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Plan of talk

• Empirical Likelihood vs. Fisher Likelihood

• Multinomial Likelihood under convex constraints

• Implications for EL

• Continuous case and FL

• Empirical Likelihood vs. Generalized Minimum Contrast

• Bayesian nonparametric consistency

• Large Deviations and Bayesian Law of Large Numbers



EL vs. Fisher Likelihood



EL vs. FL
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1 MG and V. Špitalský, Multinomial and empirical likelihood
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EL vs. FL

• EL is ’a multinomial likelihood in the sample’.

• As such, EL intentionally ignores information about the
support.

• Let’s consider the discrete case, first.
And compare EL with the Maximum Multinomial Likelihood.

• The continuous case will be handled by Fisher’s concept of
likelihood, later on.
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Multinomial likelihood under convex constraints

• Maximum multinomial Likelihood (MmL) may put positive
weight to unobserved outcome(s)

• MmL may be different than EL

• Multinomial likelihood ratio may lead to different conclusion
than ELR



MmL under convex constraints: setup

• alphabet X of m letters

• probability simplex ∆X , {q ∈ Rm : q ≥ 0,
∑

q = 1}

• (ni )i∈X realization of the closed multinomial distribution
Pr((ni )i∈X ; n, q) = n!

∏
qnii /ni !

with parameters n ∈ N and q ∈ ∆X

• multinomial likelihood kernel L(q) = Lν(q) , e−n `(q), where
` = `ν : ∆X → R̄, Kerridge’s inaccuracy, is

`(q) , −〈ν, log q〉 ,

and ν , (ni/n)i∈X is the type

• log 0 = −∞, 0 · (−∞) = 0; R̄ extended real line [−∞,∞];
〈a, b〉 scalar product



MmL under convex constraints: primal P

Consider the primal problem P of minimization of `, restricted to a
convex, closed set C ⊆ ∆X :

ˆ̀
P , inf

q∈C
`(q), SP , {q̂ ∈ C : `(q̂) = ˆ̀

P} (P)

The goal is to find the solution set SP as well as the value ˆ̀
P of

the objective function ` at the infimum over C



MmL under convex constraints: active/passive letters

For a type ν (or, more generally, for any ν ∈ ∆X ),

the active and passive alphabets are

• X a , {i ∈ X : νi > 0}

• X p , {i ∈ X : νi = 0}

The elements of X a, (X p) are called active, (passive) letters



MmL under convex constraints: notation

• πa, πp the natural projections onto active, passive letters

• x = (xa, xp) for x ∈ Rm, where xa = πa(x), xp = πp(x)

• for M ⊆ Rm and x ∈ M put

Ma , πa(M), active projection

Ma(xp) , {xa ∈ Rma : (xa, xp) ∈ M} xp−slice

• analogously define Mp and Mp(xa)



MmL under convex constraints: H-set and Z-set

If a non-empty convex, closed set C ⊆ ∆X and a type ν are such
that C a(0p) = ∅, then we say that C is an H-set with respect to ν

The set C is called a Z-set with respect to ν if C a(0p) is
non-empty but its support is strictly smaller than X a



MmL under convex constraints:
putting positive weight to unobserved outcomes

Let

• X = {−1, 0, 1},

• u = (−1, 0, 1),

• C = {q ∈ ∆X : 〈q, u〉 = 0},

• ν = (1, 0, 0).

Thus X a = {−1}, X p = {0, 1}

Then, SP = {(1, 0, 1)/2} and ˆ̀
P = log 2

Note: As C is the H-set wrt ν, MEL does not exist, here
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MmL under convex constraints: and suboptimal EL

Let

• X = {−1, 0, 10},

• u = (−1, 0, 10),

• C = {q ∈ ∆X : 〈q, u〉 = 0},

• ν = (3, 2, 0)/5.

