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Nonparametric Function Estimation

» Data (y;,2;),i =1,...,n. Response: y, covariate z € R?.

» Approximate the “data generating” mechanism:

= X €
y= o) + €
Unknown Error

» Usual linear model is not flexible enough. Need more flexibility.

» Some popular examples in (Statistics/Machine Learning):

Smoothing methods

CART /Regression trees/Kernel SVMs/ Ensemble methods
Empirical Likelihood

Shape constraints on 1

(convexity/concavity, monotonicity, Lipschitz,...)
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A Computational Framework for
Multivariate Convex Regression and its
Variants

(Mazumder, Choudhury, lyengar, Sen (2015) [preprint],
http://arxiv.org/pdf/1509.08165v1)
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Multivariate Convex Function Estimation

» Estimate ¢ : R — R such that it is convex

Definition:

Plaz + (1 — a)z’) < ap(ax) + (1 — a)y(z'), Vz,z’ € R, o €[0,1]

» This leads to the natural least squares problem:

n

) € argmin Z:(yZ —ah(x;))?, (1)

is convex .
¥ =1

» An appealing feature: no tuning parameters (e.g., choice of
bandwidths as in smoothing methods)...
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Multivariate Convex Function Estimation

» Lots of recent work in the area of shape constrained estimation
— Cule et al. '10 and Seregin and Wellner '10 (density estimation)
— Seijo and Sen '11; Glynn and Lim '12; Hannah and Dunson '13;
Xu, Chen, Laferty '16, .. (regression function estimation)

» Applications in economics, operations research, reinforcement
learning, others...

» Personal interests: Oceanography, Sports Analytics,...
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Multivariate Convex Function Estimation

» Problem (1) is an infinite dimensional optimization problem
(space of all convex functions in R%)

» Can be reduced to a finite dimensional problem

» Why?
Recall (equivalent) definitions of convexity of :

(@) Y(az+ (1 —a)r’) < a(z)+ (1 — a)yp(z’) for a € [0,1], Vo, 2’
(b) 30y (') such that ¢¥(z) > Y(a’) + (OY(a'),x — &), Ve, 2’
(c) F0Y(x),0¢ (") such that (Oy(x) — oY (a'),x — a') > 0, Vo, o’

[0v(x) is a subgradient of a convex function]
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» Problem (1) is an infinite dimensional optimization problem
(space of all convex functions in R%)

» Can be reduced to a finite dimensional problem

» Why?
Recall (equivalent) definitions of convexity of :

(a) v(ax+ (1 —a)2') < ap(z) + (1 —a)p(z’) for a € [0, 1], Va, 2’
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Multivariate Convex Function Estimation

» Note that:

n
1) € argmin z:(yz —(x;))*  s.t. 1) is convex
=1

is equivalent to the Quadratic Program (QP):

N N 2
minimize 5 ;(yz —6;)

» Estimates function values and subgradients at n different points

» Optimization variables:

» 0; € R is function value at z; fori=1,...,n.

» & € R? is subgradient of ¢ at z; (that is: dv(x;)) fori=1,...

()
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Multivariate Convex Function Estimation

» The QP estimates 0; = ¥(x;) and & = Oy(x;) foralli=1,...,n.

» How to extend to a function defined on all of $¢?
(Only the convex hull: Conv(x1,...,x,) is statistically meaningful)
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Multivariate Convex Function Estimation

v

The QP estimates 6; = ¢(x;) and & = OY(x;) for all i = 1,... n.

» How to extend to a function defined on all of $¢?
(Only the convex hull: Conv(x1,...,x,) is statistically meaningful)

v

A natural interpolation scheme for 1[):

~

P(z) = nax {éj +(z - %éﬁ}

j=1,...n

leads to a convex function defined on R<.

v

(=) the equivalence between Problem (2) and (1).
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Computation?

» Convex regression can be solved with a QP = good in theory

» Question: How fast are off-the-shelf solvers, in practice?
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Computation?

» Convex regression can be solved with a QP = good in theory

» Question: How fast are off-the-shelf solvers, in practice?

n d Time (insecs) Time (in secs)  Time (in secs)
(SDTP3, cvx) MOSEK Our Algorithm
100 5 33 6 <2
200 5 159 125 <3
300 5 562 342 8
400 5 1640 1151 15
500 5 3745 4071 20

Table showing timings (in seconds) for solving the convex regression QP for a
problem with n samples in d dimensions.
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Computation?

