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Model setting

I X1, . . . ,Xn: d-dimensional i.i.d. observations.

I θ = (θ1, . . . , θp)
T: p-dimensional parameter.

I g(X;θ) = (g1(X;θ), . . . , gr(X;θ))T: an r-dimensional estimating function.

I The true parameter θ0 is determined by the moment condition

E{g(Xi;θ0)} = 0.

I The goal of this paper is to construct the estimation of θ0 when p and/or

r � n.



Literature review

Both p and r are fixed:

I Hansen (1982): Generalized Methods of Moments (GMM).

I Qin and Lawless (1994): Using the idea of Empirical Likelihood (EL) pro-

posed by Owen (1988, 1990).

I Newey and Smith (2004): Investigate higher order properties of GMM and

generalized EL.

Some other advantages of EL: Wilks’ theorems, Bartlett-correctable, ...



I Define an EL with estimating equations as

L(θ) = sup

{ n∏
i=1

πi : π > 0,
n∑
i=1

πi = 1,
n∑
i=1

πig(Xi;θ) = 0

}
,

and estimate θ0 as θ̂ = arg maxθ∈Θ L(θ), which is equivalent to

θ̂ = arg min
θ∈Θ

max
λ∈Λ̂n(θ)

n∑
i=1

log{1 + λTg(Xi;θ)},

where Λ̂n(θ) = {λ ∈ Rr : λTg(Xi;θ) ∈ V, i = 1, . . . , n} for θ ∈ Θ and V
is an open interval containing zero.

I θ̂ is called the maximum EL estimator.



When p or/and r diverging,

I Leng and Tang (2012), and Chang, Chen and Chen (2015) investigated the

asymptotic behaviors of the EL estimator θ̂ in high-dimensional settings.

I Hjort, McKeague and Van Keilegom (2009), Chen, Peng and Qin (2009),

and Tang and Leng (2010) considered EL for some other high-dimensional

problems.

I However, EL only works when both p and r are growing at some rate slower

than n. Since |λ|2 is required to be op(1) in existing analyses of EL.

Such kind of restrictions on the diverging rates of p and r do not match the real

practical ultra high-dimensional problems.



New scope of our work

I The relationship between r and p in the new high-dimensional paradigm

with sparsity.

I r ≥ p is no longer required, facilitated with penalized EL.

I Penalizing the Lagrange multiplier λ:

I to obtain sparse λ with many zero components;

I to effectively reduce the effective dimensionality of the number of estimating

functions.

I Solving the problem of EL with ultra high-dimensional parameters and esti-

mating functions.



Why EL works?

Proposition 1

Assume that there exist uniform constants C1 > 0, C2 > 1 and γ > 2 such that

max
1≤j≤r

E
{

sup
θ∈Θ
|gj(Xi;θ)|γ

}
≤ C1,

and

P
[
C−1

2 ≤ inf
θ∈Θ

λmin

{
1

n

n∑
i=1

g(Xi;θ)g(Xi;θ)T
}

≤ sup
θ∈Θ

λmax

{
1

n

n∑
i=1

g(Xi;θ)g(Xi;θ)T
}
≤ C2

]
→ 1.

If r = o(n1/2−1/γ), then the maximum EL estimator θ̂ satisfies

|ḡ(θ̂)|2 = Op(r
1/2n−1/2) where ḡ(θ̂) = n−1∑n

i=1 g(Xi; θ̂).



I Proposition 1 shows that regardless the dimensionality p of the parameter

θ, with r unbiased estimating functions, θ̂ always ensures that |ḡ(θ̂)|2 to

be of Op(r
1/2n−1/2).

I If supθ∈Θ |ḡ(θ) − E{g(Xi;θ)}|∞ →p 0 holds, we have |E{g(Xi; θ̂)}|∞ =

op(1) if r = o(n1/2−1/γ). With the unique identification condition, θ0 is

the unique solution of E{g(Xi;θ)} = 0 (which is usually guaranteed by the

condition r ≥ p), we can obtain the consistency of θ̂.

I However, θ̂ is clearly not uniquely defined when r < p rendering inapplica-

bility of the method in practice.



