An Algorithmic Approach to Nonparametric Convex Regression

Rahul Mazumder

Massachusets Institute of Technology

June, 2016

Nonparametric Function Estimation

- ▶ Data $(y_i, x_i), i = 1, ..., n$. Response: y, covariate $x \in \Re^d$.
- ► Approximate the "data generating" mechanism:

$$y = \underbrace{\psi(x)}_{\text{Unknown}} + \underbrace{\epsilon}_{\text{Error}}$$

- Usual linear model is not flexible enough. Need more flexibility.
- ► Some popular examples in (Statistics/Machine Learning):
 - ► Smoothing methods
 - ► CART/Regression trees/Kernel SVMs/ Ensemble methods
 - ► Empirical Likelihood
 - Shape constraints on ψ (convexity/concavity, monotonicity, Lipschitz,...)

Nonparametric Function Estimation

- ▶ Data $(y_i, x_i), i = 1, ..., n$. Response: y, covariate $x \in \Re^d$.
- ► Approximate the "data generating" mechanism:

$$y = \underbrace{\psi(x)}_{\text{Unknown}} + \underbrace{\epsilon}_{\text{Error}}$$

- ▶ Usual linear model is not flexible enough. Need more flexibility.
- ► Some popular examples in (Statistics/Machine Learning):
 - ► Smoothing methods
 - ► CART/Regression trees/Kernel SVMs/ Ensemble methods
 - ► Empirical Likelihood
 - Shape constraints on ψ
 (convexity/concavity, monotonicity, Lipschitz,...)

A Computational Framework for Multivariate Convex Regression and its Variants

(Mazumder, Choudhury, Iyengar, Sen (2015) [preprint], http://arxiv.org/pdf/1509.08165v1)

• Estimate $\psi: \Re^d \mapsto \Re$ such that it is convex

Definition:

$$\psi(\alpha x + (1 - \alpha)x') \le \alpha \psi(x) + (1 - \alpha)\psi(x'), \ \forall \ x, x' \in \Re^d, \alpha \in [0, 1]$$

► This leads to the natural least squares problem:

$$\hat{\psi} \in \underset{\psi \text{ is convex}}{\operatorname{argmin}} \qquad \sum_{i=1}^{n} (y_i - \psi(x_i))^2, \tag{1}$$

► An appealing feature: no tuning parameters (e.g., choice of bandwidths as in smoothing methods)...

- ► Lots of recent work in the area of shape constrained estimation
 - Cule et al. '10 and Seregin and Wellner '10 (density estimation)
 - Seijo and Sen '11; Glynn and Lim '12; Hannah and Dunson '13; Xu, Chen, Laferty '16, ... (regression function estimation)

► Applications in economics, operations research, reinforcement learning, others...

▶ Personal interests: Oceanography, Sports Analytics,...

- ▶ Problem (1) is an infinite dimensional optimization problem (space of all convex functions in \Re^d)
- ► Can be reduced to a finite dimensional problem
- Why?
 Recall (equivalent) definitions of convexity of ψ:

(a)
$$\psi(\alpha x + (1-\alpha)x') \le \alpha \psi(x) + (1-\alpha)\psi(x')$$
 for $\alpha \in [0,1]$, $\forall x, x'$

(b)
$$\exists \partial \psi(x')$$
 such that $\psi(x) \geq \psi(x') + \langle \partial \psi(x'), x - x' \rangle$, $\forall x, x'$

(c)
$$\exists \partial \psi(x), \partial \psi(x')$$
 such that $\langle \partial \psi(x) - \partial \psi(x'), x - x' \rangle \geq 0$, $\forall x, x' \in \mathbb{R}$

 $[\partial \psi(x)$ is a subgradient of a convex function]

- ▶ Problem (1) is an infinite dimensional optimization problem (space of all convex functions in \Re^d)
- ► Can be reduced to a finite dimensional problem
- Why?
 Recall (equivalent) definitions of convexity of ψ:

(a)
$$\psi(\alpha x + (1-\alpha)x') \le \alpha \psi(x) + (1-\alpha)\psi(x')$$
 for $\alpha \in [0,1]$, $\forall x, x'$

(b)
$$\exists \partial \psi(x')$$
 such that $\psi(x) \geq \psi(x') + \langle \partial \psi(x'), x - x' \rangle$, $\forall x, x'$

(c)
$$\exists \partial \psi(x), \partial \psi(x')$$
 such that $\langle \partial \psi(x) - \partial \psi(x'), x - x' \rangle \geq 0$, $\forall x, x'$

 $[\partial \psi(x)]$ is a subgradient of a convex function

Note that:

$$\hat{\psi} \in \operatorname{argmin} \sum_{i=1}^{n} (y_i - \psi(x_i))^2$$
 s.t. ψ is convex

is equivalent to the Quadratic Program (QP):

minimize
$$\frac{1}{2} \sum_{i=1}^{n} (y_i - \theta_i)^2$$
s.t.
$$\theta_j + \langle x_i - x_j, \xi_j \rangle \le \theta_i; \quad i \neq j \in \{1, \dots, n\},$$

- ► Estimates function values and subgradients at *n* different points
- Optimization variables:
 - ▶ $\theta_i \in \Re$ is function value at x_i for i = 1, ..., n.
 - $\xi_i \in \Re^d$ is subgradient of ψ at x_i (that is: $\partial \psi(x_i)$) for $i = 1, \dots, n$.

- ▶ The QP estimates $\theta_i = \psi(x_i)$ and $\xi_i = \partial \psi(x_i)$ for all i = 1, ..., n.
- ▶ How to extend to a function defined on all of \Re^d ? (Only the convex hull: $\mathsf{Conv}(x_1,\ldots,x_n)$ is statistically meaningful)

- ▶ The QP estimates $\theta_i = \psi(x_i)$ and $\xi_i = \partial \psi(x_i)$ for all i = 1, ..., n.
- ▶ How to extend to a function defined on all of \Re^d ? (Only the convex hull: $\mathsf{Conv}(x_1,\ldots,x_n)$ is statistically meaningful)
- ► A natural interpolation scheme for $\hat{\psi}$:

$$\hat{\psi}(x) = \max_{j=1,\dots,n} \left\{ \hat{\theta}_j + \langle x - x_j, \hat{\xi}_j \rangle \right\}$$

leads to a convex function defined on \Re^d .

ightharpoonup (\Longrightarrow) the equivalence between Problem (2) and (1).

Computation?

- lacktriangle Convex regression can be solved with a QP \Longrightarrow good in theory
- ► Question: How fast are off-the-shelf solvers, in practice?

Computation?

- ► Convex regression can be solved with a QP ⇒ good in theory
- ▶ Question: How fast are off-the-shelf solvers, in practice?

n	d	Time (in secs)	Time (in secs)	Time (in secs)
		(SDTP3, cvx)	MOSEK	Our Algorithm
100	5	33	6	< 2
200	5	159	125	< 5
300	5	562	342	8
400	5	1640	1151	15
500	5	3745	4071	20

Table showing timings (in seconds) for solving the convex regression QP for a problem with n samples in d dimensions.

Computation?

Computational Considerations for Problem (2):

- ▶ Problem has $O(n^2)$ constraints, and O(nd) variables.
- ► Off-the-shelf interior point methods (e.g. cvx):
 - cost at least $O(n^3d^3)$
 - do not scale well for $n \ge 300$
- Desirable to develop tailor-made algorithms that:
 - ▶ scale well
 - Fast/reliable/accurate solutions for large problem sizes.
 - are flexible
 - Shape constraints (some coordinates non-negative, \uparrow , \downarrow , etc)
 - Constraints on the subgradients (Lipschitz, bounded, etc..)