Computational Considerations for Problem (2):

>

Problem has O(n?) constraints, and O(nd) variables.

Off-the-shelf interior point methods (e.g. cvx):
— cost at least O(n3d?)
— do not scale well for n > 300

Desirable to develop tailor-made algorithms that:
» scale well

— Fast/reliable/accurate solutions for large problem sizes.

» are flexible
— Shape constraints (some coordinates non-negative, 1, |, etc)
— Constraints on the subgradients (Lipschitz, bounded, etc..)
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An Algorithmic Framework

Write Problem (2) as:

N N >
minimize 52(%—91‘)

i=1

s.t. Uij:9j+<Aij;£j>_9i; iFj=1,...

where, A;; := x; — x; for all 4, j.

3)
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Algorithmic Framework based on ADMM!

Define the Augmented Lagrangian corresponding to the above formulation as

Lo((&1,- - &nsim)iv) = %Z(yz——
i1
+ZW]’ (nig — (05 + (A5, &5) — 0:))

pz 771J 9 + AZ7)£7> 1))2

where v € R™"*"™ is the matrix of dual variables.

!Alternating Direction Method of Multipliers [Boyd, et al. '11; Bertsekas '99.]
14 /40



MultiBlock ADMM: Algorithm 1

Initialize variables (551), e ,ﬁy(ln), oM, () and M,
Perform the following Steps 1—4 for k > 1 till convergence.

1. Update the subgradients (¢1,...,&n):

€D D) ¢ emin g, <(£1’_._Vgn;(;(k)m(k));y(k)) ,

51: gn
2. Update the function values 6:

gkt+1) ¢ argmin £, <(£(k+1) g“‘*l) ;) (k)) )
0

3. Update the residual matrix 7:

n*+ e argmin £, (€T, D500 )00

1 :ni; <0, Vi,j
4. Update the dual variable:

7»]

fori,j=1,...,n

(k+1) - V(k) + p( (k+1) (0;k+1) + <Aij,§§k+1)) _ 0£k+1))) :

(4)

©)

()
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Update details
Updating subgradients: solving Problem (4)

» Compute:
. —1
&= (ZAijA;‘rj) (ZAijﬁij)
where 7j;; = I/ij/p + nij — (9j —0;).
» A= (3, AiinTj)_l for j =1,...,n can be computed offline

» With careful book-keeping: for d < n, the cost per iteration is O(n?).
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Update details

Updating the function values: solving Problem (5)

» Reduces to solving the system:

(I +pD"D)§ =Y + D vec(v) + pD " vec() . (8)

I=v

» A direct inversion to solve for  will have a complexity of O(n?).
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Update details

Updating the function values: solving Problem (5)

» Reduces to solving the system:

(I +pD"D)§ =Y + D vec(v) + pD " vec() . (8)

=v
» A direct inversion to solve for  will have a complexity of O(n?).

» Exploit structure of D:
(I +pD"D) = (1+2np)I —2p11",

Compute (I + pDT D)=t in O(n) flops, given v.
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Update details

» Updating the residuals: solving Problem (6), is simple.

» The cost per iteration of Algorithm 1 is O(max{n?d, nd®}), with an
additional O(n?d? + nd®) for the offline computation of matrix inverses

» Overall cost per iteration is O(n?) for d < n.
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Caveats and Alternatives

» Multiblock ADMM (Algorithm 1) has limited (theoretical) convergence
guarantees
(Chen et al. '14)

» Modified version: Algorithm 2 has convergence guarantees.
In particular: O(%) many iterations to get an J-accurate solution

» Practically Algorithms 1 and 2 are often similar (Algorithm 2 may be
marginally slower)
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Algorithm in action

(n=500,d=2) (n=1000,d=10) (n=3449,d=4)
~
N + tho=rhol + tho=rhol « tho=rhol
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FIgU re: Algorithm 1 with time, for three different examples. Three different p values, denoted by ‘rhol’, ‘rho2’, ‘rho3’,

were taken to be 0.1/n,1/n, 10/n respectively. 20/40



Smooth convex function estimates?

v

Recall, interpolant is given by:

» ¢(x) is not smooth in z.
> Is it possible to obtain #(z) that is both convex and smooth in 27

» Smoothness is traditionally imposed via some form of “averaging” wrt to a
kernel. Smoothness and shape constraints together are typically hard to
achieve.