I To resolve the ambiguity in the estimator θ̂, we take the approach that

searches for a sparse optimizer with appropriate penalization on θ under

extra assumption that θ0 is sparse. Write θ0 = (θ0
1, . . . , θ

0
p)

T and let S =

{1 ≤ k ≤ p : θ0
k 6= 0} with s = |S|. Sparsity means s� n. Without lose of

generality, we write θ0 = (θT
0,(1),θ

T
0,(2))

T where θ0,(1) ∈ Rs being nonzero

components and θ0,(2) = 0 ∈ Rp−s.

I Let

θ̃n = arg min
θ∈Θ

max
λ∈Λ̂n(θ)

[ n∑
i=1

log{1 + λTg(Xi;θ)}+ n

p∑
k=1

p1,π(|θk|)
]
,

where θ = (θ1, . . . , θp)
T, λ = (λ1, . . . , λr)

T, and p1,π(·) is a penalty func-

tion with tuning parameter π.



Proposition 2

Let an =
∑p
k=1 p1,π(|θ0

k|) and bn = max{rn−1, an}. Let

Θ∗ = {θ ∈ Θ : |θ − θ0|∞ ≤ ε} for some sufficiently small ε > 0. Assume that

max
1≤j≤r

E
{

sup
θ∈Θ∗

|gj(Xi;θ)|γ
}
≤ C1,

P
[
C−1

2 ≤ inf
θ∈Θ∗

λmin

{
1

n

n∑
i=1

g(Xi;θ)g(Xi;θ)T
}

≤ sup
θ∈Θ∗

λmax

{
1

n

n∑
i=1

g(Xi;θ)g(Xi;θ)T
}
≤ C2

]
→ 1.

and

inf
θ∈{θ∈Θ∗:|θ−θ0|∞>ε}

|E{g(Xi;θ)}|∞ ≥ ∆(ε)

for any 0 < ε < ε, where ∆(·) is a positive function satisfying

lim infε→0+ ε−β∆(ε) ≥ C3 for some uniform constants C3 > 0 and β > 0. If

r = o(n1/2−1/γ) and bn = o(n−2/γ), then there exists a local solution θ̃n ∈ Θ∗

such that |θ̃n − θ0|∞ = Op{b1/(2β)
n }.



I Proposition 2 implies that if facilitated with sparsity of the model parameter,

the consistency of a p-dimensional estimator does not necessarily require

r ≥ p. In particular, under the local identification condition near the truth, a

consistent and sparse estimator of θ0 is feasible with no explicit requirement

on the relationship between r and p, as long as the r unbiased estimating

functions provide information for the zero and nonzero components in θ0.

I This result ensures the important flexibility in the number of estimating func-

tions for obtaining a sparse estimator using penalized EL. That is, to obtain

a sparse estimator in penalized EL whose nonzero components are consis-

tent to the truth, one can actually opt to use smaller number of estimating

equations. Further, we can show that θ̃n can estimate zero components of

θ0 as zero with a high probability as in the following proposition.



Proposition 3

Under the same conditions as in Proposition 2, if we further assume gj(X;θ) to

be continuously differentiable with respect to θ ∈ Θ∗ for any X and

j = 1, . . . , r satisfying the condition

sup
θ∈Θ∗

max
1≤j≤r

max
k/∈S

{
1

n

n∑
i=1

∣∣∣∣∂gj(Xi;θ)

∂θk

∣∣∣∣} = Op(ϕn)

for some ϕn > 0, which may diverge with n. Suppose there exist a constant

0 < c < 1 and χn → 0 such that

max
k∈S

sup
c|θ0
k
|<t<c−1|θ0

k
|
p′1,π(t) = O(χn).

In addition to the restrictions imposed on r and bn for the consistency of θ̃n

above, if r and bn also satisfy the restriction conditions such that

bn = o(mink∈S |θ0
k|2β), sχnb

1/(2β)
n = O(rn−1) and rn−1/2ϕn = o(π), then

P{θ̃n,(2) = 0} → 1 where θ̃n,(2) is the corresponding estimation for the zero

components of θ0 in θ̃n.



I Though Propositions 2 and 3 are general, there are still restrictions because

conditions are violated when r is large. With Proposition 1 ensuring the

behavior of the estimating equations at the maximum EL estimate, and

Propositions 2 and 3 breaking the requirement of r ≥ p for a consistent and

sparse estimator θ̃n.

