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Empirical Likelihood (EL)-Definition

▶ X ∈ R is a random variable following F 0
θ

▶ F 0
θ ∈ Fθ, θ = (θ1, . . . , θd) ∈ Θ ⊆ Rd

▶ h(X, θ) = (h1(X, θ), . . . , hq(X, θ))T are known to satisfy

EF 0
θ
[h(X, θ)] = 0. (1.1)

▶ x = (x1, . . . , xn) are n observations of X

▶ F (xi) = P (X ≤ x) and F (xi−) = P (X < x)

▶ A non-parametric likelihood of F can be defined as

L(F ) =
n∏

i=1
{F (xi) − F (xi−)} (1.2)
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Empirical Likelihood-Definition (Cont’d)

▶ EL estimates F 0
θ by maximising L(F ) over Fθ under constraints

depending on h(x, θ)

▶ Define ωi = F (xi) − F (xi−), for a given θ ∈ Θ. EL computes

ω̂(θ) = argmax
ω∈Wθ

n∑
i=1

log ωi(θ) (1.3)

where

Wθ =
{

ω :
n∑

i=1
ωi(θ)h(xi, θ) = 0

}
∩ ∆n−1.

Here ∆n−1 is the n − 1 dimensional simplex
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Empirical Likelihood - Definition (Cont’d)

▶ F 0
θ can be estimated by

F̂ 0
θ (x) =

n∑
i=1

ω̂i(θ)1{xi≤x}.

▶ The empirical likelihood corresponding to F̂ 0
θ is then given by

L(θ) =
n∏

i=1
ω̂i(θ). (1.4)
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Bayesian Empirical Likelihood

▶ We have prior π(θ)

▶ We can define a posterior as

Π(θ|x) = L(θ)π(θ)∫
L(θ)π(θ)dθ

. (1.5)

1. If L(θ) = n−n, then Π(θ|x) = π(θ)

2. Absence of analytical form
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Bayesian Empirical Likelihood - Problems

Computational issues
▶ No analytical form of posterior - Gibbs sampling fails

▶ Non-convex problem- random walk MH not easy

▶ Mixed effect models-Parallel tempering mixed slowly

Bayesian model selection
▶ Bayes factor -Not easy to calculate
▶ Posterior predictive distribution -The integral is not easily

obtained
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Deviance information criterion(DIC)

▶ f(y|θ) depends on a parameter vector θ ∈ Θ ⊆ Rp

▶ y1, . . . , yn are n i.i.d random variables

▶ A posterior of θ is then given by

Π(θ|y) = p(y|θ)π(θ)∫
θ∈Θ p(y|θ)π(θ)dθ

.

▶ a Bayesian deviance is defined as

D(θ) = −2 log p(y|θ) − 2 log p(y). (2.1)

where p(y) is some fully specified standardizing term which is a
function of the data alone (Spiegelhalter u. a., 2002)
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Deviance information criterion (DIC)

▶ Bayesian model fit is measured by posterior expectation of the
deviance

D(θ) = EΠ [D(θ)] (2.2)

▶ Bayesian model complexity is measured by the effective number
of parameters in the model

pD = D(θ) − D(θ̂Π). (2.3)

where θ̂Π is some posterior estimate of parameter

▶ DIC is defined as

DIC = D(θ) + pD = 2D(θ) − D(θ̂Π) = D(θ̂Π) + 2pD. (2.4)
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Empirical likelihood based DIC - Definition

▶ The empirical likelihood deviance is given by

DEL(θ) = −2
n∑

i=1
log ω̂i(θ) − 2n log n. (2.5)

▶ BayesEL model fit can be defined as BayesEL posterior mean of
(2.5)

DEL(θ) = EΠEL
[DEL(θ)] . (2.6)

▶ BayesEL model complexity is defined as the effective number of
parameters

pEL
D = DEL(θ) − DEL(θ̄EL). (2.7)

▶ θ̄EL is the posterior mean

▶ The empirical likelihood based DIC (ELDIC) is defined as

ELDIC = DEL(θ) + pEL
D . (2.8)
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Empirical likelihood based DIC - Definition (Cont’d)

DIC

D(θ) = −2 log p(θ|y) − 2 log p(y)

DIC = D(θ) + pD

D(θ) = EΠ(D(θ))

pD = D(θ) − D(θ̄Π)

EL based DIC

DEL(θ) = −2 log L(θ) − 2n log n

ELDIC = DEL(θ) + pEL
D

DEL(θ) = EΠEL
[DEL(θ)]

pEL
D = DEL(θ) − DEL(θ̄EL)
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Empirical likelihood based DIC - Definition (Cont’d)

Properties of DIC
▶ Approximate normality of

Π(θ|y) is important!
▶ positivity of pD

▶ decision theoretical
justification

▶ Bayesian version of AIC
(Akaike, 1974)

▶ pD is not invariant to
reparameterization!

