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Introduction

• What is Empirical Likelihood?

• Consider a parametric model {f(·; θ) : θ ∈ Θ} and let X1, · · · , Xn be iid,

X1 ∼ f(·; θ). Then, the likelihood function for θ is

Ln(θ) =
n∏
i=1

f(xi; θ).

• Suppose we want to test

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θc
0, Θ = Θ0 ∪Θc

0.

• One way to test the above hypothesis is using the well-known Likelihood

Ratio Test.
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Wilk’s theorem

• Under some regularity conditions, Wilk’s theorem asserts that

Wilk’s Theorem

−2 logRn(θ0)
d−→ χ2

p as n→∞

• p is equal to the difference in dimensionality of Θ and Θ0 and Rn(θ0) is

the LRT statistic for testing the above null hypothesis. More specifically,

Rn(θ0) =
supθ∈Θ0

Ln(θ)

supθ∈Θ Ln(θ)
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Empirical Likelihood

• Empirical Likelihood (EL) of Owen (1988) is a method that defines a

likelihood for certain population parameters without requiring a

parametric model.

• let X1, · · · , Xn be iid with mean µ ∈ IR. The EL for µ is

Ln(µ) = sup
πi

{
n∏
i=1

πi : πi ≥ 0,
∑

πi = 1,
∑

πiXi = µ

}

• The unconstrained maximum is at πi = n−1 for all i. Thus, the EL ratio

statistic for testing H0 : µ = µ0 is Rn(µ0) = Ln(µ0)
n−n .

• Owen (1988) proved a version of Wilk’s Theorem:

−2 logRn(µ0)
d−→ χ2

1
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Literature Review

• Owen (1988, 1990) introduced the EL method for independent random

variables.

• Extensions and refinements of the EL method to different problems under

independence are given by

Chen and Hall (1993): Quantiles

Qin and Lawless (1994): Estimating equations

DiCiccio, Hall and Romano (1996): Bartlett corrections

Einmahl and Mckeague (2003): Functional hypothesis testing

Bertail (2006): Semiparametric models
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Independent EL (continued)

• Hjort, McKeague and Van Keilegom (2009): Functional nuisance

parameters and increasing dimensions

• Chen, Variyath and Abraham (2006): Adjusted EL in the p > n/2 case

• Chen, Peng and Qin (2008): Increasing dimensions p = o(n1/2)

• Bertolucci (2007): Penalized EL.
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EL under dependence: Time Series

• Under dependence, the standard EL fails in the sense that the limit

involves population parameters.

• Kitamura (1997) introduced Block EL (in the time domain) and

established Wilk’s phenomenon.

Block EL requires scale adjustment involving known quantities, but the

limit is still Chi-squared.

• Monti (1997) first considered EL for time series in the frequency domain,

under weak dependence.

Major advantage: No blocking is necessary.

• Nordman and Lahiri (2006): Frequency domain EL for time series under

both short and long-range dependence.
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EL under dependence: Spatial Data

• For spatial process on a regular grid, Nordman (2009) establishes that the

Block EL works, with a suitable scaling.

• For irregularly spaced spatial data, Van Hala et al. (2013) introduces

Spatial Blockwise EL.

• Issue: Choice of block length for finite sample study
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Challenges

• The basic orthogonality property of the sine- and cosine- transforms of

gridded data at Fourier frequencies (e.g., ωj = 2πj/n) no longer holds.

• One must deal with the unbounded frequency domain IRd.

• The periodogram of irregularly spaced spatial data can be severely biased

and must be preprocessed in order for it to be used for inference on the

underlying spectral density function.

• More than one possible asymptotic structure can arise depending on the

relative growth rates of the volume of the sampling region and the sample

size.
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Advantages of SFDEL Method

• As with other EL methods, it does not require explicit variance

estimation (which can be extremely difficult in this spatial setting)

• Applies in a unified manner to different asymptotic structures

• Valid without stringent distributional assumptions on the spatial process

(i.e. assuming Gaussian processes)

• Does not involve block size selection issues associated with block-based

EL method
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We next introduce a theoretical framework and consider limiting behavior of

the DFTs first.
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Sampling Region

• Let D0 be an open connected subset of (−1/2, 1/2]d, containing the origin.

• Let {λn}n≥1 be a sequence of positive real numbers such that λn →∞ as

n→∞.

