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machine learning: “model-free optimization-based algorithms”

I isn’t it the spirit of empirical likelihood based methods?
I prediction vs estimation/inference

Bayesian nonparametrics:

I how to be Bayesian, yet more empirical by being nonparametric

empirical likelihood:

I how to take the inference a bit beyond empirical distributions

modern statistics/ data science

— data increasingly high-dimensional and complex
— inferential goals increasingly more ambitious
— requiring more sophisticated algorithms and complex statistical modeling
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Mixture modeling

Mixture density

p(x) =
k∑

i=1

pi f (x |ηi )

e.g.,
f (x |ηi ) = Normal(x |µi ,Σi )

Parameter estimation

mixing probabilities p = (p1, . . . , pk)?
mixing components η = (η1, . . . , ηk)?
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Hierarchical models

HM = Mixture of mixture models

Challenge: parameter estimation in latent variable models

[courtesy M. Jordan’s slides]
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Estimation in parametric models

Standard methods, e.g., maximum likelihood estimation (via EM)
or Bayesian estimation, yield root-n parameter estimation rate

if Fisher information matrix is non-singular

What if we are in a singular situation?

Long Nguyen (UM) June 2016 5 / 50



Estimation in parametric models

Standard methods, e.g., maximum likelihood estimation (via EM)
or Bayesian estimation, yield root-n parameter estimation rate

if Fisher information matrix is non-singular

What if we are in a singular situation?

Long Nguyen (UM) June 2016 5 / 50



Fisher singularity

Cox & Hinkley (1974), Lee & Chesher (1986), Rotnitzky, Cox, Bottai and
Robbins (2000), etc: first-order singularity

Azzalini & Capitanio (1999); Pewsey (2000); DiCiccio & Monti (2004);
Hallin & Ley (2012,2014), etc: third order singularities in skewnormal
distributions

Chen (1995); Rousseau & Mengersen (2011); Nguyen (2013): asymptotics
for parameter estimation in overfitted mixture models, under strong
identifiability conditions

A full picture of singularity structures in mixture models remain largely
unknown (e.g., hitherto there’s no asymptotic theory for finite mixtures of
location-scale Gaussian mixtures)
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Singularity is a common occurence in modern statistics

high-dimensional and sparse setting

“complicated” density classes (e.g., gamma, normal, skewnormal),
when there are more than one parameter varying

overfitted/infinite mixture models

hierarchical models
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Singularities in e-mixtures
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e-mixtures = exact-fitted mixtures

Mixture model indexed by mixing distribution G =
∑k

i=1 piδηi{
pG (x) =

k∑
i=1

pi f (x |ηi )

∣∣∣∣G has k atoms
}
,

Fisher information matrix

I (G ) = E
{(

∂ log pG (X )

∂G

)(
∂ log pG (X )

∂G

)T}
where ∂ log pG/∂G simply denotes partial derivative of score function wrt all
parameters p,η
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Exploiting the representation pG =
∑

pi f (x |ηi ), easy to note that I (G ) is
non-singular iff the collection of{

f (x |ηi ),
∂f

∂η
(x |ηi )

∣∣∣∣i = 1, . . . , k

}
are linearly independent functions of x

This condition holds if

f (x |η) = Gaussian(x |µ, σ2) location-scale Gaussian

not for Gamma or skewnormal kernels (and many others)
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Gamma mixtures

Gamma density

f (x |a, b) =
ba

Γ(a)
xa−1e−bx , a > 0, b > 0

admits the following pde

∂f

∂b
(x |a, b) =

a

b
f (x |a, b)− a

b
f (x |a + 1, b).

For Gamma mixture model

pG (x) =
k∑

i=1

pi f (x |ai , bi )

I (G ) is a singular matrix if ai − aj = 1 and bi = bj for some pair of components
i , j = 1, . . . , k .
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Theorem (Ho & Nguyen, 2016)
The minimax rate of estimation for Gamma mixture’s parameter is slower than

1
n1/2r for any r ≥ 1, sample size n

This is because we can’t tell very well when G is singular or not

However if we know that the true G is non-singular, and that |ai − aj | − 1 and
|bi − bj | is bounded away from 0, then MLE achieves root-n rate
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Parameter estimation rate for Gamma mixtures
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Skewnormal mixtures

Skewnormal kernel density

f (x |θ, σ,m) :=
2

σ
f

(
x − θ
σ

)
Φ(m(x − θ)/σ),

where f (x) is the standard normal density and Φ(x) =

∫
f (t)1(t ≤ x) dt.

