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Design-based Inference for Surveys

Survey population: U = {1, 2, . . . ,N}
U is treated as fixed

Measures of variables (yi, xi) are non-random; attached to units

Probability sampling design: P(S)

The set of sampled units, S, is random

First and second order inclusion probabilities:

πi = P(i ∈ S) , πij = P(i, j ∈ S)

Design-based inference: Frequentist interpretation with respect
to the probability sampling design for the given finite population

4 / 41



Public-Use Survey Data Empirical Likelihood Inference Bayesian Empirical Likelihood Additional Remarks

The Horvitz-Thompson Estimator

The population total of y: Ty =
∑N

i=1 yi

The HT estimator of Ty:

T̂yHT =
∑
i∈S

yi

πi
=
∑
i∈S

diyi

The basic design weights: di = 1/πi

The HT estimator is the only design-unbiased estimator in a
sub-class of the Godambe class of linear estimators

Variance estimation: Require πi and πij (πii = πi)

v
(
T̂yHT

)
=
∑
i∈S

∑
j∈S

πij − πiπj

πij

yi

πi

yj

πj
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Professor V. P. Godambe (June 1, 1926 – June 9, 2016)
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Major Practical Issues with Survey Data

Nonresponse
Unit nonresponse: No information is available for any intended
measures
Item nonresponse: Measures on certain variables are missing

Calibration
The calibration weights wi minimize a distance measure between
(w1, . . . ,wn) and (d1, . . . , dn)
The calibration weights satisfy the benchmark constraints
(calibration equations) ∑

i∈S

wixi = Tx

where Tx are the known population totals of auxiliary variables x

Why calibration? (1) Efficiency (2) Internal consistency
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Production of Public-Use Survey Data Files

Unit nonresponse adjustment:
Ratio adjustment for uniform nonresponse
Propensity scores for non-uniform nonresponse

Calibration weighting
Calibration variables are decided at the data file creation stage
Control totals for calibration are (typically) NOT available to
users
It is the final calibration weights wi, not the basic design weights
di, that are released in the data file

Replication weights for variance estimation
The second order inclusion probabilities are NOT available for
users of survey data files
Bootstrap and jackknife, and occasionally BRR, are commonly
used replication methods

Imputation for item nonresponse: A more difficult issue!
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A Typical Format for Public-Use Survey Data

i yi1 yi2 xi1 xi2 xi3 wi w(1)
i · · · w(B)

i

1 y11 y12 x11 x12 x13 w1 w(1)
1 · · · w(B)

1

2 y21 y22 x21 x22 x23 w2 w(1)
2 · · · w(B)

2

3 y31 y32 x31 x32 x33 w3 w(1)
3 · · · w(B)

3

4 y41 y42 x41 x42 x43 w4 w(1)
4 · · · w(B)

4

5 y51 y52 x51 x52 x53 w5 w(1)
5 · · · w(B)

5

6 y61 y62 x61 x62 x63 w6 w(1)
6 · · · w(B)

6

7 y71 y72 x71 x72 x73 w7 w(1)
7 · · · w(B)

7
...

...
...

...
...

...
...

...
...

...
n yn1 yn2 xn1 xn2 xn3 wn w(1)

n · · · w(B)
n
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Public-Use Survey Data File

Many columns of survey variables (yi or xi)

Single column of the final survey weights wi:
Unit nonresponse adjustment and/or calibration weighting

Additional columns of replication weights w(b)
i : b = 1, . . . ,B

Population control totals: Not available to users!

Detailed design information, πi and πij: Not available to users!