Thus X a = {−1, 1}, X p = {10}

Then, SP = {(54, 44, 1)/99} and ˆ̀
P = 0.6881

Note: MEL is q̂E = (1, 1, 0)/2, ˆ̀
E = 0.6931 and ˆ̀

P < ˆ̀
E
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MmL under convex constraints: decision making
Let X = {−2,−1, 0, 1, 2} and C (θj) = {q ∈ ∆X : Eq(X 2) = θj}, where
θ1 = 1.01, θ2 = 1.05
Let ν = (6, 3, 0, 0, 1)/10

The solution of P is

• q̂P(θ1) = (0.1515, 0.3030, 0.52025, 0, 0.02525), for θ1

• q̂P(θ2) = (0.1575, 0.3150, 0.50125, 0, 0.02625), for θ2

• LR21 = exp (n[`(q̂P(θ1))− `(q̂P(θ2))]) = 1.48

which indicates inconclusive evidence

For both θ’s the solution of EL primal exists and it is

• q̂E(θ1) = (0.00286, 0.996̄, 0.00048), for θ1

• q̂E(θ2) = (0.01429, 0.983̄, 0.00238), for θ2

• ELR21 = exp (n[`(q̂E(θ1))− `(q̂E(θ2))]) = 75031.31

which indicates decisive evidence for θ2



Implications for EL

• MmL under convex constraints always exists

• MmL may put positive weight to passive letters

• MEL does not exist if C is the H-set or Z-set, wrt ν

• Note that also the EL outer optimization problem may have
no solution; cf. ESP, Ë

• If MEL exists, the value of EL at MEL may be smaller than
the value of the multinomial likelihood at MmL

• If ELR exists, it may lead to different inferential conclusion
than the Multinomial Likelihood Ratio



Continuous case and Fisher likelihood

Due to the finite precision of any measurement ‘all actual sample spaces
are discrete, and all observable random variables have discrete
distributions’, Pitman

Already Fisher’s original notion of the likelihood reflects the finiteness of
the sample space

For an iid sample X n
1 , X1,X2, . . . ,Xn and a finite partition A = {Al}m1

of a sample space X the Fisher likelihood LA(q;X n
1 ) which the data X n

1

provide to a pmf q ∈ ∆X is

LA(q;X n
1 ) ,

∏
Al∈A

en(Al ) log q(Al ),

where n(Al) is the number of observations in X n
1 that belong to Al

This view thus carries the discordances between the multinomial and

empirical likelihoods also to the continuous iid setting



Fisher likelihood with estimating equations: example
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Figure : a) MmL q̂P ; b) MEL q̂E ; c) the observed type ν. Qin & Lawless,
Ex. 1, with finite partition



EL vs. Generalized Minimum Contrast



EL vs. GMC

Based on:

1 MG and G. Judge, Asymptotic Equivalence of Empirical
Likelihood and Bayesian MAP. Ann. Statist.,
37(5A):2445-2457, 2009.

2 MG and G. Judge, Large deviations theory and econometric
information recovery. In Handbook of empirical economics
and finance, A.Ullah and D. E. A. Giles (eds.), pp. 155-182,
Chapman & Hall/CRC, 2011.

3 MG and G. Judge, Not all empirical divergence minimizing
statistical methods are created equal? In ICNPAA 2012, S.
Sivasundaram (ed.), AIP (Melville), pp. 432-435, 2012.



EL vs. GMC

• EL is just one member of the GMC class of estimators and
tests

• Are all GMC estimators created equal?

• Bayesian Law of Large Numbers implies that EL is the only
member of GMC that is consistent under misspecification
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Estimating Equations

Setup:

Chance: r.v. X ∈ X ⊆ Rd , with cdf Qr ∈ Q(X ), where Q(X ) is
the set of all cdf’s on X .

Data: X n
1 = X1, . . . ,Xn, iid from Qr .

Model:
Estimating functions: u(X ; θ) : X ×Θ→ RJ , where θ ∈ Θ ⊆ RK ;
K can be, in general, different than J.
Estimating equations (EE):

Φ(θ) = {Q ∈ Q(X ) : EQu(X ; θ) = 0}.