» Our approach: use a technique presented in
“Smooth minimization of nonsmooth functions” by Nesterov '05, Math.
Programming.
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Smooth convex function estimates?

» Note that

Y(r) = max {alTaj +bq,... ,a,—;x + bm} .

» Observe that ¢ admits:

Y(x) = max > w; (a] © 4 b;)
w i=1
st. Y w=1Lw; >0,i=1,...,m,
i=1

» Why is z — 1)(z) non-differentiable? How can it be “fixed”?
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Smooth convex function estimates?

» Note that

Y(r) = max {alTaj +bq,... ,a,—;x + bm} .

» Observe that ¢ admits:

Y(x) = max > w; (a] © 4 b;)
w i=1
st. Y w=1Lw; >0,i=1,...,m,
i=1

» Why is z — 1)(z) non-differentiable? How can it be “fixed”?

» Consider the following perturbed version:

m
P(z;T) = max Y. w; (a;r:r +b;) —7|lw —1/m|3
w i=1
m
st. Y w=1Lw; >0,i=1,...,m,
=1
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Smooth convex function estimates?

What are the properties of 1[1(x, 7)?
» ¢(x;7) is convex in x

» ¢ (x;7) is an O(7) uniform approximation to t(z; 0) := ) (z).

d(x) =7 sup lw = 1/ml3 < d(a;7) < ()

» Also:

IV (15 7) = Vi (a; )| <

21 — 2|

Amax(ATA)
T

Thus: x> (x;7) has gradient Lipschitz continuous with parameter
o(1/7).
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» Is the choice ||w — 1/m||3 special?
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» Is the choice ||w — 1/m||3 special?

NO. Other smooth approximations possible.
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» Is the choice ||w — 1/m||3 special?
NO. Other smooth approximations possible.
> If @ is the simplex in ! and p(:) a proximity (prox) function of @, i.e.,

» p(+) is continuously differentiable
» p(-) is strongly convex on @ (wrt norm || - [+)

» The following is a uniform, convex, smooth approximation of 4 (z)

m
p(z;7) = max > w; (a;'—x + bi) —7p(w)
w i=1
m
s.t. Ewizl,wizo,izl,...,m,

=1
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Smoothing in action
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Figure: Plots of the data points and the convex LSE % with the bias corrected smoothed
estimators for four different choices to 7 using the squared error prox function (left panel) and
entropy prox function (right panel).
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Lipschitz Convex Regression

> The convex LSE described in (2) suffers from over-fitting, especially near
the boundary of the convex hull of the design points z;'s.

» The norms of the fitted subgradients éi's near the boundary can become
arbitrarily large

> A remedy to this over-fitting: consider LS minimization over the class of
convex functions that are uniformly Lipschitz with a known bound.

Cr = {w :X = R | 9 is convex, sup ||0y(x)] < L}.
zeX
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Lipschitz Convex Regression

> Let 1/;L denote the LSE when minimizing the SSE over the class Cy, i.e.,

1, € argmin Z(yz' —¢(x:)? st ¢elp

i=1

» Solution to above problem can be obtained by solving:

1
minimize §||Y — 9\\%

st O+ (wy —x;,8) <O i #j=1,...,m

> For example, || - || € {[| - flz: [[ - [l ][ - [loo}-
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Lipschitz Convex Regression

Risk Training Error
& ] 3
<} d=3 <}
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Figure: [Left panel]: the simulated risk of the Lipschitz convex estimator as the
Lipschitz bound L varies (L = Inf gives the usual convex LSE) for 5 different
dimension values (d). [Right panel]: the training error as the Lipschitz bound L varies,
for the same examples appearing in the left panel.
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Flexible Convex Regression

» Lipschitz convex regression:

» Computation?
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Flexible Convex Regression

» Lipschitz convex regression:

» Computation?

Slightly harder, but not much. Same framework applies.

» Does the smoothing method work?
Yes.

