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The Empirical Likelihood Method - iid r.v.s

Let X1, . . . ,Xn be a collection of iid random variables with mean µ. For
simplicity, we first describe the EL method for the mean parameter µ in
the iid case.

Assign probabilities {pi}ni=1 to the observations {Xi : i = 1, . . . , n}
and define the EL function for µ as

Ln(µ) = sup

{
n∏

i=1

pi : pi > 0,
n∑

i=1

pi = 1,
n∑

i=1

piXi = µ

}

Without the ”mean constraint”, the product
∏n

i=1 pi is maximized
when p1 = . . . = pn = n−1.

Thus, we define the EL Ratio for the mean at µ as

Riid
n (µ) =

Ln(µ)

n−n
.
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The Empirical Likelihood Method - iid r.v.s

An EL confidence interval (CI) for µ is given by

{µ : Rn(µ) ≥ A},

where A > 0 is chosen to obtain a desired confidence level [cf. Owen
(1988, 1990), Hall and La Scala (1990)].

Owen (1988, 1990) showed that under mild conditions,

Λn ≡ −2 log Rn(µ0)→d χ2(1) as n→∞

where µ0 is the true mean.

Note that

the EL ratio statistic is asymptotically pivotal,
no explicit studentization is needed.

Hence EL CIs can be constructed more easily than CIs based on a
t-statistic (i.e., studentization).
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The Empirical Likelihood Method - Rates

DiCCicio, Hall and Romano (1991) ([DHR]) showed that for the
”smooth function model”,

sup
x∈(0,∞)

∣∣∣P(Λn ≤ x
)
− P

(
χ2(1) ≤ x

)∣∣∣ = O(n−1).

[DHR] also showed that the statistic Λn admits Bartlett correction:
i.e.,

sup
x∈(0,∞)

∣∣∣P(ΛBart
n ≤ x

)
− P

(
χ2(1) ≤ x

)∣∣∣ = O(n−2).

where ΛBart
n = Λn(1 + n−1φ̂n) for some suitable φ.

The form of φ is rather complicated. For the mean parameter,

φ = 2−1µ4µ
−2
2 − 3−1µ23µ

−3
2

where µj = E (X1 − µ)j , j ≥ 2.

Question:What happens when the Xi ’s are dependent?
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The Block Empirical Likelihood Method (Kitamura, 1997)

For simplicity, we consider the (Maximum Overlapping) Block Empirical
Likelihood for the mean parameter E (X1) = µ.

Let 1 ≤ ` ≤ n, B(i , `) = (Xi , . . . ,Xi+`−1), 1 ≤ i ≤ N ≡ n− `+ 1. Let

X̄i ,` = `−1
i+`−1∑
j=i

Xj

denote the sample mean of the ` variables in B(i , `), 1 ≤ i ≤ N.

Assign probabilities {pi}Ni=1 to each block sample mean {X̄i ,`}Ni=1 and
define the blockwise EL function for µ as

L
[K]
n (µ) = sup

{
N∏
i=1

pi : pi > 0,
N∑
i=1

pi = 1,
N∑
i=1

pi X̄i ,` = µ

}
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The Block Empirical Likelihood Method [contd.]

The block empirical likelihood ratio for the mean µ is then given by

R
[K]
n (µ) =

L
[K]
n (µ)

NN

and a confidence interval for µ is {µ : Rn(µ) ≥ A}, where A > 0.

Kitamura(1997) proved the following version of Wilk’s Theorem:

Theorem (Kitamura,1997)

Under some suitable regularity conditions, for 1� `� n1/2,

Λ
[K]
n ≡ −2an log R

[K]
n (µ0)→d χ2(1) as n→∞

where an = `−1 and where µ0 is the true mean.
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Block Empirical Likelihood

Note that the BEL does NOT have the automatic scaling as in the iid
EL. But it is asymptotically pivotal.

The factor an in Kitamura’s Theorem adjusts for the strong
dependence among the neighboring ` blocks.

QUESTION 1: What is the rate of convergence in Kitamura’s
Theorem?

QUESTION 2: Is the Block Empirical Likelihood Ratio Statistic
Bartlett correctable?

It is clear that the rate depends on the block size `.

QUESTION 3: What is the optimal block size?
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Block Empirical Likelihood - Rates

Kitamura (1997) claims (cf. (4.5a), page 2095) that with ` ∼ Cn1/3,

sup
z∈(0,∞)

∣∣∣P(Λ
[K]
n ≤ z

)
− P

(
χ2(1) ≤ z

)∣∣∣ = O(n−2/3).

He also claims that, with ` ∼ Cn1/3, the BEL ratio statistic is Bartlett
correctable and (cf. (4.5b), page 2095)

sup
z∈(0,∞)

∣∣∣P(Λ
[K]
n [1− N−1ϕn] ≤ z

)
− P

(
χ2(1) ≤ z

)∣∣∣ = O(n−5/6),

where ϕn is defined in analogy to the iid case.
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A new result

Let us consider the first of the two rate results. Validity of this is
addressed in the following theorem:

Theorem (Chatterjee, Lahiri and Nordman, 2016)

Suppose that the regularity conditions for valid Edgeworth expansions for
the partial sums (cf. Götze and Hipp(1983), Lahiri (2007, 2009, 2010))
hold. If, in addition,

∑∞
k=1 kCov(X1, , x1+k) 6= 0, then

lim inf
n→∞

n1/2

[
inf

1≤`≤n
sup

z∈(0,∞)

∣∣∣P(Λ
[K ]
n ≤ z

)
− P

(
χ2(1) ≤ z

)∣∣∣] ∈ (0,∞).