I Define

θ̂n = arg min
θ∈Θ

max
λ∈Λ̂n(θ)

[ n∑
i=1

log{1 + λTg(Xi;θ)} − n
r∑
j=1

p2,ν(|λj |)

+ n

p∑
k=1

p1,π(|θk|)
]
,

where θ = (θ1, . . . , θp)
T, λ = (λ1, . . . , λr)

T, and p1,π(·) and p2,ν(·) are

two penalty functions with tuning parameters π and ν, respectively.



Main results – Consistency

Condition 1

There exist some K1 > 0 and γ > 4 such that

max
1≤j≤r

E
{

sup
θ∈Θ
|gj(Xi;θ)|γ

}
≤ K1.

Condition 2

There exists a positive function ∆(·) such that

inf
θ∈{θ∈Θ:|θ−θ0|∞>ε}

|E{g(Xi;θ)}|∞ ≥ ∆(ε)

for any ε > 0, and there exist K2 > 0 and β > 0 such that

lim infε→0+ ε−β∆(ε) ≥ K2.



I For θ ∈ Θ and λ ∈ Λ̂n(θ), we define

f(λ;θ) =
1

n

n∑
i=1

log{1 + λTg(Xi;θ)} −
r∑
j=1

p2,ν(|λj |),

Sn(θ) = max
λ∈Λ̂n(θ)

f(λ;θ) +

p∑
k=1

p1,π(|θk|).

I Then θ̂n = arg minθ∈Θ Sn(θ).

I Let λ̂(θ) = arg maxλ∈Λ̂n(θ) f(λ;θ) be the Lagrange multiplier defined at

θ ∈ Θ. For any subset A ⊂ {1, . . . , r}, we denote by gA(Xi;θ) the

subvector of g(Xi;θ) with components indexed by A. We write ḡA(θ) =

n−1∑n
i=1 gA(Xi;θ), V̂A(θ) = n−1∑n

i=1 gA(Xi;θ)gA(Xi;θ)T and VA(θ0) =

E{gA(Xi;θ0)gA(Xi;θ0)T}.



Proposition 4

Suppose that Condition 1 hold, and the penalty function p2,ν(·) is a convex

function. Assume that max1≤j≤r n
−1∑n

i=1 |gj(Xi;θ0)|2 = Op($n) for some

$n > 0 that may diverge with n, and min1≤j≤r E{|gj(Xi;θ0)|2} is uniformly

bounded away from zero. If (n−1$n log r)1/2/ν → 0 and

log r = o(min{n1/3, n1−2/γ$−1
n }), then P{Sn(θ0) =

∑p
k=1 p1,π(|θ0

k|)} → 1 as

n→∞ and λ = 0 is a local maximizer of f(λ;θ0) with probability

approaching one.



I Based on the convexity of p2,ν(·), f(λ;θ) is concave w.r.t. λ. To compute

Sn(θ), we only need to find a local maximizer for f(λ;θ).

I Moreover, for any θ such that |θ − θ0|∞ > εn, Condition 2 indicates

|E{g(Xi;θ)}|∞ ≥ ∆(εn). We show in our proof that when θ takes value

departing from the truth θ0, i.e., ∆(εn) decays to zero at some slow enough

rate, Sn(θ) takes a value larger than %Sn(θ0) for some diverging % with

probability tending to 1; see also Chang, Tang and Wu (2013, 2016) for such

a phenomenon in marginal EL. This feature, together with the Proposition

4, leads to the consistency of the penalized EL estimator θ̂n.

Theorem 1

Let an =
∑p
k=1 p1,π(|θ0

k|). Assume that conditions in Proposition 4 and

Condition 2 hold. Define bn = max{n−1, an, ν
2}. If bn = o(n−2/γ), then

|θ̂n − θ0|∞ = Op{b1/(2β)
n }.



Main results – Asymptotic normality

Condition 3

Assume that

sup
θ∈{θ∈Θ:|θ−θ0|∞<εnb

1/(2β)
n }

|ḡ(θ)− E{g(Xi;θ)}|∞ = Op(ζn)

for some ζn → 0 and εn →∞, where bn is defined in Theorem 1 and β is

specified in Condition 2. Define Θn = {θ ∈ Θ : |θ − θ0|∞ < εnb
1/(2β)
n }. We

also assume that

sup
θ∈Θn

max
1≤j≤r

{
1

n

n∑
i=1

|gj(Xi;θ)|2
}

= Op($n)

for some $n > 0 that may diverge with n.



