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Introduction

• Empirical likelihood has been studied quite extensively in the
frequentist literature, but the corresponding Bayesian
literature is somewhat sparse.

• Bayesian methods hold promise, however, either with
subjective or with non-subjective priors.

• In addition, Bayesian methods very often overcome the curse
of dimensionality by providing suitable dimension reduction.

• Our goal: asymptotic expansion of posteriors for a very general
class of priors along with the empirical likelihood and its
variations, such as the exponentially tilted empirical likelihood
and the Cressie–Read version of the empirical likelihood.

• Bernstein–von Mises theorem comes as a special case.

• Our approach also aids in finding non-subjective priors based
on empirical likelihood and its variations as mentioned above.
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• Some earlier work: Lazar (2003): Bayesian empirical
likelihood; Scennach (2005, 2007): exponentially tilted
empirical likelihood.

• Baggerly (1998) viewed empirical likelihood as a method of
assigning probabilities to a n-cell contingency table in order to
minimize a goodness-of-fit criterion.

• He selected Cressie–Read power divergence statistics as one
such criterion for construction of confidence regions in a
number of situations

• Baggerly as well as Owen (2010) pointed out also how the
usual empirical likelihood, exponentially tilted empirical
likelihood and others could be viewed as special cases of the
Cressie–Read criterion by appropriate choice of the the power
parameter.
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The Basic Settings

• X1, . . . ,Xn: iid rv satisfying E [g(X1, θ)] = 0, where θ ∈ R.

• The EL is a nonparametric likelihood of the form
∏n

i=1 wi (θ),
where wi is the probability mass assigned to Xi : i = 1, . . . , n.

• The constraints are (i) wi > 0 for all i = 1, . . . , n, (ii)∑n
i=1 wi = 1 and (iii)

∑n
i=1 wig(Xi , θ) = 0.

• A simple example: g(Xi , θ) = Xi − θ, i = 1, . . . , n.

• Domain of θ is
Hn = ([

⋂n
i=1{g(Xi , θ) ≥ 0}]

⋃
[
⋂n

i=1{g(Xi , θ) ≤ 0}])c .

• The target is to maximize
∏n

i=1 wi or equivalently
∑n

i=1 log wi

with respect to w1, . . . ,wn subject to the above constraints.

• The solution : ŵEL
i = [n(1 + νg(Xi , θ)]−1;

• ν (the lagrangian multiplier) satisfies∑n
i=1 g(Xi , θ)[1 + νg(Xi , θ)]−1 = 0.
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• Exponentially titled empirical likelihood : maximize instead
−
∑n

i=1 wi logwi with the same constraints.

• The resulting solution is

ŵET
i (θ) =

exp{−νg(Xi , θ)}∑n
j=1 exp{−νg(Xj , θ}

,

• ν, the Lagrange multiplier, satisfies

n∑
i=1

exp{−νg(Xi , θ)}g(Xi , θ) = 0.

• The exponentially tilted empirical likelihood is related to
Kullback-Leibler divergence between two empirical
distributions.

• One assigns weights wi to the n sample points, while the
other assigns uniform weights 1/n to the sample points.
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• The general Cressie–Read divergence criterion given by

CR(λ) =
2

λ(λ+ 1)

n∑
i=1

{(nwi )
−λ − 1}.

• We focus on the cases λ ≥ 0 and λ ≤ −1, because in these
cases CR(λ) is a convex function of the wi .

• The limiting cases λ→ 0 and λ→ −1 lead to the usual
empirical likelihood and the exponentially tilted empirical
likelihood.

• ŵCR
i (θ) = 1

n{µ+ νg(Xi , θ)}−1/(λ+1).

•
∑n

i=1{µ+ νg(Xi , θ)}−1/(λ+1) = n;

•
∑n

i=1{µ+ νg(Xi , θ)}−1/(λ+1)Xi = 0.

• The posterior under the prior ρ(θ) is

π(θ|X1, . . . ,Xn) =

∏n
i=1 ŵi (θ)ρ(θ)∫

Hn

∏n
i=1 ŵi (θ)ρ(θ)dθ

.
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A Few Lemmas

• Lemma 1. Assume g(·, ·) is a continuous function. Then the
natural domain Hn is a compact set and is nondecreasing with
respect to the sample size n.

• Assunption 1. For any θ in natural domain Hn, and n ≥ 3,
P{g(Xi , θ) = 0} = 0, i = 1, . . . , n.

• Assumption 2. g(x , θ) is a continuous function of θ with a
continuous first derivative in θ.