An Algorithmic Framework

Write Problem (2) as:

minimize
$$\frac{1}{2} \sum_{i=1}^{n} (y_i - \theta_i)^2$$
s.t.
$$\eta_{ij} = \theta_j + \langle \Delta_{ij}, \xi_j \rangle - \theta_i; \quad i \neq j = 1, \dots, n,$$

$$\eta_{ij} \leq 0; \quad i \neq j = 1, \dots, n,$$
(3)

where, $\Delta_{ij} := x_i - x_j$ for all i, j.

Algorithmic Framework based on ADMM¹

Define the Augmented Lagrangian corresponding to the above formulation as

$$\mathcal{L}_{\rho}((\xi_{1}, \dots, \xi_{n}; \theta; \eta); \nu) := \frac{1}{2} \sum_{i=1}^{n} (y_{i} - \theta_{i})^{2}$$

$$+ \sum_{i,j} \nu_{ij} (\eta_{ij} - (\theta_{j} + \langle \Delta_{ij}, \xi_{j} \rangle - \theta_{i}))$$

$$+ \frac{\rho}{2} \sum_{i,j} (\eta_{ij} - (\theta_{j} + \langle \Delta_{ij}, \xi_{j} \rangle - \theta_{i}))^{2}$$

where $\nu \in \Re^{n \times n}$ is the matrix of dual variables.

¹Alternating Direction Method of Multipliers [Boyd, et al. '11; Bertsekas '99.]

MultiBlock ADMM: Algorithm 1

Initialize variables $(\xi_1^{(1)},\dots,\xi_n^{(1)})$, $\theta^{(1)}$, $\eta^{(1)}$ and $\nu^{(1)}$. Perform the following Steps 1—4 for $k\geq 1$ till convergence.

1. Update the subgradients (ξ_1, \ldots, ξ_n) :

$$(\xi_1^{(k+1)}, \dots, \xi_n^{(k+1)}) \in \operatorname*{argmin}_{\xi_1, \dots, \xi_n} \mathcal{L}_{\rho} \left((\xi_1, \dots, \xi_n; \theta^{(k)}; \eta^{(k)}); \nu^{(k)} \right). \tag{4}$$

2. Update the function values θ :

$$\theta^{(k+1)} \in \underset{\theta}{\operatorname{argmin}} \mathcal{L}_{\rho} \left((\xi_1^{(k+1)}, \dots, \xi_n^{(k+1)}; \theta; \eta^{(k)}); \nu^{(k)} \right). \tag{5}$$

3. Update the residual matrix η :

$$\eta^{(k+1)} \in \operatorname*{argmin}_{\eta \ : \ \eta_{ij} \le 0, \ \forall i,j} \mathcal{L}_{\rho} \left((\xi_1^{(k+1)}, \dots, \xi_n^{(k+1)}; \theta^{(k+1)}; \eta); \nu^{(k)} \right). \tag{6}$$

4. Update the dual variable:

$$\nu_{ij}^{(k+1)} \leftarrow \nu_{ij}^{(k)} + \rho \left(\eta_{ij}^{(k+1)} - \left(\theta_j^{(k+1)} + \langle \Delta_{ij}, \xi_j^{(k+1)} \rangle - \theta_i^{(k+1)} \right) \right); \tag{7}$$

for i, j = 1, ..., n.

Updating subgradients: solving Problem (4)

► Compute:

$$\hat{\xi}_j = \left(\sum_i \Delta_{ij} \Delta_{ij}^{\mathsf{T}}\right)^{-1} \left(\sum_i \Delta_{ij} \bar{\eta}_{ij}\right)$$

where $\bar{\eta}_{ij} = \nu_{ij}/\rho + \eta_{ij} - (\theta_j - \theta_i)$.

- $lackbox{} \overline{\Delta}_j := \left(\sum_i \Delta_{ij} \Delta_{ij}^{ op} \right)^{-1}$ for $j=1,\dots,n$ can be computed offline
- ▶ With careful book-keeping: for $d \ll n$, the cost per iteration is $O(n^2)$.

Updating the function values: solving Problem (5)

► Reduces to solving the system:

$$(I + \rho D^{\top} D)\hat{\theta} = \underbrace{Y + D^{\top} \text{vec}(\nu) + \rho D^{\top} \text{vec}(\tilde{\eta})}_{:=v}.$$
 (8)

▶ A direct inversion to solve for θ will have a complexity of $O(n^3)$.