Define Mθ = {1 ≤ j ≤ r : |E{gj(Xi;θ)}| ≥ νρ′2(0+)/2} for θ ∈ Θ. Propo-

sition 5 below shows that for any θ in a small neighborhood of θ0, the support

of the Lagrange multiplier λ̂(θ) is a subset of Mθ with probability approaching

one.

Proposition 5

Let {θn} be a sequence of points in Θn with Θn being defined in Condition 3,

and the penalty function p2,ν(·) is a convex function. Assume Conditions 1 and

3 hold, P[λmin{V̂Mθn
(θn)} ≥ ξn]→ 1 for some ξn > 0 (ξn may decay to zero

as n→∞), and |ḡMθn
(θn)|∞ − νρ′2(0+) = Op(un) for some un → 0. If

max{ζn,mnun$nξ
−1
n } = o(ν) and mγ+1

n uγnn = o(ξγn) where mn = |Mθn |,
then with probability approaching one there exists a sparse local maximizer

λ̂(θn) for f(λ;θn) satisfying |λ̂(θn)|1 = Op(mnunξ
−1
n ) and

P{supp(λ̂(θn)) ⊂Mθn} → 1 as n→∞.



I Proposition 5 implies that when θ is around θ0, the penalty on λ effectively

conducts a moments selection by choosing the estimating functions in a way

that E{gj(Xi;θ)} has large absolute deviation from 0 when θ 6= θ0.

I By taking θn as θ̂n, Proposition 5 shows that with probability approach-

ing one, there exists a sparse Lagrange multiplier λ̂(θ̂n) which is a local

maximizer for f(λ; θ̂n).

I We also note here thatMθ̂n
is a random set depending on the observations

{X1, . . . ,Xn}. To clearly characterize the property of θ̂n, we define Rn ⊂
{1, . . . , r} to be the support of λ̂(θ̂n), i.e., the set of effective estimating

functions that ultimately contribute to estimating the nonzero components

of θ̂n, and qn = |Rn|.



I By definition, Rn is a random set depending on multiple sources including

the penalty function, the tuning parameter ν, and also the realization of

the sample X1, . . . ,Xn. Clearly, the asymptotic variance of θ̂n depends

on the set Rn collecting the effective estimating functions for the ultimate

estimations.

I For the sake of simplicity in presenting the theoretical development, we

assume that the set Rn remains invariant when θ takes a value in a neigh-

borhood of θ̂n. In other words, the set of estimating functions does not vary

in the final steps of optimizing Sn(θ). Actually, such a requirement is not

restrictive and is easy to fulfill. In practice, if the set of estimating functions

varies substantially in optimizing Sn(θ), one can always drop the penalty on

some chosen estimating functions and retain a stable Rn, especially when

the iterations are closing to convergence.



Condition 4

There exist uniform constants 0 < K3 < K4 such that

lim
n→∞

P
[
K3 < inf

θ∈Θn
λmin{V̂Rn(θ)} ≤ sup

θ∈Θn
λmax{V̂Rn(θ)} < K4

]
= 1

where Θn is defined in Condition 3.

Condition 5

(i) There exists a positive constant c < 1 such that

max
k∈S

sup
c|θ0
k
|<t<c−1|θ0

k
|
p′1,π(t) = O(min{s−1b−1/(2β)

n n−1, sq1/2
n ν2, q1/γ+1

n n−1/2+1/γν}).

(ii) The penalty function p2,ν(·) is convex, and there exits a uniform constant

K5 > 0 such that |ρ′2(t; ν)− ρ′2(0+)| ≤ K5t for any t ∈ (0, ε) and τ > 0 where

ε > 0 is a sufficiently small constant.



Condition 6

For each j = 1, . . . , p, gj(X;θ) is continuously differentiable with respect to θ

in Θn for any X, where Θn is defined in Condition 3, and there exist a

function Bn,jk with E{B2
n,jk(Xi)} ≤ K6 for some uniform constant K6 > 0

and |∂gj(X;θ)/∂θk| ≤ Bn,jk(X) for any θ ∈ Θn. In addition, it holds that

sup
θ∈Θn

max
j∈Rn

max
k/∈S

{
1

n

n∑
i=1

∣∣∣∣∂gj(Xi;θ)

∂θk

∣∣∣∣} = Op(ϕn)

for some ϕn > 0 that may diverge with n.



