Empirical Likelihood Based Deviance Information Criterion

Yin Teng

Smart and Safe City Center of Excellence NCS Pte Ltd

June 22, 2016

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Bayesian empirical likelihood Definition Problems

Empirical likelihood based deviance information criterion Deviance information criterion Empirical likelihood based DIC Simulation studies and real data analysis Conclusion and discussion

Outline

Bayesian empirical likelihood Definition Problems

Empirical likelihood based deviance information criterion Deviance information criterion Empirical likelihood based DIC Simulation studies and real data analysis Conclusion and discussion

Empirical Likelihood (EL)-Definition

• $X \in \mathbb{R}$ is a random variable following F_{θ}^0

•
$$F^0_{\theta} \in \mathcal{F}_{\theta}, \, \theta = (\theta_1, \dots, \theta_d) \in \Theta \subseteq \mathbb{R}^d$$

►
$$h(X, \theta) = (h_1(X, \theta), \dots, h_q(X, \theta))^T$$
 are known to satisfy
 $E_{F_{\theta}^0}[h(X, \theta)] = 0.$

- $x = (x_1, \ldots, x_n)$ are *n* observations of *X*
- $F(x_i) = P(X \le x)$ and $F(x_i-) = P(X < x)$
- A non-parametric likelihood of F can be defined as

$$\mathcal{L}(F) = \prod_{i=1}^{n} \{F(x_i) - F(x_i)\}$$
(1.2)

(1.1)

Empirical Likelihood-Definition (Cont'd)

- ► EL estimates F⁰_θ by maximising L(F) over F_θ under constraints depending on h(x, θ)
- ▶ Define $\omega_i = F(x_i) F(x_i)$, for a given $\theta \in \Theta$. EL computes

$$\hat{\omega}(\theta) = \operatorname*{argmax}_{\omega \in \mathcal{W}_{\theta}} \sum_{i=1}^{n} \log \omega_i(\theta)$$
(1.3)

where

$$\mathcal{W}_{\theta} = \left\{ \omega : \sum_{i=1}^{n} \omega_i(\theta) h(x_i, \theta) = 0 \right\} \cap \Delta_{n-1}.$$

Here Δ_{n-1} is the n-1 dimensional simplex

Empirical Likelihood - Definition (Cont'd)

• F^0_{θ} can be estimated by

$$\hat{F}^0_{\theta}(x) = \sum_{i=1}^n \hat{\omega}_i(\theta) \mathbb{1}_{\{x_i \le x\}}.$$

► The empirical likelihood corresponding to \hat{F}_{θ}^{0} is then given by

$$L(\theta) = \prod_{i=1}^{n} \hat{\omega}_i(\theta).$$
(1.4)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Bayesian Empirical Likelihood

- We have prior $\pi(\theta)$
- We can define a posterior as

$$\Pi(\theta|x) = \frac{L(\theta)\pi(\theta)}{\int L(\theta)\pi(\theta)d\theta}.$$
(1.5)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- 1. If $L(\theta) = n^{-n}$, then $\Pi(\theta|x) = \pi(\theta)$
- 2. Absence of analytical form

Bayesian Empirical Likelihood - Problems

Computational issues

- No analytical form of posterior Gibbs sampling fails
- Non-convex problem- random walk MH not easy
- Mixed effect models-Parallel tempering mixed slowly

Bayesian model selection

- Bayes factor -Not easy to calculate
- Posterior predictive distribution -The integral is not easily obtained

Outline

Bayesian empirical likelihood Definition Problems

Empirical likelihood based deviance information criterion Deviance information criterion Empirical likelihood based DIC Simulation studies and real data analysis Conclusion and discussion

Deviance information criterion(DIC)

- ▶ $f(y|\theta)$ depends on a parameter vector $\theta \in \Theta \subseteq \mathbb{R}^p$
- y_1, \ldots, y_n are *n* i.i.d random variables
- A posterior of θ is then given by

$$\Pi(\theta|y) = \frac{p(y|\theta)\pi(\theta)}{\int_{\theta\in\Theta} p(y|\theta)\pi(\theta)d\theta}.$$

a Bayesian deviance is defined as

$$D(\theta) = -2\log p(y|\theta) - 2\log p(y).$$
(2.1)

where p(y) is some fully specified standardizing term which is a function of the data alone (Spiegelhalter u. a., 2002)