Updating the function values: solving Problem (5)

► Reduces to solving the system:

$$(I + \rho D^{\top} D)\hat{\theta} = \underbrace{Y + D^{\top} \text{vec}(\nu) + \rho D^{\top} \text{vec}(\tilde{\eta})}_{:=v}.$$
 (8)

- ▶ A direct inversion to solve for θ will have a complexity of $O(n^3)$.
- ► Exploit structure of *D*:

$$(I + \rho D^{\top} D) = (1 + 2n\rho)I - 2\rho 11^{\top},$$

Compute $(I + \rho D^{\top}D)^{-1}$ in O(n) flops, given v.

▶ Updating the residuals: solving Problem (6), is simple.

► The cost per iteration of Algorithm 1 is $O(\max\{n^2d, nd^3\})$, with an additional $O(n^2d^2 + nd^3)$ for the offline computation of matrix inverses

▶ Overall cost per iteration is $O(n^2)$ for $d \ll n$.

Caveats and Alternatives

► Multiblock ADMM (Algorithm 1) has limited (theoretical) convergence guarantees (Chen et al. '14)

▶ Modified version: Algorithm 2 has convergence guarantees. In particular: $O(\frac{1}{\delta})$ many iterations to get an δ -accurate solution

 Practically Algorithms 1 and 2 are often similar (Algorithm 2 may be marginally slower)

Algorithm in action

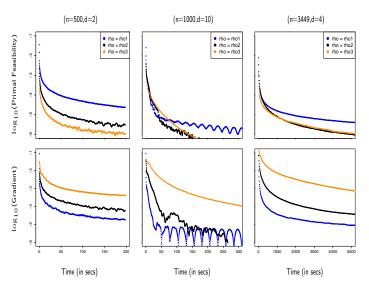


Figure: Algorithm 1 with time, for three different examples. Three different ρ values, denoted by 'rho1', 'rho2', 'rho3', were taken to be 0.1/n, 1/n, 10/n respectively.

► Recall, interpolant is given by:

$$\hat{\psi}(x) = \max_{j=1,\dots,n} \left\{ \hat{\theta}_j + \langle x - x_j, \hat{\xi}_j \rangle \right\}.$$

- \blacktriangleright $\hat{\psi}(x)$ is not smooth in x.
- ▶ Is it possible to obtain $\hat{\psi}(x)$ that is both **convex and smooth** in x?
- ► Smoothness is traditionally imposed via some form of "averaging" wrt to a kernel. Smoothness and shape constraints together are typically hard to achieve.
- ► Our approach: use a technique presented in "Smooth minimization of nonsmooth functions" by Nesterov '05, Math. Programming.

► Note that

$$\hat{\psi}(x) = \max\left\{a_1^\top x + b_1, \dots, a_m^\top x + b_m\right\}.$$

▶ Observe that $\hat{\psi}$ admits:

$$\hat{\psi}(x) = \max_{w} \sum_{i=1}^{m} w_{i} (a_{i}^{\top} x + b_{i})$$

s.t. $\sum_{i=1}^{m} w_{i} = 1, w_{i} \geq 0, i = 1, \dots, m,$

▶ Why is $x \mapsto \hat{\psi}(x)$ non-differentiable? How can it be "fixed"?

► Note that

$$\hat{\psi}(x) = \max \left\{ a_1^\top x + b_1, \dots, a_m^\top x + b_m \right\}.$$

▶ Observe that $\hat{\psi}$ admits:

$$\hat{\psi}(x) = \max_{w} \sum_{i=1}^{m} w_{i} \left(a_{i}^{\top} x + b_{i} \right)$$
s.t.
$$\sum_{i=1}^{m} w_{i} = 1, w_{i} \geq 0, i = 1, \dots, m,$$

- ▶ Why is $x \mapsto \hat{\psi}(x)$ non-differentiable? How can it be "fixed"?
- ► Consider the following perturbed version:

$$\tilde{\psi}(x;\tau) = \max_{w} \quad \sum_{i=1}^{m} w_{i} \left(a_{i}^{\top} x + b_{i} \right) - \tau \|w - 1/m\|_{2}^{2}$$
s.t.
$$\sum_{i=1}^{m} w_{i} = 1, w_{i} \geq 0, i = 1, \dots, m,$$

What are the properties of $\tilde{\psi}(x;\tau)$?

