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A Simple Two-level Model

Efron and Morris (JASA, 1975)

For i = 1, . . . ,n,

Level 1: (Sampling Distribution) Yi |θi
ind∼ N(θi ,1),

Level 2: (Prior Distribution) θi
ind∼ N(µ, ψ).

The above model can be also viewed as a simple linear mixed model:

Yi = µ+ Ui + Ei ,

where {Ui} and {Ei} are independent with Ui
iid∼ N(0, ψ) and

Ei
iid∼ N(0,1) i = 1, · · · ,n.
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A bit more useful version

For i = 1, . . . ,n,

Level 1: Yi = h−1
1i (Ỹi)|θi

ind∼ N(θi ,Di),

Level 2: θi
ind∼ N(x ′i β, ψ),

where
Ỹi : direct estimator of small area parameter of interest h1i(θi)
(mean, total, proportion),
h1i(Yi) is a one-to-one measurable function of Yi (we assume this
is known in this talk),
Di is the sampling variance of Yi usually approximated or/and
estimated,
xT

i : a p × 1 column vector of known auxiliary variables,
(β, ψ) are hyperparameters
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A Few Examples of Small Area Models

1 SAIPE State level model for poverty rate: Yi = Ỹi ; Di are
estimated by a replication-based method.

2 Firm Alarm Probabilities (Carter and Rolph 1974):

Yi = arcsin(

√
Ỹi), where ni is the sample size for area i ; Di = 1

4ni
.

In Chilean poverty mapping, similar transformation is used with ni
representing effective sample size to incorporate complex sample
design.

3 Baseball Data Analysis (Efron and Morris 1975):
Yi =

√
ni arcsin(2Ỹi − 1), where ni is the sample size for area i ;

Di = 1.
4 Per-capita income (Fay and Herriot 1979): Y1i = log(Ỹi);

Di = 9/Ni , where Ni is the population size.
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A famous small area model

The Fay-Herriot (1979) model

Level I: (Sampling scheme) Yi |θi ∼ N(θi ,Di), i = 1, . . . ,n.
Level II: (Small area model) θi ∼ N(xT

i β, ψ), i = 1, . . . ,n.

The Di ’s known.
The unknown hyperparameters are ξ = (β, ψ).
The covariates: xi ∈ Rp, i = 1, . . . ,n are fixed or random.
The objects of interest are: θi ∈ R, i = 1, . . . ,n.
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The typical hierarchical small area model

The general model:

Level I: (Sampling scheme) Yij |θi ∼ fij(·;θi , ξf ), j = 1, . . . ,ni ;

Level II: (Small area model) θi ∼ gi(·; ξg), i = 1, . . . ,n.

Statistical analysis based on the observed data gains in accuracy
and precision by utilizing the commonality between the small
areas, which is captured in the Level II model.
The unknown parameters are ξ = (ξf , ξg); these may be
regression coefficients, variance components, and so on.
The objects of interest are the θi ’s which are Op(1) random
variables in any paradigm.
The model should be interpreted based on the philosophy:
All (statistical) models are wrong but some are useful. (G. E. P.
Box)
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American Community Survey example

Example
US poverty data
American Community Survey (ACS) data obtained from large-sized
counties from each state, along with several covariates, census and
other figures.

> colnames(ACSData)
[1] "ST" "CTY" "acspop"
[4] "acspopse" "acspov" "acspovse"
[7] "acspovrt" "acspovrtse" "acspop017"

[10] "acspop017se" "acspov017" "acspov017se"
[13] "acspovrt017" "acspovrt017se" "cenpop"
[16] "cenpov" "cenpov017" "cenpovrt"
[19] "cenpovrt017" "cenpop017" "foodstamps"
[22] "dempop" "dempop017" "foodstamprt"
[25] "......." "....." "......"

Which of these are useful covariates?
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The Fay-Herriot model

The Fay-Herriot model

[Y|θ] ∼ Nn(θ,D = diag(D1, . . . ,Dn)),

θ ∼ Nn(Xβ, ψIn).

The Di ’s known, unknown hyperparameters are ξ = (β, ψ).