Deviance information criterion (DIC)

 Bayesian model fit is measured by posterior expectation of the deviance

$$\overline{D(\theta)} = E_{\Pi} \left[D(\theta) \right] \tag{2.2}$$

 Bayesian model complexity is measured by the effective number of parameters in the model

$$p_D = \overline{D(\theta)} - D(\hat{\theta}_{\Pi}).$$
(2.3)

where $\hat{\theta}_{\Pi}$ is some posterior estimate of parameter

DIC is defined as

$$DIC = \overline{D(\theta)} + p_D = 2\overline{D(\theta)} - D(\hat{\theta}_{\Pi}) = D(\hat{\theta}_{\Pi}) + 2p_D.$$
 (2.4)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Empirical likelihood based DIC - Definition

The empirical likelihood deviance is given by

$$D_{EL}(\theta) = -2\sum_{i=1}^{n} \log \hat{\omega}_i(\theta) - 2n \log n.$$
 (2.5)

 BayesEL model fit can be defined as BayesEL posterior mean of (2.5)

$$\overline{D_{EL}(\theta)} = E_{\Pi_{EL}} \left[D_{EL}(\theta) \right].$$
(2.6)

 BayesEL model complexity is defined as the effective number of parameters

$$p_D^{EL} = \overline{D_{EL}(\theta)} - D_{EL}(\overline{\theta}_{EL}).$$
(2.7)

- $\bar{\theta}_{EL}$ is the posterior mean
- The empirical likelihood based DIC (ELDIC) is defined as

$$ELDIC = \overline{D_{EL}(\theta)} + p_D^{EL}.$$
 (2.8)

Empirical likelihood based DIC - Definition (Cont'd)

DIC

$$D(\theta) = -2\log p(\theta|y) - 2\log p(y)$$
$$DIC = \overline{D(\theta)} + p_D$$
$$\overline{D(\theta)} = E_{\Pi}(D(\theta))$$
$$p_D = \overline{D(\theta)} - D(\overline{\theta}_{\Pi})$$

EL based DIC

 $\begin{aligned} D_{EL}(\theta) &= -2\log L(\theta) - 2n\log n\\ \\ ELDIC &= \overline{D_{EL}(\theta)} + p_D^{EL}\\ \\ \overline{D_{EL}(\theta)} &= E_{\Pi_{EL}}\left[D_{EL}(\theta)\right]\\ \\ p_D^{EL} &= \overline{D_{EL}(\theta)} - D_{EL}(\bar{\theta}_{EL}) \end{aligned}$

Empirical likelihood based DIC - Definition (Cont'd)

Properties of DIC

- ► Approximate normality of Π(θ|y) is important!
 - ▶ positivity of p_D
 - decision theoretical justification
 - Bayesian version of AIC (Akaike, 1974)
- ► *p*_D is not invariant to reparameterization!

Properties of ELDIC

- Approximate normality of Π_{EL}(θ|y) is important!
 - positivity of p_D^{EL}
 - consistency of $\bar{\theta}_{EL}$
 - decision theoretical justification
 - Bayesian version of ELAIC (Variyath u. a., 2010)
- ► p_D^{EL} is not invariant to reparameterization!

Approximate normality

Theorem 2.1

$$J(\hat{\theta}_n) = -\frac{1}{n} \frac{\partial^2}{\partial \theta \partial \theta^T} \log L(\theta) \Big|_{\theta = \hat{\theta}_n}.$$
(2.9)

Assume that $J(\hat{\theta}_n)$ and J_0 are invertible. Under some regularity condition, for $\{\theta : \| \theta - \theta_0 \| = O(n^{-1/2})\}$, the posterior distribution of θ has density

$$\Pi_{EL}(\theta|y) \propto \exp\left\{-\frac{1}{2}(\theta - \bar{\theta}_{EL})^T J_n(\theta - \bar{\theta}_{EL}) + o_p(1)\right\}$$
(2.10)

where

$$J_n = J_0 + nJ(\hat{\theta}_n),$$
 (2.11)

$$\bar{\theta}_{EL} = J_n^{-1} \{ J_0 m_0 + n J(\hat{\theta}_n) \hat{\theta}_n \}.$$
 (2.12)

Furthermore, if $J(\hat{\theta}_n)$ and J_0 are positive definite, $J_n^{1/2}(\theta - \bar{\theta}_{EL}) \xrightarrow{D} N(0, I)$.