• Lemma 2. Under Assumptions 1 and 2, the ν functions in
both empirical likelihood and exponentially tilted empirical
likelihood and both µ and ν functions in the Cressie-Read
empirical likelihood are smooth functions of θ.
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• Assumption 3. g(x , θ) admits K + 4 th order derivative in θ.

• Under Assumptions 1 and 3, derivatives of order up to K are
smooth functions of θ.

• Define θ̃ as the solution of
∑n

i=1 g(Xi , θ) = 0.

• Define l̃(θ) = n−1
∑n

i=1 logŵi (θ), where ŵi (θ) is either ŵEL
i

or ŵET
i or ŵCR

i .

• Lemma 4. d2 l̃(θ)/dθ2 when evaluated at θ = θ̃ is less than
zero.
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Bayesian Asymptotics

• An asymptotic expansion of the posterior density (Johnson,
1970).

• Let X1, . . . ,Xn|θ iid with common pdf f (X |θ), and let θ̂n
denote the MLE of θ.

• Ln(θ) =
∏n

1 f (Xi |θ) and `n(θ) = log Ln(θ).

• ai = n−1[d i`n(θ)/dθi ]θ=θ̂n
, i = 1, 2, . . ..

• În == −a2, the observed per unit Fisher information number.

• Twice differentiable prior π.

• Let Tn =
√

n(θ − θ̂n)Î
1/2
n , and let π∗n(t) be the posterior pdf

of Tn.
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• Theorem 1. π∗n(t) = φ(t)[1 + n−1/2γ1(t; X1, . . . ,Xn) +
n−1γ2(t; X1, . . . ,Xn)] + Op(n−3/2),
where φ(t) is the standard normal pdf.

• γ1(t; X1, . . . ,Xn) = a3t3

6Î
3/2
n

+ t

Î
1/2
n

π′(θ̂n)

π(θ̂n)
.

γ2(t; X1, . . . ,Xn) =
a4t

4

24Î 2
n

+
a2

3t
6

72Î 3
n

+
t2

2În

π′′(θ̂n)

π(θ̂n)
+

a3t
4

6Î 2
n

π′(θ̂n)

π(θ̂n)

− a4

8Î 2
n

− 15a2
3

72Î 3
n

− 1

2În

π′′(θ̂n)

π(θ̂n)

− a3

2Î 2
n

π′(θ̂n)

π(θ̂n)
.

• Special Case: Bernstein von-Mises Theorem
π∗n(t) = φ(t)[1 + Op(n−1/2)].
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• Outline of Proof: Write
π(θ|X1, . . . ,Xn) = exp[`n(θ)]π(θ)

∫ exp[`n(θ)]π(θ)dθ = exp[`n(θ)−`n(θ̂n)]π(θ)

∫ exp[`n(θ)−`n(θ̂n)]π(θ)dθ
.

• Then Tn =
√

n(θ − θ̂n)Î
1/2
n has pdf

π∗n(t) =
C−1

n exp[`n{θ̂n + t(nÎn)−1/2} − `n(θ̂n)]π{θ̂n + t(nÎn)−1/2},
where C−1

n is the normalizing constant.

• Use the fourth order Taylor expansion of `n{θ̂n + t(nÎn)−1/2}
around θ̂n and note `′n(θ̂n) = 0.

• A similar second order Taylor expansion of π{θ̂n + t(nÎn)−1/2}
around θ̂n.
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Asymptotic Expansion of Posteriors Based on Empirical Likelihood

• Notations: Prior: ρ(θ). θ̃ is the solution of
∑n

i=1 g(Xi , θ) = 0.

• ρ1(θ) = ρ(θ̃) + (θ − θ̃)ρ′(θ̃).

• a3n(θ) = 1
6

∑n
i=1

d3 l̃(θ)
dθ3 .

• b(θ) =[{
n−1

∑n
i=1 ∂g(Xi , θ)/∂θ

}2
/
{
n−1

∑n
i=1 g2(Xi , θ)

}]1/2
.

• y = n1/2b(θ − θ̃).

• α0(y , n) = ρ(θ̃).

• α1(y , n) = ρ′(θ̃)y/b + ρ(θ̃)a3n(θ̃)(y/b)3.
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• Let Hn = [h1, h2] be the support of θ.

• Define Y(1) = n1/2b(h1 − θ̃) and Y(n) = n1/2b(h2 − θ̃) as the
normalized lower and upper bounds of the support of the
distribution.

• αk(y , n): some long expression which is a kth degree
polynomial in y .

• For any ξ ∈ (Y(1),Y(n)), and Hn = [h1, h2], let

PK (ξ, n) =
∑K

k=0{
∫ ξ
Y(1)

αk(y , n)exp(− y2

2 )dy}n−k/2.