The target conditional (posterior) distribution:

π(θi |Yi , ξ) ∝ fi(Yi ; θi , ξ)gi(θi ; ξ)

in the general model. This depends on the unknown parameter ξ.
In the Fay-Herriot model, the posterior distribution of θ given y is

(θ|Y) ∼ Nn ((In − B)Y + BXβ, (In − B)D) where
B = diag (Bi = Di/(Di + ψ), i = 1, . . . ,n) .
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The Fay-Herriot model

The Fay-Herriot model target distribution

[θ|Y] ∼ Nn ((In − B)Y + BXβ, (In − B)D) .

The best predictor (BP) is the conditional mean
∫

tπ(t |Yi , ξ)dt . In
the Fay-Herriot model, this is the Best Linear Unbiased Predictor
(BLUP) θ̃ = (In − B)Y + BXβ.
The empirical best predictor is the conditional mean∫

tπ(t |Yi , ξ̂)dt , for a suitable estimator ξ̂. In the Fay-Herriot model,
this is the Empirical Best Linear Unbiased Predictor (EBLUP)
θ̂ = (In − B̂)Y + B̂Xβ̂.
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The Fay-Herriot model

The Fay-Herriot model target distribution

[θ|Y] ∼ Nn ((In − B)Y + BXβ, (In − B)D) .

The best predictor (BP) is the conditional mean
∫

tπ(t |Yi , ξ)dt . In
the Fay-Herriot model, this is the Best Linear Unbiased Predictor
(BLUP) θ̃ = (In − B)Y + BXβ.
The empirical best predictor is the conditional mean∫

tπ(t |Yi , ξ̂)dt , for a suitable estimator ξ̂. In the Fay-Herriot model,
this is the Empirical Best Linear Unbiased Predictor (EBLUP)
θ̂ = (In − B̂)Y + B̂Xβ̂.
Recall Box’s statement: All models are wrong, some are useful! In
order to be useful in practice, EBLUPs often have to be
transformed, Winsorized or otherwise robustified, and
benchmarked.
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The Fay-Herriot model: Prasad-Rao estimators

The Fay-Herriot model

[Y|θ] ∼ Nn(θ,D = diag(D1, . . . ,Dn)), θi ∼ Nn(Xβ, ψIn).

The Di ’s known, unknown hyperparameters are ξ = (β, ψ).

Parameters ξ = (β, ψ) are estimated from the marginal [Y].
The Prasad-Rao estimation scheme obtains the ordinary least
squares estimator for β and a moment-based estimator for ψ.
Thus β̂PR = (XT X)−1XT Y and
ψ̂PR = max

{
(n − p)−1

(
||Y− Xβ̂||2 −

∑
(1− Hii)Di

)
, ε
}
.

The “hat matrix” is denoted by H, identity matrix is I.
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The Fay-Herriot model: other parameter estimators

The Fay-Herriot model

[Y|θ] ∼ Nn(θ,D = diag(D1, . . . ,Dn)), θi ∼ Nn(Xβ, ψIn).

The Di ’s known, unknown hyperparameters are ξ = (β, ψ).

The Fay-Herriot estimation scheme minimizes a contrast function
for ψ, and obtains a weighted least squares estimator of β. This is
often better than Prasad-Rao estimator.
Maximum likelihood, reduced maximum likelihood, robust, Bayes
estimates, and many other estimators have been studied.
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FH model:estimation and prediction

The Fay-Herriot model target distribution

[θ|Y] ∼ Nn ((In − B)Y + BXβ, (In − B)D) .

β̂PR = (XT X)−1XT Y,

ψ̂PR
.

= (n − p)−1
(
||Y− Xβ̂||2 −

∑
(1− Hii)Di

)
,

B̂i = Di/(Di + ψ̂), i = 1, . . . ,n,
EBLUP : θ̂i = (1− B̂i)Yi + B̂ixT

i β̂ = Yi − B̂i(Yi − xT
i β̂)

=
[
Di + ψ̂

]−1 {
ψ̂Yi + DixT

i β̂
}
,

V[θi |Y] =
[
Di + ψ̂

]−1 {
Di ψ̂

}
.
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The Mean Squared Prediction Error (MSPE)

Target distribution and EBLUP

θi |Y ∼ N
(

(1− Bi)Yi + BixT
i β, (1− Bi)Di

)
,

EBLUP : θ̂i = (1− B̂i)Yi + B̂ixT
i β̂.