- ightharpoonup $\tilde{\psi}(x;\tau)$ is convex in x
- $\blacktriangleright \ \ \tilde{\psi}(x;\tau) \text{ is an } O(\tau) \text{ uniform approximation to } \tilde{\psi}(x;0) := \hat{\psi}(x).$

$$\hat{\psi}(x) - \tau \sup_{w \in Q} \|w - 1/m\|_2^2 \le \tilde{\psi}(x; \tau) \le \hat{\psi}(x)$$

► Also:

$$\|\nabla \tilde{\psi}(x_1;\tau) - \nabla \tilde{\psi}(x_2;\tau)\| \le \frac{\lambda_{\max}(A^{\top}A)}{\tau} \|x_1 - x_2\|$$

Thus: $x\mapsto \tilde{\psi}(x;\tau)$ has gradient Lipschitz continuous with parameter $O(1/\tau)$.

 $\blacksquare \ \, \text{Is the choice} \,\, \|w-1/m\|_2^2 \,\, \text{special?}$

▶ Is the choice $||w - 1/m||_2^2$ special?

NO. Other smooth approximations possible.

- ► Is the choice ||w 1/m||² special?
 NO. Other smooth approximations possible.
- ▶ If Q is the simplex in \Re^m and $\rho(\cdot)$ a proximity (prox) function of Q, i.e.,
 - $\triangleright \rho(\cdot)$ is continuously differentiable
 - $\rho(\cdot)$ is strongly convex on Q (wrt norm $\|\cdot\|_{\dagger}$)
- lacktriangle The following is a uniform, convex, smooth approximation of $\hat{\psi}(x)$

$$\tilde{\psi}_{\rho}(x;\tau) = \max_{w} \sum_{i=1}^{m} w_{i} \left(a_{i}^{\top} x + b_{i} \right) - \tau \rho(w)$$
s.t.
$$\sum_{i=1}^{m} w_{i} = 1, w_{i} \geq 0, i = 1, \dots, m,$$

Smoothing in action

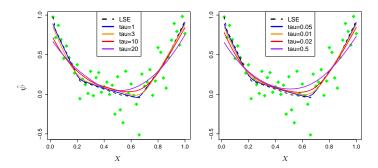


Figure: Plots of the data points and the convex LSE $\hat{\psi}$ with the bias corrected smoothed estimators for four different choices to τ using the squared error prox function (left panel) and entropy prox function (right panel).

Lipschitz Convex Regression

- ▶ The convex LSE described in (2) suffers from over-fitting, especially near the boundary of the convex hull of the design points x_i 's.
- \blacktriangleright The norms of the fitted subgradients $\hat{\xi}_i$'s near the boundary can become arbitrarily large
- A remedy to this over-fitting: consider LS minimization over the class of convex functions that are uniformly Lipschitz with a known bound.

$$C_L := \left\{ \psi : \mathfrak{X} \to \Re \mid \psi \text{ is convex}, \ \sup_{x \in \mathfrak{X}} \|\partial \psi(x)\| \leq L \right\}.$$

Lipschitz Convex Regression

lacksquare Let $\hat{\psi}_L$ denote the LSE when minimizing the SSE over the class C_L , i.e.,

$$\hat{\psi}_L \in \operatorname{argmin} \sum_{i=1}^n (y_i - \psi(x_i))^2$$
 s.t. $\psi \in C_L$