Model: Φ(Θ) =
⋃
θ∈Θ Φ(θ).



Estimating Equations: examples

Examples:

Ex. 1: X = R, Θ = [0,∞), u(X ; θ) = X − θ.

Ex. 2: (Brown & Chen) X = R, Θ = R,
u(X ; θ) = {X − θ, sgn(X − θ)}.

Ex. 3: (Qin & Lawless) X = R, Θ = R,
u(X ; θ) = {X − θ,X 2 − (2θ2 + 1)}.



Objective: selection

Given a random sample X n
1 from Qr , the objective is to select a Q̂

from Φ(Θ), and in this way provide a point estimate θ̂ of the ’true’
value θr .

If the model is correctly specified (i.e., Qr ∈ Φ(Θ)),
θr solves EQr u(X ; θ) = 0.

If the model is misspecified (i.e., Qr /∈ Φ(Θ)), then θr =???.



Empirical Estimating Equations

To connect the model Φ(Θ) with the data X n
1 , replace the model

Φ(Θ) by its empirical, data-based analogue Φn(Θ) =
⋃
θ∈Θ Φn(θ),

where
Φn(θ) = {Qn ∈ Q(X n

1 ) : EQn u(X ; θ) = 0}

are the empirical estimating equations.

Empirical Estimating Equations (E3) approach to estimation and
inference replaces the set Φ(Θ) of cdf’s supported on X by the set
Φn(Θ) of cdf’s that are supported on the data X n

1 .

An estimate θ̂ of θr is obtained by means of a rule that selects
Q̂n(x ; θ̂) from the empirical set Φn(Θ).



Generalized Minimum Contrast rule

GMC selects Q̂n(x ; θ̂) from Φn(Θ):

Q̂n(x ; θ̂) = arg inf
Qn(x ;θ)∈Φn(Θ)

Dφ(Qn || Q̂r ) (1)

where

• φ(·) is a convex function with minimum at 1,

• Q̂r (x) =
∑n

i=1 I (Xi≤x)
n is the empirical cdf

GMC rule selects the member of Φn(Θ) which is closest to the
empirical cdf Q̂r , in the sense of the divergence Dφ(· || ·).



Typical GMC rules

Typical choices of φ(·) are:

• − log x ; leads to Maximum Empirical Likelihood, assoc. with
the L-divergence,

• x log x ; leads to Exponential Empirical Likelihood, assoc. with
the I-divergence,

• 2/(α(α + 1))(x−α − 1); leads to the Cressie-Read
family-based Generalized Empirical Likelihood, assoc. with the
CR-divergences



GMC estimator

The θ part of the GMC optimization problem (1):

θ̂ = arg inf
θ∈Θ

inf
Qn(x)∈Φn(θ)

EQ̂r
φ

(
dQ

dQ̂r

)
, (2)

The convex dual form of (2):

θ̂ = arg inf
θ∈Θ

sup
µ∈R,λ∈RJ

[
µ− EQ̂r

φ∗(µ+ λ′u(x ; θ))
]
,

where φ∗(y) = supx xy − φ(x) is the Legendre Fenchel
transformation of φ(x).



MEL as GMC

Recall that φ(x) = − log x leads to Maximum Empirical Likelihood
(MEL).

θ̂MEL = arg inf
θ∈Θ

sup
λ∈RJ

EQ̂r
log(1 + λ′u(x ; θ)).

MEL selects among the data-supported cdf’s from the empirical
model Φn(Θ) the one with the highest value of the likelihood.



Question

Are all the GMC methods created equal?

Answer: Bayesian infinite dimensional consistency under
misspecification.