Condition 7

For each j = 1, . . . , p, gj(X;θ) is twice continuously differentiable with respect

to θ in Θn for any X, where Θn is defined in Condition 3, and there exist

some functions Bn,jkl with E{B2
n,jkl(Xi)} ≤ K7 for a uniform constant

K7 > 0 and |∂2gj(X;θ)/∂θk∂θl| ≤ Bn,jkl(X) for any θ ∈ Θn. In addition, for

Rn given in Condition 4, it holds that

lim
n→∞

P
[

inf
θ∈Θn

λmin([∇θ(1)
ḡRn(θ)]T[∇θ(1)

ḡRn(θ)]) > K8

]
= 1

where θ(1) is an s-dimensional subvector of θ with components indexed by

S = {1 ≤ k ≤ p : θ0
k 6= 0} and K8 > 0 is a uniform constant.



We define

J = [E{∇θ(1)
gRn(Xi;θ0)}]TV −1

Rn (θ0)[E{∇θ(1)
gRn(Xi;θ0)}],

ψ̂Rn = Ĵ−1[∇θ(1)
ḡRn(θ̂n)]TV̂ −1

Rn (θ̂n)

[
1

n

n∑
i=1

gRn(Xi; θ̂n)

1 + λ̂(θ̂n)Tg(Xi; θ̂n)

]

with Ĵ = [∇θ(1)
ḡRn(θ̂n)]TV̂ −1

Rn (θ̂n)[∇θ(1)
ḡRn(θ̂n)]. We have the following

asymptotic properties for θ̂n.



Theorem 2

Let θ̂n,(1) and θ̂n,(2) be the corresponding estimations of θ0,(1) and θ0,(2),

respectively. Then the following properties hold.

I Under Conditions 1–6, if log r = o(min{n1/3, n1−2/γ$−1
n }), qn = o(n(γ−2)/(2γ+2)),

bn = o(mink∈S |θ0
k|2β), and the tuning parameters π and ν satisfy the condi-

tions that qnn
−1/2ϕn = o(π) and max{ζn, qnn−1/2$n, (n

−1$n log r)1/2} =

o(ν), then P{θ̂n,(2) = 0} → 1 as n→∞.

I Assume the eigenvalues of [E{∇θ(1)
gRn(Xi;θ0)}]T[E{∇θ(1)

gRn(Xi;θ0)}]
and VRn(θ0) are uniformly bounded away from zero and infinity. Under

Conditions 1–7, for anyα ∈ Rs with unit L2-norm, if log r = o(min{n1/3, n1−2/γ$−1
n }),

qn = o(n(γ−2)/(2γ+2)), bn = o(mink∈S |θ0
k|2β), and π and ν satisfy the con-

ditions that qnn
−1/2ϕn = o(π), max{ζn, qnn−1/2$n, (n

−1$n log r)1/2} =

o(ν) and ν = o(min{s−1/2q
−1/2
n n−1/4, q

−1/γ−3/2
n n−1/γ}), then

n1/2αTJ1/2{θ̂n,(1) − θ0,(1) − ψ̂Rn}
d−→ N(0, 1)

as n→∞.



I The first part of Theorem 2 indicates that the zero components of θ0 can be

exactly estimated as zero by θ̂n with probability approaching one. The bias

term ψ̂Rn is due to the use of the penalty function p2,ν(·). It can be shown

that ψ̂Rn = Ĵ−1[∇θ(1)
ḡRn(θ̂n)]TV̂ −1

Rn (θ̂n)η̂Rn where η̂ = (η̂1, . . . , η̂r)
T

with η̂j = νρ′2(|λ̂j |; ν)sgn(λ̂j) for λ̂j 6= 0 and η̂j ∈ [−νρ′2(0+), νρ′2(0+)]

for λ̂j = 0.

I The second part suggests that the the rate of the convergence is n1/2 for

each nonzero component of θ0.



Algorithm

I For ease and stability in implementations, we calculate the penalized EL es-

timator θ̂n by minimizing the following slightly modified objective function:

θ̂n = arg min
θ∈Θ

max
λ∈Λ̂n(θ)

[ n∑
i=1

log?{1 + λTg(Xi;θ)} − n
r∑
j=1

p2,ν(|λj |)︸ ︷︷ ︸
f(λ;θ)

+ n

p∑
k=1

p1,π(|θk|)
]
,

where log?(z) is a twice differentiable pseudo-logarithm function with bound-

ed support adopted from Owen (2001):

log?(z) =

log(z) if z ≥ ε;

log(ε)− 1.5 + 2z/ε− z2/(2ε2) if z ≤ ε;

where ε is chosen as 1/n in our implementations.