The Mean Squared Prediction Error (MSPE): For any predictor Ti

of θi , the MSPE is MSPE(Ti) = E [θi − Ti ]
2 .

MSPE(Ti) = E (V(θi |Y)) + E (Ti − E(θi |Y))2 =
E( Condl. Var) + E( Estimation gap) = O(1) + O(n−1) typically,
hence any estimator of MSPE should achieve o(n−1) accuracy at
least.
For general predictor Ti , this can be extremely hard to compute
(up to o(n−1) accuracy).
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Why bother with model selection in small areas?

In most statistical model selection problems, over-fitting is less of
an issue compared to under-fitting. Also, under-fitting is easier to
detect. This is not the case for mixed effects models like the
Fay-Herriot model.
Under-fitting does not necessarily result in noticeable lack of
goodness-of-fit in [θ|Y].
Over-fitting is extremely dangerous. It results in more weight on
the “prior”, i .e. on the auxiliary information rather than the
observed data. The conditional variance is low, so we are very
confident about our wrong predictor.
The FH parameters do not have the same interpretation as
classical parametric models (Bayesian or frequentist) like
regression models.
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Fay-Herriot model selection

The Fay-Herriot model targets

β̂PR = (XT X)−1XT Y,

ψ̂PR
.

= (n − p)−1
(
||Y− Xβ̂||2 −

∑
(1− Hii)Di

)
,

θ̂i =
(
ψ̂Yi + DixT

i β̂
)
/
(

Di + ψ̂
)
, V[θi |Y] =

{
Di ψ̂

}
/
(

Di + ψ̂
)
.

Not using all the required covariates: ||Y− Xβ̂||2 is too high,⇒ ψ
is over-estimated.
⇒ both conditional mean and variances can be wrong.
⇒ unconditional mean is wrong.
But, does not necessarily result in noticeable lack of
goodness-of-fit in the marginal of Y, consequently underfitting is
hard to detect.
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Fay-Herriot model selection

The Fay-Herriot model targets

β̂PR = (XT X)−1XT Y,

ψ̂PR
.

= (n − p)−1
(
||Y− Xβ̂||2 −

∑
(1− Hii)Di

)
,

θ̂i =
(
ψ̂Yi + DixT

i β̂
)
/
(

Di + ψ̂
)
, V[θi |Y] =

{
Di ψ̂

}
/
(

Di + ψ̂
)
.

Over-fitting is extremely dangerous : ||Y− Xβ̂||2 is too low,⇒ ψ is
under-estimated.
Hence more weight on the “prior”, i .e. on the auxiliary information
rather than on the directly observed data.
The conditional variance is low, so we are very confident about
our wrong predictor.
Classical model selection tools do not work (parameters β and ψ
have different roles to play, and have different interpretation from
standard parametric (Bayesian or frequentist) models).
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An example of covariate selection

Example
Modified from Datta, Rao, Smith (2005, Biometrika)

We have n = 5n0 small areas.
We specify Di ’s as n0 copies of 2,0.6,0.5,0.4,0.2.
We use Level-II variance ψ = 1.
We have 5 covariates, only the first 2 of which have non-zero β
coefficients associated with them.
The goal is to see how some established, and some exploratory
methods perform in selecting the correct covariates.
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The modified DRS simulation framework

Example

n AIC BIC MoM T1 T2
20 46 51 82 36 81
50 48 58 83 61 82

200 63 64 85 66 81
500 56 63 86 69 84

Table: Estimated correct covariate selection proportions of various
techniques.
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BIC performs very poorly is a slightly more complex model.
MoM is a method of moment model selection criterion. Not very
efficient, inadequate outside linear mixed models.
T1 is a likelihood-based criterion. Requires a tuning constant,
which may be hard to obtain in real data problems.
T2 is something a few co-authors started on (I was called in to
show that this works): It is based on m-out-of-n bootstrap and
differential fitting to observations in the resample and outside it.
Not consistent in general.
We need to compare with the fence methods (Jiang, Ngyuen et
al.).
We have not considered the variance component ψ at all!
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General issues with model selection

Both regression coefficients and variance components should be
considered when doing model selection.
The variance component in the FH model (and in other mixed
models) is based on residuals, so under or over-fitting of
regression terms affects it, and this acts as a shock-absorber
(dampens the effect of fitting bad models).
Post model selection inference: In general, a model selected by
some criterion does not have classical regularity properties: it’s
parameters are super-efficient.
Issues with parameter on the boundary of the parameter space:
Since ψ ∈ [0,∞), the distribution of ψ̂ is non-trivial. Testing for
ψ = 0 is not easy.
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So what can be done?