• Assumption 4. For any li ⊂ {2, . . . , 4},
E{
∏j

i=1
d li g(X1,θ)

dθli
} <∞.

• Assumption 5. The M-estimator θ̃ is a consistent estimator of
θ.
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• Theorem 1 (Fundamental Expansion Theorem).
Let X1,X2, . . . ,Xn be independent and identically distributed.
Assume the prior density ρ(θ) has a support containing Hn and
has second order continuous derivative. Under Assumptions
1-5, there exist constants N1 > 0 and M1 > 0, such that

|
∫ ξ

Y(1)

n∏
i=1

ŵi

(
θ̃ +

y√
nb

)
ρ

(
θ̃ +

y√
nb

)
dy−PK (ξ, n) | ≤ M1n

−(K+1)/2

for any n > N1 and ξ ∈ (Y(1),Y(n)).

• This theorem can not only be used to prove asymptotic
expansion of the posterior cumulative distribution function ,
but it can also be used to find the asymptotic expansions of
the posterior mean, quantiles and many other quantities of
interest.
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• Next expansion of posterior cdf.

• Posterior cdf:

Π(θ ≤ θ̃ + ξ/(nb)1/2|X1, . . . ,Xn) =

R θ̃+ξ/n1/2b
h1

Qn
i=1 w̃i (θ)ρ(θ)dθR h2

h1

Qn
i=1 w̃i (θ)ρ(θ)dθ

.

• Notations: Rn =
(
Y(1),Y(n)

)
; Φ (ξ|Rn) =

R ξ
Y(1)

φ(y)dyR Y(n)
Y(1)

φ(y)dy
.

• Define polynomial γi (ξ, n) , i = 1, . . . , n recursively as∫ ξ
Y(1)

αk (y , n) exp
(
− y2

2

)
dy =∑k

j=0

{∫ Y(n)

Y(1)
αj (y , n) exp

(
− y2

2

)
dy
}
γk−j (ξ, n).

• γ0(ξ, n) =
Φ(ξ)−Φ(Y(1))

Φ(Y(n))−Φ(Y(1)) .
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• Theorem 2. Under the same assumptions as in Theorem 1,
there exist constants N2 and M2 such that

|Π
(
θ ≤ θ̃ +

ξ√
nb
|X1, . . . ,Xn

)
−

K∑
i=0

γi (ξ, n) n−i/2| ≤ M2n
−(K+1)/2.

• (Bernstein-von Mises Theorem) Under the assumptions of
Theorem 1 with K = 2, the standardizd posterior distribution
function converges to the N(0, 1) distribution function almost
surely, that is n1/2b(θ − θ̃)|X1, . . . ,Xn → N(0, 1) a.s.
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Matching Priors

• Let X1, . . . ,Xn|θ be iid with common pdf f (X |θ). For
0 < α < 1, let θπ1−α(X1, . . . ,Xn) ≡ θπ1−α denote the (1− α)th
asymptotic posterior quantile of θ based on the prior π, i.e.
Pπ[θ ≤ θπ1−α|X1, . . . ,Xn] = 1− α+ Op(n−p), for some p > 0.

• If P[θ ≤ θπ1−α|θ] = 1− α + Op(n−p), then some order of
probability matching is achieved.

• If p = 1, then we call π a first order probability matching
prior. If p = 3/2, then we call π a second order probability
matching prior.

Malay Ghosh Bayesian Empirical Likelihood



• An intuitive argument why Jeffrey’s prior is a first order
probability matching prior in the absence of nuisance
parameters.

• If X1, . . . ,Xn|θ iid N(θ, 1) and π(θ) = 1, −∞ < θ <∞, then
the posterior π(θ|X1, . . . ,Xn) is N(X̄n, n

−1).

• Writing z1−α as the 100(1− α)% quantile of the N(0, 1)
distribution, one gets
P[
√

n(θ− X̄n) ≤ z1−α|X1 . . . ,Xn) = 1− α = P[
√

n(X̄n − θ) ≥
−z1−α|θ],
so that the one sided credible interval X̄n + z1−α/

√
n has

exact frequentist coverage probability 1− α.
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• The above exact matching does not always hold. However, if
X1, . . . ,Xn|θ are iid, then θ̂n|θ is asymptotically
N(θ, (nI (θ))−1).

• Then by the delta method
g(θ̂n)|θ ∼ N[g(θ), (g ′(θ))2(nI (θ))−1].

• So if g ′(θ) = I 1/2(θ) so that g(θ) = ∫ θ I 1/2(t)dt, one gets√
n[g(θ̂n)− g(θ)]|θ is asymptotically N(0, 1).