• The sampling region Dn is obtained by ‘inflating’ D0 by a multiplicative

factor λn, i.e., Dn = λnD0.
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Sampling Design

• Let {Z(s) : s ∈ IRd} be a zero mean stationary random field observed at

irregularly spaced locations.

• f(x): continuous, everywhere positive probability density function on D0.

• Let Xk
iid∼ f(x), k ≥ 1.

• We assume that the sampling sites s1, · · · , sn are obtained by the

relation: si ≡ sin = λnxi, 1 ≤ i ≤ n.
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Asymptotic Structures

• Pure-increasing domain asymptotics (PID): (similar to gridded data)

sampling region Dn expands as sample size n→∞, with n ∝ vol(Dn) or

n/λdn → c∗ ∈ (0,∞) as n→∞.

• Mixed-increasing domain asymptotics (MID): expanding Dn but with a

heavy infill of sampling sites: vol(Dn)� n or n/λdn →∞ ≡ c∗ as n→∞.

OBSERVATION: These differing structures impact even simple statistics

λd/2n Z̄n =
λ
d/2
n

n

n∑
i=1

Z(si)
d→ N

Å
0, σ(0)/c∗ +

∫
IRd

σ(s)ds

ã
with σ(s) = cov[Z(s), Z(0)] (Lahiri, 2003).
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Properties of Discrete Fourier Transforms (DFTs) for

Irregularly Located Spatial Data

• Bandyopadhyay and Lahiri (2009) define the DFT dn(ω), ω ∈ Rd, of

{Z(s1), ..., Z(sn)} as

dn(ω) = λd/2n n−1
n∑
j=1

Z(sj) exp(ıω′sj).

• Two sequences of frequencies {ω1n}n≥1, {ω2n}n≥1 ⊂ Rd are

asymptotically independent if and only if the sequences {ω1n}n≥1 and

{ω2n}n≥1 ⊂ Rd are asymptotically distant:

‖λn(ω1n − ω2n)‖ → ∞ as n→∞

• Intuitively, to define a spatial EL method based on asymptotic

independence of DFTs (similarly to time series versions), need to use this

aspect.
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Spatial Periodogram

• The periodogram is defined as

In(ω) = |dn(ω)|2, ω ∈ Rd

• Let σ(·) be the covariance function of Z(·) and K = (2π)d
∫
Rd f

2.

BL(2009) and Matsuda and Yajima (2009) showed the periodogram is

biased under PID for the process spectral density ψ(·):

EIn(ω) =
[
n−1λdnσ(0) +Kψ(ω)

]
(1 + o(1)) for all ω ∈ Rd

where n−1λdn → c−1
∗ ∈ (0,∞) under PID (n−1λdn → 0 under MID)

• Let Z̄n = n−1∑n
j=1 Z(si) and σ̂n = n−1∑n

j=1

(
Z(sj)− Z̄n

)2
. Define the

bias-corrected periodogram as

Ĩn(ω) = In(ω)− n−1λdnσ̂n(0), ω ∈ Rd

Soutir Bandyopadhyay (Lehigh) IMS, NUS June 2016 17 / 35



Formulation of the Spatial FDEL

• Suppose that the information about θ ∈ Θ ⊂ IRp exists through a system

of spectral estimating equations.

• Let Gθ(ω) : IRd ×Θ→ IRp denote a vector of estimating functions,

satisfying the spectral moment condition∫
IRd

Gθ(ω)ψ(ω)dω = 0

• Some Examples next
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Formulation of the Spatial FDEL:examples

Example 1 (Autocorrelation). Let σ(·) and ρ(·) be the auto-covariance and

auto-correlation functions of Z(·), respectively. Let

θ = (ρ(h1), · · · , ρ(hp))
′

for a given set of lags h1, · · · ,hp ∈ IRd. Define,

Gθ(ω) =
Ä
cos(ω

′
h1), · · · , cos(ω

′
hp)
ä′
− θ, ω ∈ IRd

Then, it is easy to check that∫
Gθ(ω)ψ(ω)dω = (σ(h1), · · · , σ(hp))

′
− σ(0)θ = 0p.
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Formulation of the Spatial FDEL:examples