Use resampling!
(on second thoughts: empirical likelihood may work also, needs to
be explored).
Our method (sketch below) can obtain a consistent estimator of
the joint distribution of the scores of all models and parameters
included in the models.
Thus, we can perform post-model selection inference, can include
all parameters, and variance components being zero or not does
not matter.
Our (preliminary) proof hold for all linear mixed models.
Another matter: We cannot simultaneously have correct model
chosen with probability tending to 1 (property of BIC), and
bounded risk function (property of AIC).
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FH model selection with resampling

We need at least one model to estimate ψ consistently, so we
assume that the maximal model (the one which includes every
parameter) is adequate, ie, does not exclude any necessary
covariates.
Let ψ̂ be the variance component estimate from the maximal
model.
In model s, instead of the EBLUP, we use fixed effects from the
model itself, and the random effect using the variance component
of the maximal model and the residuals from model s, thus:

θsb = PsY + (In − B̂)(In − Ps)Y,

where
Ps = projection on the column space of covariates included in
model s, and

B̂ = diag
(

B̂i = Di/(Di + ψ̂), i = 1, . . . ,n
)
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FH model selection: WiSE errors

Define a sequence {τn} such that τn →∞ and τn/n→ 0 as
n→∞.
For the bth bootstrap Monte Carlo step, generate a vector Ub of
i.i.d. random variables with mean zero and variance one.
Define

Esb =
√
τndiag

(
Ub
)
(In − P̂)Y

where (In − P̂)Y are the residuals from the maximal model.
(Slight variations of the above work are also OK.)
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FH model selection: WiSE errors

Now define Ysb = θsb + Esb as the Wild Scale Enhanced
bootstrap version of Y = θ + E of the Fay-Herriot model.
Fit model s to this. Obtain:
The score of model s, defined as

Γ̂(s) = EB ||Y− θ̂sb||2,

where θ̂sb is the EBLUP under model s, and EB is bootstrap
expectation (ie, expectation conditional on the observed data).
Obtain the WiSE boosttrap distribution of any parameter of
interest under model s.
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A simulation experiment

We generate n = 100 sized datasets, from the model

Yi = µ+ Ui + Ei , where

Ei
ind .∼ N(0,Di) with known D′i s and Ui

i.i.d .∼ N(0, ψ).
Four models considered: (s1) µ 6= 0, ψ > 0, (s2) µ 6= 0, ψ = 0,
(s3) µ = 0, ψ > 0, (s4) µ = 0, ψ = 0.
We try out the above with bootstrap Monte Carlo size B = 200,
and R = 500 independent replications.

Ansu Chatterjee (U. Minnesota) Small Area June 19, 2016 32 / 46



WiSE-boot model selection simulations

Example

Correct Selected s1 s2 s3 s4
s1 (µ 6= 0, ψ > 0) 96.2 3.8 0 0
s2 (µ 6= 0, ψ = 0) 0 100 0 0
s3 (µ = 0, ψ > 0) 32.0 0.6 63.8 3.6
s4 (µ = 0, ψ = 0) 0 2 0 98

Table: Estimated percentage of times correct model is selected.
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Model scores under s1
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Figure: Model scores Γ̂(·) under model s1 (µ 6= 0, ψ > 0)
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Model scores under s2
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Figure: Model scores Γ̂(·) under model s2 (µ 6= 0, ψ = 0)
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Model scores under s3
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Figure: Model scores Γ̂(·) under model s3 (µ = 0, ψ > 0)
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WiSE-Boot sampling distributions
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Figure: Sampling distribution of µ̂ and its WiSE-Boot approximation in s1 (all
simulations), s1 (simulation # 425) and s3
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Model scores under s4
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Figure: Model scores Γ̂(·) under model s4 (µ = 0, ψ = 0)
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A different experiment with covariates
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Figure: Model scores Γ̂(·): Only random effect case in a different experiment
with more models and covariates
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WiSE-Boot sampling distributions
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Figure: Same experiment: sampling distribution and its WiSE-Boot
approximation in the three “good” models
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ACS data example: State #6