Solution to above problem can be obtained by solving:

minimize
$$\frac{1}{2} \|Y - \theta\|_2^2$$
s.t. $\theta_j + \langle x_i - x_j, \xi_j \rangle \le \theta_i$; $i \ne j = 1, \dots, n$;
$$\|\xi_j\| \le L, \quad j = 1, \dots, n.$$

▶ For example, $\|\cdot\| \in \{\|\cdot\|_2, \|\cdot\|_1, \|\cdot\|_{\infty}\}.$

Lipschitz Convex Regression

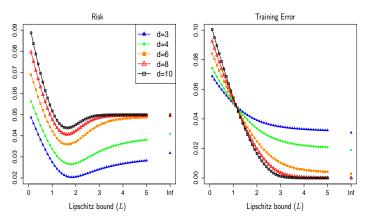


Figure: [Left panel]: the simulated risk of the Lipschitz convex estimator as the Lipschitz bound L varies (L = Inf gives the usual convex LSE) for 5 different dimension values (d). [Right panel]: the training error as the Lipschitz bound L varies, for the same examples appearing in the left panel.

Flexible Convex Regression

- ► Lipschitz convex regression:
 - ► Computation?

Flexible Convex Regression

- ► Lipschitz convex regression:
 - ► Computation?
 Slightly harder, but not much. Same framework applies.

- ► Lipschitz convex regression:
 - Computation? Slightly harder, but not much. Same framework applies.
 - ► Does the smoothing method work?

- ► Lipschitz convex regression:
 - ► Computation?
 Slightly harder, but not much. Same framework applies.
 - Does the smoothing method work? Yes.

- ► Lipschitz convex regression:
 - Computation?
 Slightly harder, but not much. Same framework applies.
 - Does the smoothing method work? Yes.
- ▶ What if $\psi(x)$ is (partially) increasing in coordinate x_1 ?

- ► Lipschitz convex regression:
 - Computation?
 Slightly harder, but not much. Same framework applies.
 - Does the smoothing method work? Yes.
- ▶ What if $\psi(x)$ is (partially) increasing in coordinate x_1 ? Add constraint $\xi_1 \geq 0$ to problem.

Statistical Property

Theorem (M., Choudhury, Iyengar, Sen '15)

Consider observations $(y_i, x_i), i = 1, ..., n$ such that

$$y_i = \psi(x_i) + \epsilon_i,$$

where $\psi:\Re^d\to\Re$ is an unknown convex function (d is fixed). We assume that

- (i) the support of x is $\mathfrak{X} = [0,1]^d$
- (ii) $\psi \in C_{L_0}$ for some $L_0 > 0$
- (iii) the $x_i \in \mathfrak{X}$'s are fixed constants and
- (iv) ϵ_i 's are independent mean zero sub-Gaussian errors.

We have for any $L > L_0$,

$$\frac{1}{n} \sum_{i=1}^{n} (\hat{\psi}_{n,L}(x_i) - \psi(x_i))^2 = O_P(r_n),$$

where

$$r_n = \begin{cases} n^{-2/(d+4)} & \text{if } d = 1, 2, 3, \\ n^{-1/4} (\log n)^{1/2} & \text{if } d = 4, \\ n^{-1/d} & \text{if } d \ge 5. \end{cases}$$

- ► Multivariate convex regression is statistically troublesome, when:
 - n, d are comparable
 - d is large
 - curse of dimensionality kicks in
- Some form of dimension reduction is required: Sparsity?
- $\psi(x): \Re^d \mapsto \Re$ is a convex function, that depends upon an (unknown) subset of $k \ll d$ variables.

$$\psi(x_1,\ldots,x_d)=g(x_{i_1},\ldots,x_{i_k}),\ g\ \text{convex and}\ \underbrace{\{i_1,\ldots,i_k\}}_{\text{Unknown}}\subset\{1,\ldots,d\}.$$

Denote the above collection of functions by \mathcal{F}_k

Variable Selection in Multivariate Convex Regression with Discrete Optimization

(Mazumder (2016) [work in progress])

► Usual convex regression:

min
$$\sum_{i=1}^{n} |y_i - \psi(x_i)|^q$$
 s.t. ψ is convex

for $q \in \{1, 2\}$.