くしゃ 山市 ・山市・山市・山市・山市

Consistency of the posterior mean

Theorem 2.2 Assume $m_0 = O_p(1)$ and $J_0 = O_p(1)$, under some regularity assumption, $\bar{\theta}_{EL} \xrightarrow{p} \theta_0$.

Decision theoretic justification

► Let

▶ y_{rep} = (y_{rep,1},..., y_{rep,n}) is a replicate of y = (y₁,..., y_n) from the same data generating process.

► y_{rep} follows $F^0_{rep,\theta}$, which is actually same as F^0_{θ} .

$$\mathcal{W}_{y_{rep},\theta} = \{\omega : \sum_{i=1}^{n} \omega_i h(y_{rep,i},\theta) = 0\} \cap \Delta_{n-1}.$$

• Given θ and y_{rep} , an empirical likelihood of y_{rep} is

$$L_{rep}(\theta) = \prod_{i=1}^{n} \hat{\omega}_{rep,i}$$

where $\hat{\omega}_{rep} = (\hat{\omega}_{rep,1}, \dots, \hat{\omega}_{rep,n})$ and

$$\hat{\omega}_{rep} = \operatorname*{argmax}_{\omega \in \mathcal{W}_{y_{rep},\theta}} \sum_{i=1}^{n} \log \omega_i.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Decision theoretic justification (Cont'd)

► The loss function of using the observed data y to predict y_{rep}

$$\mathcal{L}(y_{rep}, y) = -2\log L_{rep}(\tilde{\theta}(y)) - 2n\log n = -2\sum_{i=1}^{n}\log n\hat{\omega}_{rep,i}$$
(2.13)

- $\tilde{\theta}(y)$ is a summary of θ based on the observed data y.
- The BayesEL posterior predictive distribution function

$$F(y_{rep}|y) = \int \Pi_{EL}(\theta|y) F^0_{rep,\theta} d\theta.$$
 (2.14)

• The risk of predicting y_{rep} by using y

$$\mathcal{R}(y) = E_{y_{rep}|y}(\mathcal{L}(y_{rep}, y)) = \int \mathcal{L}(y_{rep}, y) dF(y_{rep}|y).$$
 (2.15)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Decision theoretic justification (Cont'd)

Theorem 2.3 If $\tilde{\theta}(y) = \bar{\theta}_{EL}$, assuming that y_{rep} and y are generated from the same mechanism, we get

$$E_y(\mathcal{R}(y)) = E_y E_{y_{rep}|y}\left(\mathcal{L}(y_{rep}, y)\right) = E_y(ELDIC) + o(1).$$
 (2.16)

Under a diffused prior (i.e. $J_0 = o_p(1)$). By Theorem 2.1, we have $\bar{\theta}_{EL} \approx \hat{\theta}_n$ and $p_D^{EL} \approx p$. Thus

$$ELDIC = D_{EL}(\bar{\theta}_{EL}) + 2p_D^{EL} \approx -2\log L(\hat{\theta}_n) + 2p.$$

ELDIC reduces to empirical likelihood based AIC(Variyath u. a., 2010).

Prior varying with the size of samples

Consider the following three classes of priors.

1 For
$$\pi_1(\theta)$$
, $m_{0,n} = O_p(1)$, $J_{0,n} = o_p(n)$

2 For $\pi_2(\theta)$, $m_{0,n} = \theta_0 + o_p(1)$, $J_{0,n} = O_p(n)$

3 For $\pi_3(\theta)$, $m_{0,n} = \theta_0 + o_p(1)$, $J_{0,n} = O_p(n^{1+\alpha})$, where $\alpha > 0$ Note that

- $\pi_1(\theta)$, $J_{0,n}$ increases in a slower rate than n.
- $\pi_2(\theta)$ is shrinking to θ_0 at the same rate of n
- $\pi_3(\theta)$ is shrinking to θ_0 at a faster rate than *n*.

Prior varying with the size of samples

Theorem 2.4

Assume that $\lambda_{(1)}J(\hat{\theta}_n)$ and $\lambda_{(1)}(J(\hat{\theta}_n)^{-1})$ are bounded. Under the same assumptions in Theorem 2.1, under the priors $\pi_1(\theta)$, $\pi_2(\theta)$ and $\pi_3(\theta)$, $\bar{\theta}_{EL} \xrightarrow{p} \theta_0$.