Example 2 (Spectral distribution function). For x ∈ IRd, denote the spectral

distribution function by

Ψ(x) =

∫
1(−∞,x](ω)ψ(ω)dω,

where (−∞,x] = (−∞, x1]× · · · × (−∞, xd]. Suppose that

θ = (Ψ(x1), · · · ,Ψ(xp))
′ /∫

ψ(ω)dω

for some fixed x1, · · · , xp ∈ IRd. In this case, it is easy to check that the

relevant estimating function is given by

Gθ(ω) =
(
1(−∞,x1](ω), · · · ,1(−∞,xp](ω)

)′
− θ, ω ∈ IRd.
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Formulation of the Spatial FDEL:examples

Example 3 (Variogram model fitting). Let {2γ(·; θ) : θ ∈ Θ},Θ ⊂ Rp be a class

of variogram models for the (scale-invariant) variogram

2γ(h) ≡ Var(Z(h)− Z(0))/Var(Z(0)),h ∈ Rd.

• Least squares variogram fitting (Cressie, 1993) corresponds to minimizing

a population criterion
∑m
i=1 [2γ(hi)− 2γ(hi; θ))]

2
.

• Taking partial derivatives ∇, the true value θ0 solves (cf. Lahiri, 2002)

m∑
i=1

[2γ(hi)− 2γ(hi; θ)]∇ [2γ(hi; θ)] = 0p,

• or an equivalent spectral estimating equation:∫ [ m∑
i=1

{1− cos(h′iω)− γ(hi; θ)}∇ [2γ(hi; θ)]

]
ψ(ω)dω = 0p.
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Formulation of the Spatial FDEL

To re-iterate,

• Suppose that the parameter of interest is θ ∈ Θ ⊂ IRp which satisfies a

system of spectral estimating equations:∫
IRd

Gθψ = 0,

where Gθ(ω) : IRd ×Θ→ IRp and where ψ is the spectral density of the

Z(·) process.

• Our goal is to define an EL for θ.

• FDEL involves In(·) over a grid of asymptotically distant frequencies in

IRd.
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Formulation of the Spatial FDEL

• Define a grid of N frequencies as

{ωkn}Nk=1 =
¶
jλ−κn : j ∈ Zd ∩ [−Cληn, Cληn]

d
©

where, 0 < κ < 1, κ < η <∞ and C ∈ (0,∞).

• Frequencies {ωkn}Nk=1 form a regular lattice over the hyper-cube

[−Cλη−κn , Cλη−κn ]
d ↑ IRd as n→∞ and covering the frequency domain.

• Any frequency-pairs are asymptotically distant

λdn‖ωjn − ωkn‖ ≥ λd(1−κ)
n →∞.

and the corresponding DFTs are asymptotically independent.
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Formulation of the Spatial FDEL

• RECALL: The ordinary periodogram is NOT asymptotically unbiased

under PID:

E|dn(ω)|2 → c−1
∗ Iψ +K.(2π)dψ(ω), ω ∈ IRd.

• To define EL here, we use the bias corrected periodogram

Ĩn(ω) = |dn(ω)|2 − n−1λdnσ̂n, ω ∈ IR
d.

• With this, we define the Spatial Frequency Domain Empirical

Likelihood (SFDEL) function for θ ∈ Θ as

Ln(θ) = sup

{
N∏
k=1

pk :
N∑
k=1

pk = 1, pk ≥ 0,
N∑
k=1

pkGθ(ωkn)Ĩn(ωkn) = 0

}
.

• Rn(θ) = Ln(θ)/N−N .
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PID asymptotic structure

Theorem 3 (cf. Bandyopadhyay, Lahiri and Nordman (2015))

Let {Z(s) : s ∈ IRd} be a zero-mean second order stationary process satisfying

some standard moment and mixing conditions and that n/λdn → c∗ ∈ (0,∞).

Then,

− logRn(θ0)
d−→ χ2

p as n→∞, a.s. (PX).
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MID with a slow rate of infilling

Theorem 4 (cf. BLN (2015))

Let {Z(s) : s ∈ IRd} be a zero-mean second order stationary process satisfying

some standard moment and mixing conditions and that 1� c2n � Nλ−κdn .

Then,

− logRn(θ0)
d−→ χ2

p as n→∞, a.s. (PX).
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MID with a fast rate of infilling

Theorem 5 (cf. BLN (2015))

Let {Z(s) : s ∈ IRd} be a zero-mean second order stationary process satisfying

some standard moment and mixing conditions and that c2n � Nλ−κdn . Then,

−2 logRn(θ0)
d−→ χ2

p as n→∞, a.s. (PX).