This generalizes Gaussian densities, which correspond to m = 0.

I (G ) is singular iif the parameters are real solution of a number of polynomial
equations

(i) Type A: P1(η) =
∏k

j=1 mj .

(ii) Type B: P2(η) =
∏

1≤i 6=j≤k

{
(θi − θj)

2+

[
σ2

i (1 + m2
j )− σ2

j (1 + m2
i )

]2}
.

Long Nguyen (UM) June 2016 14 / 50



Figure : Illustration of type A and type B singularity.
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Singularities of skewnormal mixtures lie in affine varieties

If we know that the parameters are bounded away from these algebraic sets,
then method such as MLE continues to produce root-n rate

Otherwise it is worse, especially if the true model is near singularity

I in practice, want to test if the true parameters are a singular point
I in theory, we want to know the actual rate of estimation for singular

points, necessitating the need to look into deep structure of singularities

We’ll show that the singularity structure is very rich and go beyond the
singularities of Fisher information

I introduce singularity levels, which provide multi-level partitions of
parameter space

There is a consequence: the “more” singular the parameter values, the worse
the MLE and minimax rates of estimation, n−1/2 to n−1/4 to n−1/8, ad
infinitum
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General theory

behavior of likelihood function in the neighborhood of model parameters
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From parameter space to space of mixing measure G

The map (p, η) 7→ G (p, η) =
∑

i piδηi
is many-to-one, e.g.

1

2
δ0 +

1

2
δ1 =

1

2
δ0 +

1

3
δ1 +

1

6
δ1

Say (p, η) and (p′, η′) are equivalent if the corresponding mixing measures are
equal, e.g.,

[p,θ] = [(1/2, 1/2), (0, 1)] ≡ [(1/2, 1/3, 1/6), (0, 1, 1)]
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G =
∑

piδηi
7→ pG (·) =

∑
pi f (·|ηi )
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Wasserstein space of measures/ optimal transport distance
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Optimal transportation problem (Monge-Kantorovich)

how to transport good products from a collection of producers to a collection of
consumers located in a common space
how to move the mass from one distribution to another?

squares: locations of producers; circles: locations of consumers

Optimal transport/Wasserstein distance is the optimal cost of transportation of
mass
from — “production distribution” — to — “consumption distribution”
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Wasserstein distance

Let G ,G ′ be two prob. measures on Rd , r ≥ 1.
A coupling κ of G ,G ′ is a joint dist on Rd × Rd which induces marginals G ,G ′.
κ also called a “transportation plan”.

The r -th order Wasserstein distance, denoted by Wr , is given by

Wr (G ,G ′) :=

[
inf
κ

∫
‖θ − θ′‖rdκ(θ, θ′)

]1/r

.
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G =
∑

piδηi
7→ pG (·) =

∑
pi f (·|ηi )
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Behavior of likelihood in a Wasserstein neighborhood

As G → G0 in Wasserstein metric, apply Taylor expansion up to the r -th order:

pG (x)− pG0(x) =
k0∑

i=1

si∑
j=1

pij

r∑
|κ|=1

(∆ηij)
κ

κ!

∂|κ|f

∂ηκ
(x |η0

i ) +
k0∑

i=1

∆pi.f (x |η0
i ) + Rr (x),

where Rr (x) is the Taylor remainder and Rr (x)/W r
r (G ,G0)→ 0.

We have seen examples where the partial derivatives up to the first order are not
linearly independent (for gamma kernel and skewnormal kernel)
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For normal kernel density f (x |µ, v),

∂2f

∂θ2
= 2

∂f

∂v
.

For skewnormal kernel density f (x |µ, v ,m),

∂2f (x |η)

∂θ2
− 2

∂f (x |η )

∂v
+

m3 + m

v

∂f (x |η)

∂m
= 0.
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r -canonical form

Fix r ≥ 1. For some sequence of Gn ∈ G, such that Wr (Gn,G0)→ 0,

pGn (x)− pG0(x)

W r
r (Gn,G0)

=
Lr∑

l=1

(
ξl (G0,∆Gn)

W r
r (G ,G0)

)
Hl (x |G0) + o(1),

where

Hl (x |G0) are linearly independent functions

coefficients ξl (G0,∆Gn)/W r
r (Gn,G0) are ratio of two semi-polynomials of

the parameter perturbation of Gn around G0
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Hl may be obtained by reducing partial derivatives to linearly independent ones
For Gamma kernel f ,

∂f (x |η0
j )

∂m
= −

k∑
j=1

α1j

α4k
f (x |η0

j ) +
α2j

α4k

∂f (x |η0
j )

∂θ
+
α3j

α4k

∂f (x |η0
j )

∂v
−

k−1∑
j=1

α4j

α4k

∂f (x |η0
j )

∂m
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For Gaussian kernel f (x |η) = f (x |θ, v) all partial derivatives wrt both θ and v can
be eliminated via the following reduction: for any κ1, κ2 ∈ N, for any
j = 1, . . . , k0,

∂κ1+κ2 f (x |η0
j )

∂θκ1vκ2
=

1

2κ2

∂κ1+2κ2 f (x |η0
j )

∂θκ1+2κ2
.