Theorem 2.5

Under the same assumption of Theorem 2.4, let p be the dimension of the parameter, the following statements hold.

- 1 If the prior is $\pi_1(\theta)$, $p_D^{EL} \xrightarrow{p} p$, as $n \to \infty$
- 2 If the prior is $\pi_2(\theta)$, then $p_D^{EL} < p$, as $n \to \infty$.
- 3 If the prior is $\pi_3(\theta)$, then $p_D^{EL} \xrightarrow{p} 0$, as $n \to \infty$

An alternative definition of p_D^{EL}

- ▶ Recall that *p*^{*D*} is not invariant to reparameterization!
- ► Gelman u. a. (2003) defined an alternative measure

$$p_V = \frac{V_{\Pi}[D(\theta)]}{2}.$$

- ► p_D^{EL} is also not invariant to reparameterization!
- ► We define

$$p_V^{EL} = \frac{V_{\Pi_{EL}}(D_{EL}(\theta))}{2}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An alternative definition of p_D^{EL} (Cont'd)

Theorem 2.6 Assume $J_0 = o_p(1)$, under the same assumptions in Theorem 2.4, we have

$$p_V^{EL} = p_D^{EL} + o_p(1)$$
(2.17)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Corollary 2.7
Define
$$ELDIC^{(2)} = D_{EL}(\bar{\theta}_{EL}) + 2p_V^{EL}$$
, then we have

$$E_y(\mathcal{R}(y)) = E_y(ELDIC^{(2)}) + o(1)$$
 (2.18)

Priors and P_D^{EL}

- ► The predictor vector x_i = (x_{i1}, x_{i2}, x_{i3}, x_{i4}, x_{i5})^T was generated independently from N(0, I), where I is the identity matrix.
- ► The coefficient vector β = (β₁, β₂, β₃, β₄, β₅) was generated independently from N(0, 0.25I).
- 100 independent observations were generated from a linear regression model given by

$$y_i = x_i^T \beta + \epsilon_i \quad , i = 1, 2, \dots, 100,$$

where ϵ_i follows $N(0, 2.5^2)$.

► Three priors of β are considered. They are N(0, 100), $N(\beta_0, 0.01)$ and $N(\beta_0, 0.001)$ respectively. In $\pi_2(\beta)$ and $\pi_3(\beta)$, β_0 is the true value of β .

Priors and P_D^{EL}

Suppose $\omega = (\omega_1, \ldots, \omega_n)$ is the vector of jumps of the estimated joint distribution of y and x at the i^{th} observation. We define the set of constraints as

$$\mathcal{W}_{\beta} = \left\{ \omega : \sum_{i=1}^{n} \omega_i (y_i - x_i^T \beta) = 0, \sum_{i=1}^{n} \omega_i x_{ij} (y_i - x_i^T \beta) = 0, j = 1, \dots, 5 \right\} \cap \Delta_{99}.$$

Given β , the empirical likelihood is given by

$$L(\beta) = \prod_{i=1}^{n} \hat{\omega}_i \tag{2.19}$$

where

$$\hat{\omega} = \arg \max_{\omega \in \mathcal{W}_{\beta}} \sum_{i=1}^{n} \log \omega_i.$$

Priors and P_D^{EL}

Table: The means and standard deviations (sd) of $\overline{D_{EL}}(\theta)$, $D_{EL}(\overline{\theta}_{EL})$, p_D^{EL} and p_V^{EL} for 1000 repetitions under priors N(0, 100), $N(\beta_0, 0.01)$ and $N(\beta_0, 0.001)$ respectively.

Priors	$\overline{D_{EL}(\theta)}$		$D(\bar{\theta}_{EL})$		p_D^{EL}		p_V^{EL}	
	Mean	sd	Mean	sd	Mean	sd	Mean	sd
$\mathcal{N}(0, 100)$	7.65	2.92	2.62	2.92	5.04	0.12	5.14	0.32
$\mathcal{N}(eta_0, 0.1)$	6.48	2.80	3.29	2.77	3.19	0.17	3.06	0.68
$\mathcal{N}(eta_0, 0.001)$	8.85	5.77	8.76	5.77	0.09	0.02	0.26	0.23

Variables selection for over-dispersed Poisson regression

We have marginal distribution of y such that

$$E(y) = \mu$$
 $Var(y) = \mu(1 + \mu\lambda)$

We consider a four covariates generalized linear model such that

$$\log(\mu) = \beta_0 + x_1\beta_1 + x_2\beta_2 + x_3\beta_3 + x_4\beta_4$$

with $\beta = c(0.5, 0.5, 0.6, 0, 0)$.