Imputation for item nonresponse: Not considered here!
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Finite Population Parameters

The parameter θN is defined as the solution to the “census
estimating equation”

UN(θ) =

N∑
i=1

gi(θ) = 0

Estimating function: g(θ) = g(y, x; θ)

Population mean θ = µy: gi(θ) = yi − θ
Distribution function θ = Fy(t): gi(θ) = I(yi ≤ t)− θ
Population quantile θ = tα: gi(θ) = I(yi ≤ θ)− α
Population regression coefficients θN :

UN(θ) =

N∑
i=1

xi(yi − x′iθ) = 0
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Assumptions About Public-Use Survey Data

Assumption 1:

The final survey weights (w1,w2, . . . ,wn) and the finite
population values satisfy that the expansion estimator

Ûn(θN) =
∑
i∈S

wi gi(θN)

is asymptotically normally distributed with mean zero and
variance at the order O(N2/n).
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Assumptions (Cont’d)

Denote the replicated version of Ûn(θN) =
∑

i∈S wigi(θN) as

η̂(b)(θN) =
∑
i∈S

w(b)
i gi(θN)

for the bth set of replication weights (w(b)
1 ,w(b)

2 , . . . ,w(b)
n ).

Assumption 2:

The replication variance estimator

v
{

Ûn(θN)
}

=
1
B

B∑
b=1

{
η̂(b)(θN)− Ûn(θN)

}2
(1)

is design-consistent for V
{

Ûn(θN)
}

.
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Assumptions (Cont’d)

Assumption 3:

The number of replications B is large and the empirical
distribution of the B replicated versions

η̂(1)(θN), η̂(2)(θN), . . . , η̂(B)(θN)

provide an approximation to the sampling distribution of
Ûn(θN) =

∑
i∈S wigi(θN).

Assumption 1 holds for most commonly used designs and
populations. It is the foundation for design-based inference
Assumption 2 does not necessarily require B to be large
Assumption 3 implies Assumption 2
Most replication weights are created to satisfy Assumption 2,
but not necessarily Assumption 3
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Components of Standard Empirical Likelihood

[1] The (nonparametric) empirical (log) likelihood function

L(p) =

n∏
i=1

pi or `(p) =

n∑
i=1

log(pi) ,

where p = (p1, . . . , pn) is a discrete probability measure over the
n sampled units

[2] The normalization constraint: pi > 0 and
n∑

i=1

pi = 1

[3] Constraints induced by parameters and/or known auxiliary
information: E{g(y, x; θ)} = 0 leads to

n∑
i=1

pi g(yi, xi; θ) = 0
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The Wu-Rao PEL (2006) for Public-Use Survey Data

The Pseudo EL function using the final survey weights wi

lWR(p) = n
∑
i∈S

w̃i(S) log(pi) ,

where w̃i(S) = wi/
∑

k∈S wk

lWR(p) reduces to
∑

i∈S log(pi) with equal survey weights

Standard normalization and parameter constraints∑
i∈S

pi = 1 and
∑
i∈S

pi gi(θ) = 0
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The Wu-Rao PEL (2006) for Public-Use Survey Data

The PEL ratio statistic for θ

rWR(θ) = lWR

{
p̂(θ)

}
− lWR

(
p̂
)

= −n
∑
i∈S

w̃i(S) log
{

1 + λgi(θ)
}

Result 1: Under Assumptions 1 and 2, the adjusted pseudo
empirical likelihood ratio statistic −2rWR(θ)/âWR converges in
distribution to a χ2 random variable with one degree of freedom
when θ = θN , where the adjusting factor âWR is computed as

âWR = v
{

Ûn(θ̂)
}
/
{

N̂n−1
∑
i∈S

wi
[
gi(θ̂)

]2}
,

with v
{

Ûn(θ̂)
}

being the replication variance estimator given in
Assumption 2 but replacing θN by θ̂, and N̂ =

∑
i∈S wi.
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The Wu-Rao PEL (2006) for Public-Use Survey Data

Computating rWR(θ) (for a given θ) and the adjusting factor âWR

requires no additional information other than the public-use
survey data set
The 1− α level PEL ratio confidence interval for θN

C1 =
{
θ
∣∣∣ −2rWR(θ)/âWR ≤ χ2

1(α)
}

(2)

Under Assumption 3, a bootstrap calibrated PEL ratio confidence
interval for θN can be constructed as

C2 =
{
θ
∣∣∣ −2rWR(θ) ≤ bWR(α)