Thus, this reduction is valid for all parameter values (p,η), and r -canonical forms
for all orders.
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For skewnormal kernel f (x |η) = f (x |θ, v ,m) for any j = 1, . . . , k0, any
η = η0

j = (θ0
j , v

0
j ,m

0
j ),

∂2f (x |η)

∂θ2
= 2

∂f (x |η)

∂v
− m3 + m

v

∂f (x |η)

∂m
.

For higher order partial derivatives:

∂3f

∂θ3
= 2

∂2f

∂θ∂v
− m3 + m

v

∂2f

∂θ∂m
,

∂3f

∂θ2∂v
= 2

∂2f

∂v2
+

m3 + m

v2

∂f

∂m
− m3 + m

v

∂2f

∂v∂m
,

∂3f

∂θ2∂m
= 2

∂2f

∂v∂m
− 3m2 + 1

v

∂f

∂m
− m3 + m

v

∂2f

∂m2
.
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r -singularity

Let G be a space of mixing measure.

Definition

For each finite r ≥ 1, say G0 is r -singular relative to G if G0 admits a r -canonical
form for some sequence of G ∈ G, according to which Wr (G ,G0)→ 0,

coefficients ξ
(r)
l (G )/W r

r (G ,G0)→ 0 for all l = 1, . . . , Lr .

Lemma

(a) The notion of r -singularity is independent of the specific r -form. That is, the
existence of the sequence G in the definition holds for all r -canonical forms once
it holds for at least one of them.
(b) If G0 is r -singular for some r > 1, then G0 is (r − 1)-singular.
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Definition

The singularity level of G0 relative to ambient space G, denoted by `(G0|G), is

0, if G0 is not r -singular for any r ≥ 1;

∞, if G0 is r -singular for all r ≥ 1;

otherwise, the largest natural number r ≥ 1 for which G0 is r -singular.
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Theorem

If `(G0|G) = r , then for any G ∈ G subject to a compactness condition

V (pG , pG0) & W r+1
r+1 (G ,G0).

So, singularity level r implies that MLE has rate

n−
1

2(r+1)

Under additional regularity condition, this is also a local minimax lower bound for
estimating G0
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Role of ambient spaces

If G1 ⊂ G2 then
`(G0|G1) ≤ `(G0|G2)

For location-scale Gaussian e-mixtures

`(G0|Ek0
) = 0.

For any o-mixtures: G0 has k0 support points, but we consider the space Ok of all
measures with at most k > k0 support points. Then,

`(G0|Ok) ≥ 1.

In fact, for location-scale Gaussian o-mixtures, we can show

`(G0|Ok) ≥ 3.
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Singularities in o-mixtures

G0 has k0 support points,
G := Ok , are space of mixing measures having at most k > k0 support

points

Long Nguyen (UM) June 2016 34 / 50



When do we have `(G0|Ok) = 1?

Definition [Chen, 1995; Nguyen, 2013]

G is non-singular in a o-mixture model with at most k components if{
f (x |θi ),

∂f

∂θ
(x |θi ),

∂2f

∂θ2
(x |θi ), |i = 1, . . . , k

}
are linearly independent functions of x

Theorem [Nguyen, 2013; Chen, 1995]

Under non-singularity of G0, and compactness conditions on parameter space,
there holds

V (pG , pG0) & W 2
2 (G ,G0).

