mathrm{HL}}-\psi_{\text {true }}\right) \rightarrow_{d} \mathrm{~N}\left(\omega_{\mathrm{HL}}^{\top} \delta, \tau_{0, \mathrm{HL}}^{2}\right)
$$

with

$$
\begin{aligned}
\omega_{\mathrm{HL}} & =\omega_{\mathrm{HL}, a}=L_{10}\left(J^{*}\right)^{-1} \frac{\partial \psi}{\partial \theta}-\frac{\partial \psi}{\partial \gamma} \\
\tau_{0, \mathrm{HL}}^{2} & =\tau_{0, \mathrm{HL}, a}^{2}=\left(\frac{\partial \psi}{\partial \theta}\right)^{\top}\left(J^{*}\right)^{-1} K^{*}\left(J^{*}\right)^{-1} \frac{\partial \psi}{\partial \theta} .
\end{aligned}
$$

Here J^{*}, K^{*}, L_{10} depend on the balance parameter a.

May then compare

$$
\begin{aligned}
\operatorname{mse}_{\mathrm{ML}}(\delta) & =\left(\omega^{\top} \delta\right)^{2}+\tau_{0}^{2} \\
\operatorname{mse}_{\mathrm{HL}, \mathrm{a}}(\delta) & =\left(\omega_{\mathrm{HL}, \mathrm{a}}^{\top} \delta\right)^{2}+\tau_{0, \mathrm{HL}, \mathrm{a}}^{2}
\end{aligned}
$$

in different special setups.

E: Fine-tuning the balance parameter

The precision of $\hat{\psi}_{\text {HL }}$ for estimating $\psi_{\text {true }}$ depends on the underlying truth and on the balance parameter a.

In the $f\left(y, \theta_{0}, \gamma_{0}+\delta / \sqrt{n}\right)$ framework, the best balance a is the minimiser of

$$
\operatorname{risk}(a)=\operatorname{mse}_{\mathrm{HL}, a}(\delta)=\left(\omega_{\mathrm{HL}, a}^{\top} \delta\right)^{2}+\tau_{0, \mathrm{HL}, a}^{2}
$$

Here

$$
\begin{aligned}
\omega_{\mathrm{HL}, a} & =L_{10, a}\left(J_{a}^{*}\right)^{-1} \frac{\partial \psi}{\partial \theta}-\frac{\partial \psi}{\partial \gamma}, \\
\tau_{0, \mathrm{HL}, a}^{2} & =\left(\frac{\partial \psi}{\partial \theta}\right)^{\top}\left(J_{a}^{*}\right)^{-1} K_{a}^{*}\left(J_{a}^{*}\right)^{-1} \frac{\partial \psi}{\partial \theta} .
\end{aligned}
$$

may be estimated consistently from data, with δ less visible:

$$
D_{n}=\sqrt{n}\left(\widehat{\gamma}_{\mathrm{ML}}-\gamma_{0}\right) \rightarrow_{d} \mathrm{~N}_{r}(\delta, Q)
$$

with $Q=J^{11}$ from $J_{\text {wide }}^{-1}$.

Since $D_{n}=\sqrt{n}\left(\widehat{\gamma}_{M L}-\gamma_{0}\right) \approx_{d} \mathrm{~N}_{r}(\delta, Q), D_{n} D_{n}^{\top}$ overestimates $\delta \delta^{\top}$, and

$$
\mathbb{E}\left(c^{\top} D_{n}\right)^{2} \doteq\left(c^{\top} \delta\right)^{2}+c^{\top} Q c
$$

Hence we estimate the squared bias

$$
\mathrm{sqb}=\left(\omega_{\mathrm{HL}, \mathrm{a}}^{\top} \delta\right)^{2}
$$

in the 'FIC way', using
$\widehat{\mathrm{sqb}}=\max \left\{\left(\widehat{\omega}_{\mathrm{HL}, a}^{\top} D_{n}\right)^{2}-\widehat{\omega}_{\mathrm{HL}, a}^{\top}{\left.\widehat{Q} \widehat{\omega}_{\mathrm{HL}, a}, 0\right\}}\right.$

$$
= \begin{cases}n\left\{\widehat{\omega}_{\mathrm{HL}, a}^{\top}\left(\widehat{\gamma}_{\mathrm{ML}}-\gamma_{0}\right)\right\}^{2}-\widehat{\omega}_{\mathrm{HL}, a}^{\top} \widehat{Q}_{\hat{\omega}}^{\mathrm{HL}, a} & \text { if nonnegative }, \\ 0 & \text { if else } .\end{cases}
$$

This leads to

$$
\widehat{\operatorname{risk}}(a)=\left(\frac{\widehat{\partial \psi}}{\partial \theta}\right)^{\top}\left(\widehat{J}_{a}^{*}\right)^{-1} \widehat{K}_{a}^{*}\left(\widehat{J}_{a}^{*}\right)^{-1} \frac{\widehat{\partial \psi}}{\partial \theta}+\widehat{\operatorname{sqb}} .
$$

Via this FIC scheme we select balance parameter a as the minimiser of $\widehat{\text { risk }}(a)$.

Example: $n=100$ data points on $(0,1)$, fitted to $f(y, \theta)=\theta y^{\theta-1}$, with control parameter (now equal to the focus parameter) $\mu=\mathbb{E} Y^{2}$. FIC plot for selecting a in the HL estimation strategy:

F: Choosing the control parameters

The general hybrid likelihood estimation method is via constructing

$$
h_{n}(\theta)=(1-a) \ell_{n}(\theta)+a \log R_{n}(\mu(\theta))
$$

which starts with choosing control parameters μ_{1}, \ldots, μ_{q}.
These aim at fitting models such that certain issues are well
calibrated - outside those taken care of by the ML, which concentrates on the score functions $u_{1}(y, \theta), \ldots, u_{p}(y, \theta)$. Can choose $m(y, \mu)=g(y)-\mu$ to make sure that the HL incorporates aspects of $\mu=\mathbb{E} g\left(Y_{i}\right)$.

- Favourite case: For a given focus parameter $\psi=\psi(f)$, use this as the single control parameter.
- For a given focus parameter $\psi=\psi(f)$, may also select among candidate μ_{j} controls via FIC schemes.
- May 'stretch the idea', including a slowly increasing sequence of μ_{1}, μ_{2}, \ldots, with a FIC (or AFIC) stopping criterion.

G: Concluding remarks (and questions)

A. The methodology works for multidimensional data y_{i}, and can be extended to regression settings.
B. We fine-tune the balance parameter a by minimising the curve $\hat{\operatorname{risk}(a)}$ over $[0,1]$. If the model gives a good fit, $\widehat{\operatorname{risk}(a)}$ is minimal at $a=0$, and we use the ML, after all. This is also an implied goodness-of-fit test.
C. So far: large-sample approximation framework and methodology, with fixed

- p (dimension of θ),
- q (number of control parameters),
- r (number of extra γ_{j} model extension parameters).

It is of interest to let these grow with n-but more difficult mathematically.