► Sparse convex regression:

$$\min \sum_{i=1}^{n} |y_i - \psi(x_i)|^q \quad \text{s.t.} \quad \psi \in \mathcal{F}_k.$$

► Usual convex regression:

min
$$\sum_{i=1}^{n} |y_i - \psi(x_i)|^q$$
 s.t. ψ is convex

for $q \in \{1, 2\}$.

► Sparse convex regression:

$$\min \sum_{i=1}^{n} |y_i - \psi(x_i)|^q \quad \text{s.t.} \quad \psi \in \mathcal{F}_k.$$

is equivalent to:

min
$$\sum_{i=1}^{n} |y_i - \theta_i|^q$$
subject to
$$\theta_j + \langle x_i - x_j, \xi_j \rangle \le \theta_i, \quad i \ne j \in \{1, \dots, n\},$$

$$\sum_{i=1}^{d} \mathbf{1}(\xi^i \ne 0) \le k,$$

► Caveat: this is a combinatorial optimization problem (possibly NP hard)

Special instance of this problem:

$$\psi(x) = x^{\top} \beta$$
 (Sparse/Variable Selection in Linear Regression)

► Tools described before for Convex LS regression do not apply here.

▶ New approach is necessary. We use modern discrete optimization methods.

- Can be expressed as a Mixed Integer Quadratic Optimization (MIO)
 Problem
- ► A general form of MIO is representable as:

$$\begin{array}{ll} \underset{\boldsymbol{\alpha}}{\operatorname{minimize}} & \boldsymbol{\alpha}^T \mathbf{Q} \boldsymbol{\alpha} + \boldsymbol{\alpha}^T \mathbf{a} \\ \text{subject to} & \mathbf{A} \boldsymbol{\alpha} \leq \mathbf{b} \\ & \alpha_i \in \{0,1\}, \quad \forall i \in \mathcal{I} \\ & \alpha_j \in \mathbb{R}_+, \quad \forall j \notin \mathcal{I}, \end{array}$$

 $\mathbf{a}\in\Re^m, \mathbf{A}\in\Re^{k\times m}, \mathbf{b}\in\Re^k$ and $\mathbf{Q}\in\Re^{m\times m}$ (PSD) problem-parameters.

- ► Sparse convex regression:
 - q=1 is a Mixed Integer Linear Program
 - q=1 is a Mixed Integer Quadratic Program

- ► Huge improvements in Algorithms & Software over past 25+ years
- ► Algorithms speed-up: 780,000 times
- ► Hardware speed-up: 570,000 times
- ► Total speed-up: **450 Billion times!** (As of May, 2016 this is **850 billion!**)
- Solve (with certificates) practical sized problems in times relevant for applications considered
- ► Successfully used across wide range of applications in Operations Research

- ► Sparse Convex Regression admits a MIO representation, with:
 - ► d binary variables
 - ► O(nd) continuous variables
 - ▶ $O(n^2)$ linear inequalities
- In spite of progress in MIO, this problem is challenging solve for large instances.
- ► New algorithmic tools are required for scalability:
 - Constraint generation, Cutting plane methods (Nemhauser, Wolsey '99)
 - Outer approximation methods, exploiting separability of loss function (Hijazi, et. al. '13; Vielma, et al '15)

- ► Competing method: Xu, Chen and Lafferty '16 (AC/DC) method
- AC/DC method requires the covariates to be independent (+ other regularity conditions) to identify right variables

- ► Preliminary findings:
 - ▶ Discrete optimization method makes better variable identification (by 10-30% better) for $n < d \approx 100$.
 - ► AC/DC method requires larger n than Discrete Optimization method, to identify all active variables.

Summary

► Many challenging and deep algorithmic questions in shape restricted estimation (generally nonparametric function estimation)

► A rigorous optimization lens often leads to newer perspectives and complements our statistical understanding

lacktriangle Nonparametric function estimation \longleftrightarrow Mathematical Programming

Thanks for your attention!