This is a corollary of our theory, due to the fact that one can establish

`(G0|Ok) = 1.
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Since MLE or Bayes estimators yield root-n density estimation rate, it implies that

W2(Ĝn,G0) = Op(n−1/4)

where G0 denotes true mixing distribution, Gn estimate from an n-iid sample

This result is applicable to location Gaussian o-mixture, scale Gaussian o-mixture,
but not applicable to

location-scale Gaussian o-mixture

skewnormal o-mixture
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Location-scale Gaussian o-mixture

given n-iid sample from a location-scale Gaussian mixture with mixing
measure G0 (which has k0 components)

fit the data with a mixture model with k > k0 components

`(G0|Ok) is determined by (k − k0) — specifically, by the following system
of polynomial equations:

k−k0+1∑
j=1

∑
n1+2n2=α

c2
j an1

j bn2

j

n1!n2!
= 0 for each α = 1, . . . , r (1)

there are r equations for 3(k − k0 + 1) unknowns (cj , aj , bj)
k−k0+1
j=1

let r ≥ 1 minimum value of r ≥ 1 such that the above equations do not
have any non-trivial real-valued solution. A solution is considered non-trivial
if all cjs are non-zeros, and at least one of the ajs is non-zero.
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Theorem [Singularity in localion-scale Gaussian o-mixtures]

`(G0|Ok) = r − 1.

Corrolary [Location-scale Gaussian finite mixtures]

convergence rate of mixing measure G by either MLE or Bayesian estimation is
(log n/n)1/2r , under both Wr and W1.

[Ho & Nguyen (2016)]
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More on system of r polynomial equations (1):

let us consider the case k = k0 + 1, and let r = 3, then we have

c2
1a1 + c2

2a2 = 0,

1

2
(c2

1a2
1 + c2

2a2
2) + c2

1b1 + c2
2b2 = 0,

1

3!
(c2

1a3
1 + c2

2a3
2) + c2

1a1b1 + c2
2a2b2 = 0.

a non-trivial solution exists, by choosing c2 = c1 6= 0, b1 = b2 = −1/2, and
a1 = 1, a2 = −1.
Hence, r ≥ 4.

For r = 4, the system consists of the three equations above, plus

1

4!
(c2

1a4
1 + c2

2a4
2) +

1

2!
(c2

1a2
1b1 + c2

2a2
2b2) +

1

2!
(c2

1b2
1 + c2

2b2
2) = 0.

This system has no non-trivial solution. So, for k = k0 + 1, we have r = 4.
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Using the Groebner bases method, we can figure out the zeros of a system of real
polynomial equations. So,

(1) [Overfitting by one] if k − k0 = 1, then `(G0|Ok) = 3. So, MLE/Bayes
estimation rate is n−1/8.

(2) [Overfitting by two] if k − k0 = 2, then `(G0|Ok) = 5, so the rate is n−1/12.

(3) [Overfitting by three] if k − k0 = 3, then `(G0|Ok) ≥ 6. So, the rate is not
better than n−1/14.

Lessons for Gaussian location-scale mixtures

do not overfit

if you must, be conservative in allowing extra mixing components
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Figure : Location-scale Gaussian mixtures. From left to right: (1) Exact-fitted setting;
(2) Over-fitted by one component; (3) Over-fitted by one component; (4) Over-fitted by
two components.
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Figure : MLE rates for location-covariance mixtures of Gaussians. L to R: (1)
Exact-fitted: W1 � n−1/2. (2) Over-fitted by one: W4 � n−1/8. (3) Over-fitted by two:
W6 � n−1/12.
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The direct link to algebraic geometry

Recall r -canonical form

pGn (x)− pG0(x)

W r
r (Gn,G0)

=
Lr∑

l=1

(
ξl (G0,∆Gn)

W r
r (G ,G0)

)
Hl (x) + o(1),

where

coefficients ξl (G0,∆Gn)/W r
r (Gn,G0) are the ratio of two semi-polynomials

of the parameter perturbation of Gn around G0

as Gn → G0, the collection of these ratios tend to a system of real
polynomial equations
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Singularities in e-mixtures of skewnormals
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P1(η) =
∏k

j=1 mj .

P2(η) =
∏

1≤i 6=j≤k

{
(θi − θj)

2+

[
σ2

i (1 + m2
j )− σ2

j (1 + m2
i )

]2}
.
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Partition of subset NC, without Gaussian components
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Partition of subset NC, with some Gaussian components
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Singularities in o-mixtures of skewnormal mixtures
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Summary

Singularities are common in mixture models, including finite mixtures

Beyond the singular points of Fisher information

They are organized into levels, which subdivide the parameter space into
multi-level partitions, each of which allow different minimax and MLE
convergence rate

Now that we know what the singularities are (mostly), how to go about
improving the estimation algorithm both statistically and computationally?
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For details, see

Convergence of latent mixing measures in finite and infinite mixture models.
(Ann. Statist., 2013)

Convergence rates of parameter estimation in some weakly identifiable
models (with N. Ho, Ann. Statist., 2016)

Singularity structures and parameter estimation in finite mixture models
(manuscript to be submitted)
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