I In the optimization, we apply the quadratic approximation (Fan and Li,

2001) to the penalty functions p1,π(·) and p2,ν(·). More specifically, for a

penalty function pτ (·), the quadratic approximation states

pτ (|t|) ≈ pτ (|t0|) +
1

2

p′τ (|t0|)
|t0|

(t2 − t20) (1)

for t being in a small neighborhood of t0. The first and second derivatives

are approximated by

p′τ (|t|) ≈ p′τ (|t0|)
|t0|

· t and p′′τ (|t|) ≈ p′τ (|t0|)
|t0|

.



I The computation of EL is a challenging aspect, especially with high-dimensional

p and r. To compute the penalized EL estimator θ̂n, we propose to apply

a modified two-layer coordinate decent algorithm. The inner layer of the

algorithm solves for λ with given θ by maximizing f(λ;θ). This layer only

involves maximizing a concave function, and hence is stable. The outer

layer of the algorithm searches for the optimizer θ̂n. Both layers can be

solved using coordinate descent by cycling through and updating each of

the coordinates; see Tang and Wu (2014).



I In the inner layer, λ is solved at a given θ, which can be done by optimizing

f(λ;θ) with respect to λ using coordinate descent. Suppose that λ starts

at an initial value λ̂
(0)

. With the other coordinates fixed, the (m + 1)th

Newton’s update for λj (j = 1, . . . , r), the jth component of λ, is given by

λ̂
(m+1)
j = λ̂

(m)
j −

∑n
i=1 log′?(t

(m)
i )gj(Xi;θ)− np′2,ν(|λ̂(m)

j |)∑n
i=1 log′′?(t

(m)
i ){gj(Xi;θ)}2 − np′′2,ν(|λ̂(m)

j |)
,

where t
(m)
i = 1 + g(Xi;θ)Tλ̂

(m)
with λ̂

(m)
= (λ̂

(m)
1 , . . . , λ̂

(m)
r )T. The

procedure cycles through all the r components of λ and is repeated until

convergence.

I During this process, the objective function needs to be checked to ensure

it gets optimized in each step. If not, the step size continues to be halved

until the objective function gets driven in the right direction.



I The outer layer of the algorithm is to optimize the objective function with

respect to the parameter θ, the main interest of the penalized EL, using

the coordinate descent algorithm. At a given λ, the algorithm updates θk

(k = 1, . . . , p), by minimizing Sn(θ) with respect to θk with other θl (l 6= k)

fixed. Suppose that θ starts at an initial value θ̂
(0)

. The (m+ 1)th update

for θk is given by

θ̂
(m+1)
k = θ̂

(m)
k −

∑n
i=1 log′?(s

(m)
i )w

(m)
ik + np′1,τ (|θ̂(m)

k |)∑n
i=1[log′′?(s

(m)
i ){w(m)

ik }2 + log′?(s
(m)
i )z

(m)
ik ] + np′′1,τ (|θ̂(m)

k |)
,

where s
(m)
i = 1+λTg(Xi; θ̂

(m)
), w

(m)
ik = λT∂g(Xi; θ̂

(m)
)/∂θk and z

(m)
ik =

λT∂2g(Xi; θ̂
(m)

)/∂θ2
k with θ̂

(m)
= (θ̂

(m)
1 , . . . , θ̂

(m)
p )T.

I Since quadratic approximations are applied in the algorithms, we follow Fan

and Li (2001) and set a component λ̂
(m)
j or θ̂

(m)
k as zero when it is less

than a threshold level say 10−3 in an iteration.



I We summarize the computation procedure for θ and λ in the following

pseudo-code. Suppose ξ is a pre-defined small number, say, ξ = 10−4.