Properties of ELDIC
▶ Approximate normality of

ΠEL(θ|y) is important!
▶ positivity of pEL

D

▶ consistency of θ̄EL

▶ decision theoretical
justification

▶ Bayesian version of
ELAIC (Variyath u. a.,
2010)

▶ pEL
D is not invariant to

reparameterization!
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Approximate normality

Theorem 2.1
Let

J(θ̂n) = − 1
n

∂2

∂θ∂θT
log L(θ)

∣∣∣
θ=θ̂n

. (2.9)

Assume that J(θ̂n) and J0 are invertible. Under some regularity condition, for
{θ :∥ θ − θ0 ∥= O(n−1/2)}, the posterior distribution of θ has density

ΠEL(θ|y) ∝ exp
{

− 1
2(θ − θ̄EL)T Jn(θ − θ̄EL) + op(1)

}
(2.10)

where

Jn = J0 + nJ(θ̂n), (2.11)

θ̄EL = J−1
n {J0m0 + nJ(θ̂n)θ̂n}. (2.12)

Furthermore, if J(θ̂n) and J0 are positive definite, J
1/2
n (θ − θ̄EL) D−→ N(0, I).
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Consistency of the posterior mean

Theorem 2.2
Assume m0 = Op(1) and J0 = Op(1), under some regularity
assumption, θ̄EL

p−→ θ0.
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Decision theoretic justification

▶ yrep = (yrep,1, . . . , yrep,n) is a replicate of y = (y1, . . . , yn) from
the same data generating process.

▶ yrep follows F 0
rep,θ, which is actually same as F 0

θ .

▶ Let

Wyrep,θ = {ω :
n∑

i=1
ωih(yrep,i, θ) = 0} ∩ ∆n−1.

▶ Given θ and yrep, an empirical likelihood of yrep is

Lrep(θ) =
n∏

i=1
ω̂rep,i

where ω̂rep = (ω̂rep,1, . . . , ω̂rep,n) and

ω̂rep = argmax
ω∈Wyrep,θ

n∑
i=1

log ωi.
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Decision theoretic justification (Cont’d)

▶ The loss function of using the observed data y to predict yrep

L(yrep, y) = −2 log Lrep(θ̃(y)) − 2n log n = −2
n∑

i=1
log nω̂rep,i

(2.13)

▶ θ̃(y) is a summary of θ based on the observed data y.

▶ The BayesEL posterior predictive distribution function

F (yrep|y) =
∫

ΠEL(θ|y)F 0
rep,θdθ. (2.14)

▶ The risk of predicting yrep by using y

R(y) = Eyrep|y(L(yrep, y)) =
∫

L(yrep, y)dF (yrep|y). (2.15)
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Decision theoretic justification (Cont’d)

Theorem 2.3
If θ̃(y) = θ̄EL, assuming that yrep and y are generated from the same
mechanism, we get

Ey(R(y)) = EyEyrep|y (L(yrep, y)) = Ey(ELDIC) + o(1). (2.16)

Under a diffused prior (i.e. J0 = op(1) ). By Theorem 2.1, we have
θ̄EL ≈ θ̂n and pEL

D ≈ p. Thus

ELDIC = DEL(θ̄EL) + 2pEL
D ≈ −2 log L(θ̂n) + 2p.

ELDIC reduces to empirical likelihood based AIC(Variyath u. a.,
2010).
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Prior varying with the size of samples

Consider the following three classes of priors.
1 For π1(θ), m0,n = Op(1), J0,n = op(n)

2 For π2(θ), m0,n = θ0 + op(1), J0,n = Op(n)

3 For π3(θ), m0,n = θ0 + op(1), J0,n = Op(n1+α), where α > 0
Note that

▶ π1(θ), J0,n increases in a slower rate than n.