► The covariance structure is $cov(x_i, x_j) = (0.5)^{|i-j|}$ and λ has four levels, (0, 1/8, 1/6, 1/4)

Variables selection for over-dispersed Poisson regression

Similar to linear model example, we use $\gamma = (\gamma_1, \dots, \gamma_4)$ to denote model and $x_{i\gamma}$ to denote the i^{th} observation for covariate vector of model γ . Let β_{γ} be the corresponding coefficient vector. Then the set of constraints is defined as

$$\mathcal{W}_{\beta_{\gamma}} = \left\{ \omega : \sum_{i=1}^{n} \omega_i (y_i - \exp\{\beta_0 + x_{i\gamma}\beta_{\gamma}\}) = 0, \sum_{i=1}^{n} \omega_i x_{ij} (y_i - \exp\{\beta_0 + x_{i\gamma}\beta_{\gamma}\}) = 0, \\ j = 1, 2, 3, 4\} \right\} \cap \Delta_{99}$$

The empirical likelihood under model γ is given by

$$L(\beta_{\gamma}) = \prod_{i=1}^{n} \hat{\omega}_i$$
(2.20)

where

$$\hat{\omega} = \arg \max_{\omega \in \mathcal{W}_{\beta_{\gamma}}} \sum_{i=1}^{n} \log \omega_i.$$

・ロト・日本・日本・日本・日本・日本

Variables selection for over-dispersed Poisson regression

Table: Comparison of $ELDIC^{(1)}$, $ELDIC^{(2)}$, $DIC^{(1)}$ and $DIC^{(2)}$ based on % time the model selected (1) TM; (2) TM+1; (3) TM+2 with different over-dispersed parameter.

λ	Model	$ELDIC^{(1)}$	$ELDIC^{(2)}$	$DIC^{(1)}$	$DIC^{(2)}$
7	Model	ELDIC	ELDIC	DIC	DIC
0	TM	0.676	0.660	0.712	0.684
	TM+1	0.942	0.940	0.964	0.954
	TM+2	1.000	1.000	1.000	1.000
1/8	TM	0.620	0.604	0.548	0.508
	TM+1	0.944	0.930	0.896	0.888
	TM+2	1.000	1.000	1.000	1.000
1/6	TM	0.624	0.606	0.548	0.518
	TM+1	0.954	0.950	0.902	0.880
	TM+2	1.000	1.000	1.000	1.000
1/4	TM	0.592	0.590	0.440	0.418
	TM+1	0.920	0.928	0.876	0.842
	TM+2	0.994	0.992	0.998	0.998

Analysis of gene expression data

- Data is from n = 118 microarray experiments collected and analyzed by (Wille u. a., 2004)
- To reveal the correlation structure of these genes, Wille u. a. (2004) proposed a modified graphical gaussian modeling approach where the dependence between two genes was investigated only conditioning on a third one rather than all the other genes at a time.
- Drton u. Perlman (2007) employed a multiple testing based graphical model selection approach to analyze 13 genes from the MEP pathway in Wille u. a. (2004).
- ▶ We apply ELDIC on the same genes as Drton u. Perlman (2007).
- Prior settings: $\beta_{\gamma} \sim double \ exponential(0, 100).$

Analysis of gene expression data - Cont'd

- These 13 genes are well ordered and observations for each one are standardized.
- ► For each gene, or say node, a linear model is applied.
- All ancestors of the given node are considered as potential covariates in the linear model.
- Our goal is to select a directed acyclic graphic (DAG) model, which can best illustrate the correlation structure among these genes.