• Hence, with the uniform prior π(φ) = 1 for φ = g(θ),
coverage matching is asymptotically achieved for φ.

• This leads to the prior π(θ) = dφ
dθ = g ′(θ) = I 1/2(θ).
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• Moment Matching Priors : Let X1, . . . ,Xn be iid with
common pdf f (X |θ), and Tn =

√
n(θ − θ̂n).

• The posterior π∗n(t) of Tn is

π∗n(t) = φ(t)[1 + 1√
n

( a3t3

6Î
3/2
n

+ t

Î
1/2
n

π′(θ̂n)

π(θ̂n)
) + Op(n−1)].

• E (θ|X1, . . . ,Xn) = θ̂n + 1
n ( a3

2Î 2
n

+ 1
În

π′(θ̂n)

π(θ̂n)
) + Op(n−2).

• n[E (θ|X1, . . . ,Xn)− θ̂n]
P→ g3(θ)

2I 2(θ)
+ 1

I (θ)
π′(θ)
π(θ) .

• g3(θ) = Eθ[d3logf (X |θ)
dθ3 ].

• Moment matching prior: π(θ) = exp[−1
2

∫ θ g3(v)
I (v) dv ].
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• Asymptotic expansion of the posterior mean:

E
{√

nb
(
θ − θ̃

)
|X
}

= ρ′(θ̃)
ρ(θ̃)b

R Y(n)
Y(1)

y2φ(y)dyR Y(n)
Y(1)

φ(y)dy
+ a3n

b3

R Y(n)
Y(1)

y4φ(y)dyR Y(n)
Y(1)

φ(y)dy

 n−1 + Op

(
n−

3
2

)
.

• Note Y(n) → +∞ and Y(1) → −∞ a.s. as n→∞.

• limn→∞

R Y(n)
Y(1)

y2φ(y)dyR Y(n)
Y(1)

φ(y)dy
=
∫

R y2φ (y) dy = 1.

• limn→∞

R Y(n)
Y(1)

y4φ(y)dyR Y(n)
Y(1)

φ(y)dy
=
∫

R y4φ (y) dy = 3.

• The moment matching prior ρ(θ) is a solution of

ρ′ (θ)

ρ (θ)
= − lim

n→∞

3a3n

b2

• Special Case: g(x , θ) = x − θ. Then

ρ (θ) = exp

(∫ θ
−∞

E{(X1−s)3}
[E{(X1−s)2}]4 ds

)
.
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• Estimating the quantile with the aid of posterior mean.

• Begin with the smooth estimating equation
K (x) =

∫ x
−∞ k(u)du: a kernel smoothing function and

Kh(·) = hK (·/h).

• The smoothed constraint of the empirical likelihoods to
estimate the α quantile θi is∑n

i=1 wi [Kh (θ − Xi )− (1− α)] = 0.

• g (θ,Xi ) = Kh (θ − Xi )− (1− α).

• The asymptotic variance is b−2 =

[ Pn
i=1 kh(θ̃−Xi )Pn

i=1[Kh(θ̃−Xi)−(1−α)]2

]−1

.

• Prior for θ: N(µ0, σ
2
0)

• ρ′(θ)
ρ(θ) |θ=θ̃ = − θ̃−µ0

σ2
0

.
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Simulations

• Let g (Xi , θ) = Xi − θ, i = 1, . . . , n and K = 3.
• We compare the first order approximation with normal

approximation and second order approximation.
• For all three versions of empirical likelihood,

l̃ (3)
(
X
)

=
2n2

Pn
i=1(Xi−X)

3nPn
i=1(Xi−X)

2
o3 .

• So l̃ (3)
(
X̄
)

for the three empirical likelihoods are
asymptotically equivalent up to the second order.

• The true cumulative distribution function is calculated by
numerical integration.

• The normal approximation polynomial is Φ (ξ|Rn).
• Another complex expression for the second order

approximation polynomial.
• We take samples of size n = 10 and 80 from a t distribution

with degrees of freedom 6 and the Cauchy prior.
• Set Cressie–Read divergence parameter λ = 2 .
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• The red line: normal approximation of the posterior cdf.

• The blue line: first order approximation of the posterior pdf.

• The green line: the posterior based on the empirical likelihood.

• The purple line: The posterior based on the exponentially
tilted empirical likelihood.

• The black line: the Cressie–Read divergence empirical
likelihood.

• Even when n = 10, the three types of empirical likelihoods are
quite close to each other.