▶ π2(θ) is shrinking to θ0 at the same rate of n

▶ π3(θ) is shrinking to θ0 at a faster rate than n.
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Prior varying with the size of samples

Theorem 2.4
Assume that λ(1)J(θ̂n)) and λ(1)(J(θ̂n)−1) are bounded. Under the
same assumptions in Theorem 2.1, under the priors π1(θ), π2(θ) and
π3(θ), θ̄EL

p−→ θ0.

Theorem 2.5
Under the same assumption of Theorem 2.4, let p be the dimension
of the parameter, the following statements hold.

1 If the prior is π1(θ), pEL
D

p−→ p, as n → ∞
2 If the prior is π2(θ), then pEL

D < p, as n → ∞.

3 If the prior is π3(θ), then pEL
D

p−→ 0, as n → ∞
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An alternative definition of pEL
D

▶ Recall that pD is not invariant to reparameterization!

▶ Gelman u. a. (2003) defined an alternative measure

pV = VΠ[D(θ)]
2

.

▶ pEL
D is also not invariant to reparameterization!

▶ We define
pEL

V = VΠEL
(DEL(θ))

2
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An alternative definition of pEL
D (Cont’d)

Theorem 2.6
Assume J0 = op(1), under the same assumptions in Theorem 2.4, we
have

pEL
V = pEL

D + op(1) (2.17)

Corollary 2.7
Define ELDIC(2) = DEL(θ̄EL) + 2pEL

V , then we have

Ey (R(y)) = Ey(ELDIC(2)) + o(1) (2.18)



. . . . . .

Priors and P EL
D

▶ The predictor vector xi = (xi1, xi2, xi3, xi4, xi5)T was generated
independently from N (0, I), where I is the identity matrix.

▶ The coefficient vector β = (β1, β2, β3, β4, β5) was generated
independently from N (0, 0.25I).

▶ 100 independent observations were generated from a linear
regression model given by

yi = xT
i β + ϵi , i = 1, 2, . . . , 100,

where ϵi follows N(0, 2.52).
▶ Three priors of β are considered. They are N(0, 100), N(β0, 0.01)

and N(β0, 0.001) respectively. In π2(β) and π3(β), β0 is the true
value of β.
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Priors and P EL
D

Suppose ω = (ω1, . . . , ωn) is the vector of jumps of the estimated joint
distribution of y and x at the ith observation. We define the set of
constraints as

Wβ =

{
ω :

n∑
i=1

ωi(yi − xT
i β) = 0,

n∑
i=1

ωixij(yi − xT
i β) = 0, j = 1, . . . , 5

}
∩∆99.

Given β, the empirical likelihood is given by

L(β) =
n∏

i=1

ω̂i (2.19)

where

ω̂ = arg max
ω∈Wβ

n∑
i=1

log ωi.
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Priors and P EL
D

Table: The means and standard deviations (sd) of DEL(θ), DEL(θ̄EL),
pEL

D and pEL
V for 1000 repetitions under priors N(0, 100), N(β0, 0.01) and

N(β0, 0.001) respectively.

Priors DEL(θ) D(θ̄EL) pEL
D pEL

V

Mean sd Mean sd Mean sd Mean sd

N (0, 100) 7.65 2.92 2.62 2.92 5.04 0.12 5.14 0.32

N (β0, 0.1) 6.48 2.80 3.29 2.77 3.19 0.17 3.06 0.68

N (β0, 0.001) 8.85 5.77 8.76 5.77 0.09 0.02 0.26 0.23
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Variables selection for over-dispersed Poisson
regression

▶ We have marginal distribution of y such that

E(y) = µ V ar(y) = µ(1 + µλ)

▶ We consider a four covariates generalized linear model such that

log(µ) = β0 + x1β1 + x2β2 + x3β3 + x4β4

with β = c(0.5, 0.5, 0.6, 0, 0).

▶ The covariance structure is cov(xi, xj) = (0.5)|i−j| and λ has four
levels, (0, 1/8, 1/6, 1/4)
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Variables selection for over-dispersed Poisson
regression

Similar to linear model example, we use γγγ = (γ1, . . . , γ4) to denote model and
xiγγγ to denote the ith observation for covariate vector of model γγγ. Let βγγγ be
the corresponding coefficient vector. Then the set of constraints is defined as

Wβγγγ=
{

ω :
n∑

i=1

ωi(yi − exp{β0 + xiγγγβγγγ})=0,

n∑
i=1

ωixij(yi − exp{β0 + xiγγγβγγγ})=0,

j = 1, 2, 3, 4}
}

∩ ∆99

The empirical likelihood under model γγγ is given by

L(βγγγ) =
n∏

i=1

ω̂i (2.20)

where

ω̂ = arg max
ω∈Wβγγγ

n∑
i=1

log ωi.
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Variables selection for over-dispersed Poisson
regression

Table: Comparison of ELDIC(1), ELDIC(2), DIC(1) and DIC(2) based on
% time the model selected (1) TM; (2) TM+1; (3) TM+2 with different
over-dispersed parameter.