Example

County Data Pred.
County D Y EBLUP

1 0.517 16.76 15.63
6 0.029 1.96 2.29

11 7.581 158.03 158.57
23 1.793 28.53 26.82
40 0.030 0.84 1.20

Table: Partial results for State #6.
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ACS data example: State #6

Example

County Data Pred.
County D Y EBLUP q0.05 q0.5 q0.95

1 0.517 16.76 15.63 14.52 15.73 18.11
6 0.029 1.96 2.29 1.90 2.34 2.88

11 7.581 158.03 158.57 156.50 166.14 192.31
23 1.793 28.53 26.82 25.32 27.26 30.37
40 0.030 0.84 1.20 0.84 1.22 1.52

Table: Partial results for State #6.
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Poverty Mapping for the 
Chilean Comunas 
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21.1. Introduction 

 
The eradication of poverty has been at the center of various public policies in Chile and has guided public policy 
efforts. The nationwide survey estimate of the poverty rate has declined since the early 90´s suggesting some 
progress towards this goal. While this result is encouraging, erratic time series patterns have emerged for small 
comunas - the smallest territorial entity in Chile. Moreover, for a handful of extremely small comunas, survey 
estimates of poverty rates are unavailable for some or all time points simply because the survey design, which 
traditionally focuses on precise estimates for the nation and large geographical areas, excludes these comunas 
for some or all of the time points. In any case, direct survey estimates of poverty rates typically do not meet the 
desired precision for small comunas and thus the assessment of implemented policies is not straightforward at 
the comuna level. In order to successfully monitor trends, identify influential factors, develop effective public 
policies and eradicate poverty at the comuna level, there is a growing need to improve on the methodology for 
estimating poverty rates at this level of geography.  
 
Chile’s   official   data   source   for   poverty   statistics   is   the   National   Socioeconomic   Characterization   Survey  
(Casen) - a survey sponsored every two or three years by the Ministry of Social Development (henceforth 
referred to as the Ministry) since 1987 with sample in most of the comunas. The demand for various 
socioeconomic data at the comuna level is relevant for the design and evaluation of public policies, especially 
because municipalities4 are the first level of contact for the Chileans with their (local) government.  
 
In Chile, direct design-based estimates of poverty rates were routinely released for the nation, all regions and 
all the self-representing comunas in each Casen sample5. In 1999, the Programa de las Naciones Unidas para el 
Desarrollo (PNUD)6 and the Ministry used direct design-based survey estimates as input data for producing the 
PNUD’s  Human  Development  Index  (HDI)7 for the 72 comunas self-represented in the Casen 1990 and 1998 
samples. In 2000, comuna level estimates were produced as inputs for the HDI for 333 comunas using a mix of 

                                                           
1 Assistant Professor, Instituto de Sociología, Pontificia Universidad Católica de Chile, Chile.  
2 Research Fellow, International Development Bank, Washington DC, U.S.A.  
3 Professor, Joint Program in Survey Methodology (JPSM) and Department of Mathematics, University of Maryland, 
College Park, U.S.A.  
4 A municipality is a decentralized institution responsible for the local administration of each comuna [1]. 
5 Self-representing comunas were those considered with large enough sample sizes for the purpose of producing direct 
design-based estimates. The number of self-representing comunas increased from 48 in Casen 1987 to 335 in 2006. See in 
[2]. 
6 In English the United Nations Development Programme (UNDP). 
7 The Human Development Index (HDI) is a statistical tool used to measure a country's overall achievement in its social 
and economic dimensions [3]. 
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Chilean poverty data example

The data is from 334 comunas (administrative subdivision) from 30
groups of Chile, on proportion of households with income below a
threshold, directly estimated using a trimmed comuna weight.
Several auxiliary variables are available.
Preliminary model selection chooses around 40 % of auxiliary
variables.
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Thank you
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