• The first order approximation is closer than the normal
approximation,

• When the sample size increases to 80, all the lines almost
coincide with each other.
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• Next we use gamma distribution with shape parameter 2 and
scale parameter 0.2, so that the skewness is 2/

√
2 =
√

2 and
the mean is 0.4.

• We use one dimensional constraint g (X , θ) = X − θ to
estimate the mean.

• The priors are Cauchy distributions with different locations µ0

and different scales σ0.

• The accuracy is defined as

EX

(
maxy |P(θ ≤ y |X )− P̃(θ ≤ y |X )|

)
.

• This measures the performance of our approximations
P̃ (θ ≤ y |X ) with respect to true Bayesian posteriors.

• The results are summarized in the following table.
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• The two columns under Empirical Likelihood means the true
posteriors are based on the empirical likelihood.

• The Normal column under Empirical Likelihood column
documents the simulated accuracies when we use normal
approximations to estimate the true posteriors based on the
empirical likelihoods.

• The 1st Order column under Empirical Likelihood documents
the simulated accuracies when we use first order
approximations to estimate the true posteriors based on the
empirical likelihood.

• Other columns need to be interpreted similarly.
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Comparison with Parametric Bayesian Model

• The asymptotic variance of the Bayesian empirical likelihood
is the inverse of observed Godambe information number.

• In parametric Bayesian model, the, asymptotic variance is the
inverse of the observed Fisher information number.

• Generally speaking, the Fisher information number will be
larger than the Godambe information number.

• The difference between the asymptotic variances serves as a
“payment” to use a semiparametric model instead of a full
parametric model.

• But the EL is more robust against a misspecified model.

• We illustrate this with an example.

Malay Ghosh Bayesian Empirical Likelihood



• Xi
iid∼ exponential with rate parameter λ.

• Prior for λ: Gamma(2, 1).

• The posterior is then Gamma(n + 2, nX̄ + 1).

• The Bayes risk under the true model is 1+2n
n(n+1) .

• Misspecified model: the data are drawn from χ2
ν .

• Prior for ν: IG(2, 1).

• Posterior for ν: Inverse Gaussian with mean {2/nlog2}1/2 and
scale 2.

• The next table shows Bayes risks under the misspecified
model for the parametric Bayes and the three versions of EL.
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Table 2. Comparison of Bayes Risks

EL ETEL CREL True Misspecified

n=10 0.160 0.156 0.159 0.059 0.750
n=20 0.091 0.088 0.090 0.016 0.786
n=50 0.037 0.036 0.036 0.003 0.829

n=100 0.019 0.019 0.019 0.001 0.857
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Summary and Future Work

• he paper provides an asymptotic expansion of the posterior
based on an empirical likelihood subject to a linear constraint.

• The Bernstein-von Mises theorem and asymptotic expansions
of the cumulative distribution function and the posterior mean
are obtained as corollaries.

• Current work is extension to the multivariate case as well as
expansions subject to multiple constraints.

• A potential topic of research is asymptotic expansion of
posteriors under regression constraints.
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Posterior Cumulative Distribution Functions When Sample Size is 10
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Figure: Posterior Cumulative Distribution Functions When Sample Size is

10



Posterior Cumulative Distribution Functions When Sample Size is 80
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Figure: Posterior Cumulative Distribution Functions When Sample Size is

80



Accuracy of Approximation under Di�erent Priors and Di�erent Sample Sizes

EL ETEL CR

n µ0 σ0 Normal 1st Order Normal 1st Order Normal 1st Order

10

1

0.3 0.134 0.070 0.115 0.071 0.133 0.068

1 0.074 0.054 0.078 0.066 0.075 0.056

3 0.056 0.054 0.069 0.067 0.060 0.057

10

0.3 0.058 0.054 0.070 0.067 0.061 0.0578

1 0.058 0.054 0.070 0.067 0.061 0.057

3 0.058 0.054 0.069 0.067 0.061 0.057

20

1

0.3 0.119 0.068 0.108 0.054 0.117 0.063

1 0.070 0.054 0.065 0.048 0.070 0.052

3 0.054 0.052 0.052 0.049 0.054 0.052

10

0.3 0.056 0.052 0.053 0.049 0.056 0.052

1 0.056 0.052 0.053 0.049 0.056 0.052

3 0.055 0.052 0.053 0.049 0.055 0.052

50

1

0.3 0.080 0.048 0.076 0.041 0.077 0.042

1 0.051 0.041 0.047 0.036 0.047 0.036

3 0.041 0.039 0.037 0.035 0.037 0.036

10

0.3 0.042 0.039 0.038 0.035 0.038 0.036

1 0.042 0.039 0.038 0.035 0.038 0.036

3 0.041 0.039 0.038 0.035 0.038 0.036