λ Model ELDIC(1) ELDIC(2) DIC(1) DIC(2)

0 TM 0.676 0.660 0.712 0.684
TM+1 0.942 0.940 0.964 0.954
TM+2 1.000 1.000 1.000 1.000

1/8 TM 0.620 0.604 0.548 0.508
TM+1 0.944 0.930 0.896 0.888
TM+2 1.000 1.000 1.000 1.000

1/6 TM 0.624 0.606 0.548 0.518
TM+1 0.954 0.950 0.902 0.880
TM+2 1.000 1.000 1.000 1.000

1/4 TM 0.592 0.590 0.440 0.418
TM+1 0.920 0.928 0.876 0.842
TM+2 0.994 0.992 0.998 0.998
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Analysis of gene expression data

▶ Data is from n = 118 microarray experiments collected and
analyzed by (Wille u. a., 2004)

▶ To reveal the correlation structure of these genes, Wille u. a.
(2004) proposed a modified graphical gaussian modeling
approach where the dependence between two genes was
investigated only conditioning on a third one rather than all the
other genes at a time.

▶ Drton u. Perlman (2007) employed a multiple testing based
graphical model selection approach to analyze 13 genes from
the MEP pathway in Wille u. a. (2004).

▶ We apply ELDIC on the same genes as Drton u. Perlman (2007).

▶ Prior settings: βγ ∼ double exponential(0, 100).
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Analysis of gene expression data - Cont’d

▶ These 13 genes are well ordered and observations for each one
are standardized.

▶ For each gene, or say node, a linear model is applied.
▶ All ancestors of the given node are considered as potential

covariates in the linear model.
▶ Our goal is to select a directed acyclic graphic (DAG) model,

which can best illustrate the correlation structure among these
genes.
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Analysis of gene expression data - Cont’d

▶ Suppose k ∈ {4, 5, . . . , 13} indicate the number of the gene and
gk indicate the kth gene.

▶ Given the gk, the model to fit this gene is denoted by
γγγk = (γ1, . . . , γk−1), where γi, is 1 when gi is in the model and 0
otherwise.

▶ Let gγγγk be the covariates, βγγγk be the corresponding coefficient
vector, andϵγγγk be the error which has mean 0 and variance σ2

γγγk .

▶ The model γγγk is then given by

gk = βγγγk gγγγk + ϵγγγk (2.21)

▶ Prior settings: βγ ∼ double exponential(0, 100)
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Analysis of gene expression data - Cont’d

Suppose that (g(i)
k , g

(i)
γγγk ) is the ith observations of (gk, gγγγk ). Let ωi is the

weight in the empirical likelihood for the data (gk, gγγγk ). The set of constraints
for empirical likelihood given node k is defined as

Wβ
γγγk =

{
ω :

n∑
i=1

ωi

(
g

(i)
k − [g(i)

γγγk ]T βγγγk

)
= 0,

n∑
i=1

ωig
(i)
j

(
g

(i)
k − [g(i)

γγγk ]T βγγγk

)
= 0

j = 4, . . . , k
}

∩ ∆118. (2.22)

Given βγγγk , the empirical likelihood is given by

L(βγγγk ) =
n∏

i=1

ω̂i

where

ω̂ = argmax
ω∈Wβ

γγγk

n∑
i=1

log ωi
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Analysis of gene expression data

Figure: Graphic Model for gene data
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Application to gene expression data (RJMCMC)

Figure: Graphic Model for gene data
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Conclusion and discussion

▶ The proposed ELDIC has similar form to the classical DIC

▶ The model with minimum value of ELDIC is selected

▶ Heuristically, the model with the minimum ELDIC has the
smallest posterior predictive risk

▶ The proposed BayEL based estimate for the effective number of
parameters in the model is valid

▶ Application of ELDIC on the other models remains an open
problem

▶ The magnitude of significant difference between values of
ELDICs is still not clear
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Thank you !
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