Thus, under the conditions of the theorem, Kitamura’s result can not
be true, as the rate O(n−2/3) is not achievable for any block length.

June 16, 2016 9 / 24



Remarks

Indeed, the optimal block length that achieves the best possible rate
in the theorem is ` ∼ Cn1/2, which is much larger than the optimal
block size for variance estimation (viz. ` ∼ Cn1/3, as used by
Kitamura (1997)).

This implies that the BEL CIs for µ has an error in coverage probablity
of order O(n−1/2), under the best possible choice of the block size.

In contrast, a two-sided CI for µ based on Normal critical points can
achieve an error rate of O(n−1[log n]C ) for some C ∈ (0,∞) under
exponential strong mixing.

It can be shown that the Bartlett Correction result is also false.
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Remarks

Question: Why are the rates in Kitamura (1997)’s results WRONG?

Although the stochastic approximation in the BEL has a structure
similar to the independent case (barring the scaling factor an), the
form of the Edgeworth expansion (EE) under dependence is different
from that in the iid case.

For iid r.v.s, under some standard regularity conditions,

P(Λn ≤ x) = P(W ≤ x) + [n−1p1(x) + n−2p2(x)]φ(x) + o(n−2)

uniformly in x ∈ (0,∞), where W ∼ χ2(1).

However, in the dependent case, the EE for the BEL ratio statistic is
a superposition of three distinct series

P(Λ
[K]
n ≤ x) = P(W ≤ x) +

[
`−1q1(x) + b−1n q2(x)

+n−1q3(x)
]
φ(x) + o(n−1 + `−1)

uniformly in x ∈ (0,∞), where bn = n/`.
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Related Block Empirical Likelihood Methods

We consider two variants of the Maximum Overlapping Block EL -
one simpler than the overlapping BEL, and the other more complex!!

The simplest is perhaps the NON-overlapping BEL, based on the
blocks

B[NO]
i = (X(i−1)`+1, . . . ,Xi`), i = 1, . . . , b

where b = bn/`c.
Define the Non-overlapping BEL function for µ as

L
[NO]
n (µ) = sup

{
b∏

i=1

pi : pi > 0,
b∑

i=1

pi = 1,
b∑

i=1

pi X̄i ,` = µ

}
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The Nonoverlapping Block Empirical Likelihood Method

Define the block empirical likelihood ratio for the mean µ as before:

R
[NO]
n (µ) =

L
[NO]
n (µ)

bb
.

Then, the following version of Wilk’s Theorem holds for the
Non-overlapping BEL:

Theorem (Kitamura,1997)

Under some suitable regularity conditions, for 1� `� n1/2,

Λ
[NO]
n ≡ −2 log R

[K]
n (µ0)→d χ2(1) as n→∞.

where µ0 is the true mean.

Thus, compared to the overlapping case, the scaling an = `−1 is not
required!!!
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Tapered Block Empirical Likelihood

Nordaman (2007) proposed a version of the BEL, called the Tapered
Block Empirical Likelihood (TBEL), where the blockwise sample
means are replaced by a weighted average or tapered sum.

It is an adaptation of an idea of Paparoditis and Politis (2001) on
block bootstrap to the Block EL context.

Let 1 ≤ ` ≤ n and let B(i , `) = (Xi , . . . ,Xi+`−1), 1 ≤ i ≤ N, as in the
BEL. Let w1n, . . . ,w`n ∈ IR be nonrandom weights with

∑̀
k=1

wkn 6= 0.

Define the weighted or tapered block sums

Yi ,l =

∑`
k=1 wknXi+k−1∑`

k=1 wkn

, i = 1, . . . ,N.
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TBEL-contd.

The TBEL function for µ is now defined as

L
[TB]
n (µ) = sup

{
N∏
i=1

pi : pi > 0,
N∑
i=1

pi = 1,
N∑
i=1

piYi ,` = µ

}
.

The TBEL ratio statistic is now given by R
[TB]
n (µ) = NNL

[TB]
n (µ).

For studying the properties of R
[TB]
n (µ), we restrict attention to

weights
wkn = w([k − .5]/n)

where w : [0, 1]→ IR is symmetric about u = 1/2 and positive in a
neighborhood of u = 1/2.

For example, w(u) ≡ 1 for u ∈ [0, 1] gives the BEL.
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A result on TBEL

Define Λ
[TB]
n (µ) = −2cn log R

[TB]
n (µ) where cn =

∑`
k=1 w

2
kn

[
∑`

k=1 wkn]2
.