Analysis of gene expression data - Cont'd

- Suppose $k \in \{4, 5, ..., 13\}$ indicate the number of the gene and g_k indicate the k^{th} gene.
- ► Given the g_k, the model to fit this gene is denoted by γ^k = (γ₁,..., γ_{k-1}), where γ_i, is 1 when g_i is in the model and 0 otherwise.
- Let g_{γ^k} be the covariates, β_{γ^k} be the corresponding coefficient vector, and ε_{γ^k} be the error which has mean 0 and variance σ²_{γ^k}.
- The model γ^k is then given by

$$g_k = \beta_{\boldsymbol{\gamma}^k} g_{\boldsymbol{\gamma}^k} + \epsilon_{\boldsymbol{\gamma}^k} \tag{2.21}$$

• Prior settings: $\beta_{\gamma} \sim double \ exponential(0, 100)$

Analysis of gene expression data - Cont'd

Suppose that $(g_k^{(i)}, g_{\gamma k}^{(i)})$ is the i^{th} observations of $(g_k, g_{\gamma k})$. Let ω_i is the weight in the empirical likelihood for the data $(g_k, g_{\gamma k})$. The set of constraints for empirical likelihood given node k is defined as

$$\mathcal{W}_{\beta_{\gamma^{k}}} = \left\{ \omega : \sum_{i=1}^{n} \omega_{i} \left(g_{k}^{(i)} - [g_{\gamma^{k}}^{(i)}]^{T} \beta_{\gamma^{k}} \right) = 0, \sum_{i=1}^{n} \omega_{i} g_{j}^{(i)} \left(g_{k}^{(i)} - [g_{\gamma^{k}}^{(i)}]^{T} \beta_{\gamma^{k}} \right) = 0 \\ j = 4, \dots, k \right\} \cap \Delta_{118}.$$
(2.22)

Given β_{γ^k} , the empirical likelihood is given by

$$L(\beta_{\pmb{\gamma}^k}) = \prod_{i=1}^n \hat{\omega}_i$$

where

$$\hat{\omega} = \operatorname*{argmax}_{\omega \in \mathcal{W}_{\beta_{\gamma^k}}} \sum_{i=1}^n \log \omega_i$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Analysis of gene expression data

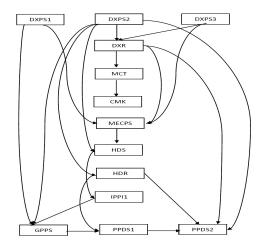


Figure: Graphic Model for gene data

Application to gene expression data (RJMCMC)

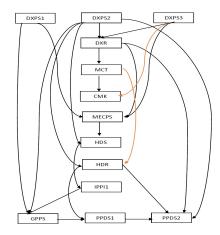


Figure: Graphic Model for gene data

Conclusion and discussion

- The proposed ELDIC has similar form to the classical DIC
- ► The model with minimum value of ELDIC is selected
- Heuristically, the model with the minimum ELDIC has the smallest posterior predictive risk
- The proposed BayEL based estimate for the effective number of parameters in the model is valid
- Application of ELDIC on the other models remains an open problem
- The magnitude of significant difference between values of ELDICs is still not clear

Thank you !

・ロト・西ト・ヨト・ヨー シック

Bibliography I

[Akaike 1974] AKAIKE, Hirotugu: A new look at the statistical model identification. In: Automatic Control, IEEE Transactions on 19 (1974), Nr. 6, S. 716–723

[Drton u. Perlman 2007] DRTON, Mathias ; PERLMAN, Michael D.: Multiple testing and error control in Gaussian graphical model selection. In: *Statistical Science* (2007), S. 430–449

[Gelman u. a. 2003] GELMAN, Andrew ; CARLIN, John B. ; STERN, Hal S. ; RUBIN, Donald B.: *Bayesian data analysis*. Chapman & Hall/CRC, 2003

[Spiegelhalter u. a. 2002] SPIEGELHALTER, David J.; BEST, Nicola G. ; CARLIN, Bradley P.; VAN DER LINDE, Angelika: Bayesian measures of model complexity and fit. In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 64 (2002), Nr. 4, S. 583–639

[Variyath u. a. 2010] VARIYATH, Asokan M.; CHEN, Jiahua; ABRAHAM, Bovas: Empirical likelihood based variable selection. In: *Journal of Statistical Planning and Inference* 140 (2010), Nr. 4, S. 971–981

Bibliography II

[Wille u. a. 2004] WILLE, Anja ; ZIMMERMANN, Philip ; VRANOVÁ, Eva ; FÜRHOLZ, Andreas ; LAULE, Oliver ; BLEULER, Stefan ; HENNIG, Lars ; PRELIC, Amela ; ROHR, Peter von ; THIELE, Lothar u. a.: Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. In: *Genome Biol* 5 (2004), Nr. 11, S. R92