Bayesian infinite dimensional consistency

A prior Π is put on Φ(Θ); (it induces a prior Π(θ) over Θ). The
prior Π combines with the data X n

1 to define the posterior:

Πn(A |X n
1 ) =

∫
A e−ln(Q)Π(dQ)∫
Φ e−ln(Q)Π(dQ)

,

where ln(Q) = −EQ̂r
log dQ

dQ̂r
, and A ⊆ Φ.

Bayesian infinite-dimensional consistency: the objective – to
determine the distribution(s) on which the posterior Πn

concentrates as n gets large.



Bayesian consistency under misspecification

If the model is misspecified, i.e., Qr /∈ Φ(Θ),
then the true value θr can be defined as the value θ̂L corresponding
to the distribution Q̂L on which the posterior concentrates.

An estimator θ̂ of θ is consistent under misspecification if θ̂
p→ θ̂L.



Bayesian consistency under misspecification

If the model is misspecified, i.e., Qr /∈ Φ(Θ),
then the true value θr can be defined as the value θ̂L corresponding
to the distribution Q̂L on which the posterior concentrates.

An estimator θ̂ of θ is consistent under misspecification if θ̂
p→ θ̂L.



Bayesian Law of Large Numbers

BLLN. (G&J, 09) Under some regularity conditions the posterior
concentrates on the union of weak ε-balls that are centered at the
L-projections Q̂L of Qr on Φ.



The L-divergence and L-projection

The L-projection Q̂L of Qr on Φ

Q̂L = arg inf
Q∈Φ

L(Q ||Qr ),

where L(Q ||Qr ) is the L-divergence (aka the reverse I-divergence)
of Q wrt Qr

L(Q ||Qr ) = −EQr log
dQ

dQr
.

The BLLN is an extension of Schwartz’ consistency theorem to the
case of misspecified model.



Answer

Recall that GMC selects

θ̂ = arg inf
θ∈Θ

inf
Qn(x)∈Φn(θ)

EQ̂r
φ

(
dQ

dQ̂r

)
.

BLLN implies that

• MEL (i.e., φ(x) = − log x) is consistent under
misspecification,

• other GMC methods are not.



MC study: inconsistency-under-misspecification of EEL

Recall that the Exponential Empirical Likelihood (EEL) is
associated with φ(x) = x log x , i.e., the empirical I-projection of
Q̂r on Φn(Θ).

The posterior odds POIL of the empirical I-projection Q̂I,n(x ; θ̂EEL)
to the empirical L-projection Q̂L,n(x ; θ̂EL) is proportional to

∆n =
1

n

n∑
i=1

log
d Q̂I,n(xi ; θ̂EEL)

d Q̂L,n(xi ; θ̂EL)
,

which converges almost sure to

∆ = L(Q̂L ||Qr )− L(Q̂I ||Qr );

there Q̂I is the I-projection of Qr on Φ.



MC study (cont’d)

Setting: Ex. 3, the gaussian n(1.1, σ = 2.75) source. Model is
misspecified.

Table : MC estimates of the Mean Squared Error (MSE) of EL, EEL and
∆n estimators.

n MSE(θ̂EL) MSE(θ̂EEL) MSE(∆n)

100 0.0375 0.0359 0.000225
500 0.0082 0.0088 0.000042

1000 0.0041 0.0046 0.000024
5000 0.0019 0.0012 0.000008



MC study (cont’d)

The large deviations convergence of the posterior odds POIL can
be informally stated as

POIL ≈ en ∆.

Since ∆ = −0.0147, this implies the inconsistency under
misspecification of the parametric component θ̂EEL of Q̂I,n, which
is based on selection of the I -projection.



Reverse I-divergence and I-divergence; iid case

In the problem of selecting a sampling distribution, BLLN
disqualifies the GMC methods other than the L-divergence
(reverse I-divergence) based MEL.

Recall that in the problem of selecting an empirical distribution,
the Conditional Law of Large Numbers disqualifies the maximum
entropy methods other than the I-divergence based MaxEnt.



Dedication



To George Judge



Thank you for your attention!