}
, (3)

where bWR(α) be the upper α quantile from the empirical
distribution of the bootstrap replicated versions −2r(b)WR (θ̂),
b = 1, 2, . . . ,B, computed in the same way as −2rWR(θ) at θ = θ̂

but using the bth replication weights (w(b)
1 , . . . ,w(b)

n )
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The Re-formulated Berger-Torres EL (2016)

Standard EL function

lBT(p) =
∑
i∈S

log(pi)

Standard normalization constraint∑
i∈S

pi = 1

Parameter constraint over “transformed” variables∑
i∈S

pi
{

wigi(θ)
}

= 0 (4)

With equal survey weights, constraint (4) reduces to∑
i∈S

pi gi(θ) = 0
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The Re-formulated Berger-Torres EL (2016)

The Berger-Torres EL ratio statistic for θ

rBT(θ) = lBT

{
p̂(θ)

}
− lBT

(
p̂
)

=
∑
i∈S

log{np̂i(θ)}

Result 2: Under Assumptions 1 and 2, the adjusted pseudo
empirical log-likelihood ratio statistic −2rBT(θ)/âBT converges
in distribution to a χ2 random variable with one degree of
freedom when θ = θN , where the adjusting factor âBT is
computed as

âBT = v
{

Ûn(θ̂)
}
/
{∑

i∈S

[
wigi(θ̂)

]2}
,

with v
{

Ûn(θ̂)
}

being the replication variance estimator given in
Assumption 2 but replacing θN by θ̂.

21 / 41



Public-Use Survey Data Empirical Likelihood Inference Bayesian Empirical Likelihood Additional Remarks

The Re-formulated Berger-Torres EL (2016)

The adjusting factor âBT = 1 under single-stage unequal
probability sampling with replacement (or its asymptotic
equivalence) if wi are the original design weights
With unit nonresponse adjustment and calibration weighting, the
factor âBT is typically not 1 no matter what’s the original survey
design
The 1− α level EL ratio confidence interval for θN

C3 =
{
θ
∣∣∣ −2rBT(θ)/âBT ≤ χ2

1(α)
}

(5)

C3
(1): The naive EL confidence interval treating âBT = 1

The bootstrap calibrated EL ratio confidence interval

C4 =
{
θ
∣∣∣ −2rBT(θ) ≤ bBT(α)

}
(6)
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The Estimating Equation Approach

V. P. Godambe: One of the main contributors to estimating
function (EF) and estimating equation (EE) methodology

The point estimator θ̂ is the solution to

Ûn(θ) =
∑
i∈S

wigi(θ) = 0

Confidence intervals for θ can be constructed based on the
Wald-type statistic

W(θ) =
{

Ûn(θ)
}
/
{

V
[
Ûn(θ)

]}1/2

The variance V
[
Ûn(θ)

]
can be handled in two different ways
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The Estimating Equation Approach

Version 1: Use the replication variance estimator of Ûn(θ) for
any given θ. Let η̂(b)(θ) =

∑
i∈S w(b)

i gi(θ) and

V
[
Ûn(θ)

]
= B−1

B∑
b=1

{
η̂(b)(θ)− Ûn(θ)

}2

The profile confidence interval

C5 =
{
θ
∣∣∣ {W(θ)}2 ≤ χ2

1(α)
}

(7)

Version 2: Use the variance formula at the fixed point θ = θ̂

vU = V
[
Ûn(θ̂)

]
= B−1

B∑
b=1

{
η̂(b)(θ̂)

}2

The resulting confidence interval can be written as

C6 =
{
θ
∣∣∣ |Ûn(θ)| ≤ v1/2

U Zα/2

}
(8)
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Simulation Studies

Finite population {(yi, xi1, xi2, xi3), i = 1, 2, . . . ,N}

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi

x1: Gender; x2: Age
(x1 and x2 are used as calibration variables)

x3: Size variable for PPS sampling without replacement

Three scenarios
A. wi are the original design weights
B. wi are adjusted for unit nonresponse
C. wi are the calibration weights
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Simulation Studies