1. Set the iteration counter m = 0, and initialize θ̂
(0)

and λ̂
(0)

;

2. Define the g(Xi;θ) function;

3. (Outer layer) For k = 1, . . . , p,

3.1 Calculate θ̂
(m+1)
k ;

3.2 (Inner layer) For j = 1, . . . , r, update λ̂
(m)
j as λ̂

(m+1)
j ;

4. If max1≤k≤p |θ̂
(m+1)
k − θ̂(m)

k | < ξ, then stop;

5. Otherwise repeat steps 3 through 4.



Numerical results

I Linear regression model Yi = ZT
i θ0+εi, where θ0 = (3, 1.5, 0, 0, 2, 0, . . . , 0)T,

Zi ∈ Rp are generated from N(0,Σ) with σkk = 1 for any k = 1, . . . , p

and σkl = 0.5 for any k 6= l, where Σ = (σkl)p×p, and εi is a standard

normal distributed random variable. Write Xi = (Yi,Z
T
i )T. The estimating

function is g(X;θ) = Z(Y − ZTθ) with p = r.

I The proposed penalized EL with two penalties (namely, PEL2) is compared

to the single penalty approach (PEL) discussed in Tang and Leng (2010).

Three information criteria for choosing the tuning parameters π and ν in

the penalty function – BIC (Schwarz, 1978), BICC (Wang, Li and Leng,

2009), and EBIC (Chen and Chen, 2008) – are used.



I The results from MLE for the three true variables (i.e., MLE-Oracle) is also

reported. The column of θnonzero reports the average number of select-

ed predictors. The column of θtrue reports the average number of true

predictors that are selected. The difference is the average number of false

predictors that get selected. The next column reports the model error (ME),

which is defined by ME = (θ̂ − θ)T(θ̂ − θ) for a given estimator θ̂.



(n, p, r) Method θnonzeros θtrue ME No. EE’s

n = 50 MLE-Oracle 3 (0) NA 0.104 (0.009) NA

p = 100 PEL-BIC 0 (0) 0 (0) 15.25 (0) 100 (0)

r = 100 PEL-BIC 0 (0) 0 (0) 15.25 (0) 100 (0)

PEL-EBIC 0 (0) 0 (0) 15.25 (0) 100 (0)

PEL2-BIC 4.94 (0.53) 2.92 (0.04) 0.988 (0.160) 5.73 (0.21)

PEL2-BIC 4.73 (0.48) 2.92 (0.04) 1.025 (0.165) 5.69 (0.22)

PEL2-EBIC 4.42 (0.43) 2.90 (0.04) 1.239 (0.211) 5.63 (0.23)

n = 100 MLE-Oracle 3 (0) NA 0.047 (0.005) NA

p = 200 PEL-BIC 0 (0) 0 (0) 15.25 (0) 200 (0)

r = 200 PEL-BIC 0 (0) 0 (0) 15.25 (0) 200 (0)

PEL-EBIC 0 (0) 0 (0) 15.25 (0) 200 (0)

PEL2-BIC 9.22 (1.27) 3 (0) 1.070 (0.225) 5.38 (0.17)

PEL2-BIC 9.28 (1.28) 3 (0) 1.079 (0.227) 5.39 (0.17)

PEL2-EBIC 8.38 (1.03) 3 (0) 1.056 (0.228) 5.34 (0.17)

n = 100 MLE-Oracle 3 (0) NA 0.039 (0.003) NA

p = 500 PEL-BIC 0 (0) 0 (0) 15.25 (0) 500 (0)

r = 500 PEL-BIC 0 (0) 0 (0) 15.25 (0) 500 (0)

PEL-EBIC 0 (0) 0 (0) 15.25 (0) 500 (0)

PEL2-BIC 6.28 (1.31) 3 (0) 0.946 (0.153) 5.48 (0.16)

PEL2-BIC 5.96 (1.31) 3 (0) 0.930 (0.155) 5.38 (0.17)

PEL2-EBIC 6.04 (1.32) 3 (0) 0.944 (0.157) 5.41 (0.16)



Discussion

I We study a new penalized EL approach with two penalties, with one en-

couraging sparsity of the estimator and the other encouraging sparsity of the

Lagrange multiplier in the optimizations associated with the EL. Such an

approach utilizes sparsity in the target parameters and effectively achieves

a moment selection procedure for estimating the sparse parameter. Both

theory and numerical examples confirm the merits of the new penalized EL.

I One interesting extension of the approach is to explore inferences with es-

timating equations after the variable selection procedure. Such a direction

is a suitable stage for EL method with estimating equations who takes

advantage of adaptivity to various moment conditions with less stringent

distributional assumptions. (Done)

I The other interesting and challenging problem is to explore the optimality

of the sparse estimator using estimating equations with high data dimen-

sionality. (Working on)



Thank you!