Then, we have the following:

Theorem (Chatterjee, Lahiri and Nordman (2016))

Suppose that the self convolution w ∗ w is twice continuously
differentiable in a neighborhood of u = 0 and (w ∗ w)′′(0) is nonzero.
Further, suppose that the regularity conditions similar to those in the last
theorem hold. Then, for ` ∼ Cn1/3,

sup
z∈(0,∞)

∣∣∣P(Λ
[TB]
n (µ0) ≤ z

)
− P

(
χ2(1) ≤ z

)∣∣∣ = O(n−2/3).

Note the optimal block size for variance estimation by Tapered block
bootstrap is ` ∼ Cn1/5.
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Higher order accuracy

We consider two approaches to achieving higher order accurate
results:

Edgeworth expansion (EE) based calibration
Block Bootstrap based calibration
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Higher order accuracy based on EE

We can use higher order terms from the EE to achieve a smaller error
of coverage probability.

Let χ2(1;α) denote the α quantile of χ2(1) distribution and let q̂n(α)
(respectively, r̂n(α) ) be a suitable estimator of the co-efficient of the

n−2/3-term (the n−1-term) in the EE for ΛTB
n (µ0) at χ2(1;α).

Define the EE corrected TBEL CI for µ by

In(α) = {µ : ΛTB
n (µ) ≤ t̂n(α)}

where t̂n(α) = χ2(1;α)− n−2/3q̂n(α)− n−1r̂n(α)}.
Then, under regularity conditions as in the last theorem,

P(µ ∈ In(α)) = α + O(n−7/6[log n]C ).

This beats the 2-sided Normal CIs, but not as good as the Bartlett
corrected Empirical Likelihood CIs in the iid case.
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Higher order accuracy : Block Bootstrap Calibration

Generate a MBB sample X ∗1 , . . . ,X
∗
n based on resampling the

overlapping blocks of size `.

Apply the Non-Overlapping version of the TBEL to the resampled
values, to get Λ∗n.

Define the BB corrected TBEL CI for µ by

Jn(α) = {µ : ΛTB-nl
n (µ) ≤ t̃n(α)}

where t̃n(α) the α quantile of the conditional distribution of Λ∗n given
X1, . . . ,Xn.

Then, under some regularity conditions (similar to the last theorem),
with ` ∼ Cn1/3,

P(µ ∈ Jn(α)) = α + O(n−1).
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Some simulation results

We consider 2 models:

Xt = 0.4Xt−1 + 0.2Xt−2 + 0.1Xt−3 + εt + 0.2εt−1 + 0.3εt−2 + 0.2εt−3,
ε1 ∼ χ2(1)− 1.

Xt = 0.6 sin(Xt−1) + 0.1εt , ε1 ∼ N(0, 1).

BEL and TBEL methods are based on usual chi-square calibrations as
well as versions of BEL/TBEL, denoted as BEL∗ and TBEL∗, based
on block bootstrap calibrations.

We consider block lengths b = Cn1/2 for BEL/BEL∗ and b = Cn1/3

for TBEL/TBEL∗ where C = 1, 2, 3, 4.

These block lengths are of optimal order for each method,
respectively.
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Simulation results

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model 4 Chi-square Calibration  Bootstrap Calibration 
 

n Type 1 2 3 4 1 2 3 4 

80 BEL 
 

TBEL 
78.4 68.9 42.3 45.0 

 

81.2 80.6 78.2 68.9 
87.1 91.7 93.7 93.2 

 

84.8 89.0 89.2 91.2 

200 BEL 
 

TBEL 
83.6 80.3 70.5 62.4 

 

86.3 85.7 83.6 82.7 
87.3 88.6 91.4 90.3 

 

87.8 88.8 89.0 90.0 

1000 BEL 
 

TBEL 
88.6 86.6 84.6 81.5 

 

88.8 89.1 89.6 88.5 
90.0 89.4 89.6 89.5 

 

89.4 89.8 90.4 89.7 
Model 7 Chi-square Calibration  Bootstrap Calibration 

 

n Type 1 2 3 4 1 2 3 4 

80 BEL 
 

TBEL 
81.0 70.8 44.2 44.4 

 

84.9 82.6 80.2 71.2 
88.8 90.8 92.4 93.0 

 

87.1 90.1 90.4 91.5 

200 BEL 
 

TBEL 
84.7 78.6 70.0 61.0 

 

87.6 86.2 85.0 82.4 
87.5 88.3 90.9 90.6 

 

88.7 88.9 89.6 90.2 
1000 BEL 

 

TBEL 
86.7 85.6 83.2 79.5 

 

89.6 88.7 88.8 87.5 
88.2 89.0 88.9 88.9 

 

89.9 89.0 89.5 88.6 
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Simulation results
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Some simulation results

TBEL CIs broadly have better coverage rates than BEL CIs, over a
range of block scaling b = Cna of optimal order (a = 1/2 for BEL/
a = 1/3 for TBEL).

Bootstrap calibrations improve the coverage accuracy of both
BEL/TBEL methods, especially for small n.

The improvement is particularly substantial for BEL across differing
blocks b.

The bootstrap version TBEL∗ tends to exhibit the best coverage
accuracy over a range of block lengths b and sample sizes n.
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Thank you!!
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