N = 20, 000; n = 400; n/N = 2%

Response rate for Scenario B: 67%; Initial sample: n0 = 600

Replication weights are bootstrap weights constructed for each
scenario (B = 500)

Parameters of interest θ: Mean and Proportions

µy = N−1
N∑

i=1

yi and FN(t) = N−1
N∑

i=1

I(yi ≤ t)

t at five population quantiles: 5%, 10%, 50%, 90% and 95%

Results based on 2000 simulation runs
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95% Confidence Intervals Under Scenario C

θ C1 C2 C3 C3
(1) C4 C5 C6

µy AL 0.212 0.221 0.213 0.228 0.225 0.212 0.211
LE 2.7 2.3 2.4 1.8 2.1 3.4 2.7
CP 95.6 96.3 95.7 96.8 96.5 95.3 95.4
UE 1.7 1.4 1.9 1.4 1.4 1.3 1.9

0.05 AL 0.061 0.061 0.062 0.063 0.066 0.061 0.061
LE 1.9 1.8 2.1 1.6 1.8 0.3 0.7
CP 93.8 94.1 94.3 94.9 95.5 91.7 91.6
UE 4.3 4.1 3.6 3.5 2.7 8.0 7.7

0.10 AL 0.080 0.081 0.081 0.084 0.083 0.081 0.080
LE 2.2 1.9 2.3 2.0 2.1 0.7 1.1
CP 94.0 94.3 94.4 95.1 95.0 93.6 93.5
UE 3.8 3.8 3.3 2.9 2.9 5.7 5.4

0.50 AL 0.119 0.123 0.119 0.126 0.123 0.120 0.120
LE 2.6 2.2 2.6 1.8 2.2 2.1 2.7
CP 94.4 95.0 94.4 95.9 95.0 94.6 94.3
UE 3.0 2.8 3.0 2.3 2.8 3.3 3.0

27 / 41



Public-Use Survey Data Empirical Likelihood Inference Bayesian Empirical Likelihood Additional Remarks

Key Observations

Confidence intervals C1 and C3 based scaled χ2
1 have excellent

performances on almost all cases.
(Require Assumptions 1 and 2)

Confidence intervals C2 and C4 based on the bootstrap
approximation to the sampling distribution of −2r(θ) are very
similar to C1 and C3 under Scenarios A and B but have slightly
inflated length for µy under Scenario C.
(Require Assumptions 1 and 3)

The EL-based confidence intervals C1 and C3 have clear
advantages over intervals based on the estimating equation
theory (C5) or the normal theory approximation (C6), especially
for small or large population proportions.
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Bayesian Approach

Bayesian 101:
Prior Distribution
Likelihood Function
Posterior Distribution

Advantage: Inferences are conditional on the sample data
Main hurdles with survey data:

– Specification of likelihood
– Specification of prior distribution
– Validity of posterior inference under design-based framework
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Non-Parametric Likelihood

Parameter vector ỹ = (ỹ1, · · · , ỹN)′; labels i
Sample data: {(i, yi), i ∈ S} minimal sufficient

The flat Godambe likelihood function L(ỹ):
All possible unobserved ỹi have the same

L(ỹ) = P(yi, i ∈ S | ỹ) =

{
p(S) if yi = ỹi for i ∈ S ,
0 otherwise .

The likelihood is uninformative: all possible non-observed
yi, i /∈ S lead to the same likelihood.
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Bayesian EL: IID Case (Lazar, 2003)

y1, · · · , yn iid with θ = E(yi)

The empirical likelihood (Owen, 1988; 2001): L(p) =
∏n

i=1 pi

The empirical log-likelihood for θ: (
∑n

i=1 pi = 1,
∑n

i=1 piyi = θ)

l(θ) = −n log(n)−
n∑

i=1

log
{

1 + λ(yi − θ)
}

where the Lagrange multiplier λ is the solution to

h(λ) =
n∑

i=1

yi − θ
1 + λ(yi − θ)