Soutir Bandyopadhyay (Lehigh) IMS, NUS June 2016 27 / 35



A unified scaled spatial FDEL method

• Previous results show the standard calibration −2 log(·) of the EL ratio

statistic may be incorrect depending on the relative rate of infilling.

• While this gives rise to a clear dichotomy in the limit, the choice of the

correct scaling constant and, hence, the correct calibration may not be

obvious in a finite sample application.

• Remedy! We develop a data based scaling factor that adjusts itself to the

relative rates of infilling and delivers a unified χ2
p limit law.
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Modified SFDEL

• Define modified FDEL statistic

−2an(θ0) logRn(θ0)

where an(θ) =

∑N

k=1
‖Gθ(wkn)‖2Ĩn(wkn)∑N

k=1
‖Gθ(wkn)‖2In(wkn)

, a ratio of biased corrected and

uncorrected periodograms

Theorem 6 (cf. BLN (2015))

Suppose that the conditions of one of Theorems 3-5 hold. Then, under θ = θ0,

−2an(θ0) logRn(θ0)
d−→ χ2

p, as n→∞, a.s. (PX).
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Application Examples: Variogram model fitting

Variogram model: 2γ(h; θ1, θ2) = 1− exp [−θ1|h1| − θ2|h2|].

• Gaussian r.f. {Z(s : s ∈ IR2)}, θ1 = θ2 = 1.

• iid uniform sites n = 100, 400, 900, 1400; region Dn = λn[−1/2, 1/2)2.

• 90% modified FDEL regions for (θ1, θ2) using variogram estimating

functions with h1 = (1, 1)′,h2 = (1,−1)′.

• Frequency grid:
¶
jλ−κn : j ∈ Z2 ∩ [−Cλn, Cλn]

d
©

, varying C, κ
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Application Examples: Variogram model fitting

λn = 24 λn = 48

C κ 100 400 900 1400 100 400 900 1400

1 0.05 88.9 87.8 87.8 89.9 89.3 89.4 89.7 87.9

1 0.1 89.0 90.2 89.6 90.4 89.0 91.4 91.5 90.0

1 0.2 90.0 88.7 90.1 89.7 87.6 87.9 87.9 88.9

2 0.05 89.0 88.6 89.7 87.9 89.2 88.9 90.5 89.7

2 0.1 89.2 88.4 91.1 89.9 90.6 90.0 90.0 91.4

2 0.2 88.9 89.9 89.9 89.2 89.9 89.3 88.1 89.4

4 0.05 89.3 89.0 90.1 90.2 92.9 88.2 90.6 89.9

4 0.1 90.3 89.4 90.3 89.2 92.0 87.8 90.8 89.1

4 0.2 88.7 88.9 90.0 89.6 92.8 88.6 88.5 88.8
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Applications: Massive Spatial Data

• FDEL computations require the periodogram on the frequency grid

The grid itself can be orders smaller than the spatial sample size n

Only have to compute the periodogram once & only on half the frequency

grid (by symmetry)

• Whittle Estimation (fitting spectral densities {ψθ : θ ∈ Θ ⊂ Rp})
Use Whittle estimation to avoid computational issues with pure likelihood

estimation (probability distributions) for large data sets

Matsuda and Yajima (2009) introduced a version of the Whittle likelihood

for Gaussian processes under MID spatial structure

FDEL applies to Whittle estimation for PID/MID structures and for

potentially non-Gaussian process.
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Applications: Dependence structure assessments

• We discussed FDEL with p parameters and p estimating functions.

• But, using r > p estimating functions and p parameters, one can

maximize the FDEL ratio Rn(θ) to obtain θ̂n and use

−2an(θ̂n) logRn(θ̂n)
d→ χ2

r−p, as n→∞, a.s. (PX).

to test H0 : moment
∫
IRd

Gθ0(ω)ψ(ω)dω = 0r holds for some θ0.

• This allows tests of

goodness-of-fit or model assessment (e.g., functions based on variogram

model fitting or Whittle estimation)

dependence structure such as spatial isotropy or separability (e.g.,

estimating functions based on correlations or spectral distribution)
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Thank you!
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