» What if ¢(x) is (partially) increasing in coordinate z1?
Add constraint £&; > 0 to problem.
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Statistical Property

Theorem (M., Choudhury, lyengar, Sen '15)
Consider observations (y;,x;),i = 1,...,n such that
yi = ¥(;) + €,
where 1) : R — R is an unknown convex function (d is fixed). We assume that
(i) the support of z is X = [0,1]¢
(i) ¢ € Oy, for some Ly > 0
(iii) the z; € X's are fixed constants and
v) €

(i
We have for any L > Ly,

> (o) — 0l = Op(ra),

i;'s are independent mean zero sub-Gaussian errors.

where

n—2/(d+4) ifd=1,2,3,
=< n~Y4(logn)/? ifd=4,
n-l/d if d> 5.
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Sparse Convex Regression

» Multivariate convex regression is statistically troublesome, when:
— n, d are comparable
—d is large
— curse of dimensionality kicks in

» Some form of dimension reduction is required: Sparsity?

» (x) : RY— R is a convex function, that depends upon an (unknown)
subset of k < d variables.

Yz, ..., 2q) = 9(Xiy, .-, T4y, ), g convex and {i1,...,ix} C {1,...,d}.
—_——

Unknown

Denote the above collection of functions by Fj,
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Variable Selection in Multivariate
Convex Regression with Discrete

Optimization

(Mazumder (2016) [work in progress])
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Sparse Convex Regression
» Usual convex regression:
min Z lyi — ¥(x;)|? st 1 is convex
=1

for g € {1,2}.

> Sparse convex regression:

min Z lyi —¥(x)]|? st € Fi.
i=1
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Sparse Convex Regression

» Usual convex regression:

Z lyi —¥(z:)|? st

for ¢ € {1,2}.

> Sparse convex regression:

> lyi — ()] st
i=1

is equivalent to:

min i| i — 0|7

subject to ZO; +(z; —x;,&) < 6,
d
Sae 20 <k

1 is convex

Y e Fk.

i£je{l,...
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Sparse Convex Regression

v

Caveat: this is a combinatorial optimization problem (possibly NP hard)

v

Special instance of this problem:

Y(z) =x"f  (Sparse/Variable Selection in Linear Regression)

v

Tools described before for Convex LS regression do not apply here.

v

New approach is necessary. We use modern discrete optimization methods.
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Sparse Convex Regression

> Can be expressed as a Mixed Integer Quadratic Optimization (MIO)
Problem

> A general form of MIO is representable as:

minimize a’Qa + aTa
subject to Aa<b
a; €{0,1}, VieZ
o € ]R-H V] ¢ Iv

ac R AcR>X" beRFand Q € R™*™ (PSD) problem-parameters.

> Sparse convex regression:
— g =1 is a Mixed Integer Linear Program
— g = 1 is a Mixed Integer Quadratic Program
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Sparse Convex Regression

» Huge improvements in Algorithms & Software over past 25+ years
» Algorithms speed-up: 780,000 times
» Hardware speed-up: 570,000 times

» Total speed-up: 450 Billion times!
(As of May, 2016 this is 850 billion!)

> Solve (with certificates) practical sized problems in times relevant for
applications considered

» Successfully used across wide range of applications in Operations Research
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Sparse Convex Regression

» Sparse Convex Regression admits a MIO representation, with:

» d binary variables
» O(nd) continuous variables
» O(n?) linear inequalities

» In spite of progress in MIO, this problem is challenging solve for large
instances.

» New algorithmic tools are required for scalability:
» Constraint generation, Cutting plane methods (Nemhauser,
Wolsey '99)

» OQuter approximation methods, exploiting separability of loss
function (Hijazi, et. al. '13; Vielma, et al '15)
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» Competing method: Xu, Chen and Lafferty '16 (AC/DC) method

» AC/DC method requires the covariates to be independent (+ other
regularity conditions) to identify right variables

> Preliminary findings:

» Discrete optimization method makes better variable identification (by
10-30% better) for n < d = 100.

» AC/DC method requires larger n than Discrete Optimization
method, to identify all active variables.

38/40



Summary

» Many challenging and deep algorithmic questions in shape restricted
estimation (generally nonparametric function estimation)

» A rigorous optimization lens often leads to newer perspectives and
complements our statistical understanding

» Nonparametric function estimation «— Mathematical Programming
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Thanks for your attention!