= 0

For a chosen prior g(θ) on θ, the posterior (Lazar, 2003)

π(θ|y) ∝ exp
[
log
{

g(θ)
}
−

n∑
i=1

log
{

1 + λ(yi − θ)
}]

It DOES NOT work for survey data even under SRSWOR
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Simulation: Effect of Design

BELn: Bayesian equal-tail naı̈ve (IID) credible interval

BELd: Bayesian interval based on pseudo-EL

1,000 simulation runs, nominal level 95%, N = 800

n n/N CP L U AL
40 5% BELn 95.5 2.4 2.1 0.83

BELd 95.0 2.7 2.3 0.81
120 15% BELn 96.0 2.2 1.8 0.48

BELd 94.2 2.8 3.0 0.44
240 30% BELn 98.6 0.9 0.5 0.34

BELd 94.5 2.9 2.6 0.28
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Bayesian PEL for Public-Use Survey Data: θ = µy

Let n∗ = n/âWR, where âWR is computed based on gi(θ) = yi − θ
The adjusted PEL function based on public-use survey data:

lWR(p) = n∗
∑
i∈S

w̃i(S) log(pi)

The (log) PEL function for θ:

lWR(θ) = n∗
∑
i∈S

w̃i(S) log{p̂i(θ)}

where

p̂i(θ) =
w̃i(S)

1 + λ(yi − θ)
and λ solves ∑

i∈S

w̃i(S)(yi − θ)
1 + λ(yi − θ)

= 0
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Bayesian PEL for Public-Use Survey Data: θ = µy

The likelihood function: LWR(θ) = exp{lWR(θ)}
Noninformative prior on θ: g(θ) ∝ 1

Posterior distribution of θ is given by

π(θ | S) = c(S) exp
{
−n∗

∑
i∈S

w̃i(S) log[1 + λ(yi − θ)]
}

The posterior distribution π(θ | S) is asymptotically normal

The posterior mean matches the design-based estimator of µy

The posterior variance matches the design-based variance of µ̂y

Posterior inferences are valid under the design-based framework
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Bayesian PEL based on (p1, · · · , pn)

Treating (p1, · · · , pn) as general parameters

The pseudo empirical likelihood function for (p1, · · · , pn):

LWR(p) = exp{lWR(p)} =
∏
i∈S

pγi
i ,

where γi = n∗w̃i(S) and n∗ depends on the definition of θ

With the Haldane Dirichlet prior π(p) ∝
∏

p−1
i , the posterior

distribution of (p1, · · · , pn) is also Dirichlet:

π(p1, · · · , pn | S) ∝
n∏

i=1

pγi−1
i
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The Posterior Distribution of (p1, · · · , pn)

With the Haldane diffuse prior, the posterior distribution is
Dirichlet

(p1, · · · , pn) | S ∼ D(γ1, · · · , γn)

Simulation-based approach:
– Xi ∼ fi(x) = [Γ(γi)]

−1xγi−1 exp{−x}
– X1, · · · ,Xn are independent
– Let pi = Xi/

∑n
i=1 Xi, i = 1, · · · , n. Then

(p1, · · · , pn) ∼ D(γ1, · · · , γn)

Bayesian bootstrap (simulation-based) approximation to the
posterior distribution of θ defined through

∑N
i=1 gi(θ) = 0:∑

i∈S

pigi(θ) = 0 −→ θ = H(p1, . . . , pn | S)
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Problems and Research in Progress ...

Replication weights satisfy Assumption 2: Current practice

Methods for creating replication weights to satisfy Assumption 3

Methods for creating replication weights under imputation for
item nonresponses: An important and wide open research area

Bayesian EL inference with public-use survey data: under
further investigation

EL-based confidence intervals for quantiles and inequality
measures with public-use survey data: in progress

PEL for public-use survey data with vector parameters: under
investigation (CANSSI CRT: Zhao, Haziza and Wu)

Variable selection and regression modelling with public-use
survey data: in progress (CANSSI CRT: Zhao, Haziza and Wu)
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