# Reflection and the fine structure theorem 

Alexander P. Kreuzer<br>joint work with<br>Chi Tat Chong and Yang Yue<br>National University of Singapore<br>JSPS-IMS Workshop<br>15.1.2016

## Reflection

Let $T$ be a theory.
Reflection is the statement
if $\phi$ is provable from $T$, then $\phi$ is true.
This statement should be understood internally.

## Formalization of reflection

Formulas will coded using the standard Gödel numbers.

## Definition (Provability predicate)

- Provability predicate:

$$
\operatorname{Prov}_{T}(x)
$$

## Formalization of reflection

Formulas will coded using the standard Gödel numbers.

## Definition (Provability predicate)

- Provability predicate:

$$
\operatorname{Prov}_{T}(x)
$$

- It states that there exists a (code of a) derivation of the formula coded by $x$ in $T$.


## Formalization of reflection

Formulas will coded using the standard Gödel numbers.

## Definition (Provability predicate)

- Provability predicate:

$$
\operatorname{Prov}_{T}(x)
$$

- It states that there exists a (code of a) derivation of the formula coded by $x$ in $T$.
- $\operatorname{Prov}_{T}(x)$ is $\Sigma_{1}$, assuming $T$ has a c.e. axiom set. (We will always assume that.)


## Formalization of reflection

Formulas will coded using the standard Gödel numbers.

## Definition (Provability predicate)

- Provability predicate:

$$
\operatorname{Prov}_{T}(x)
$$

- It states that there exists a (code of a) derivation of the formula coded by $x$ in $T$.
- $\operatorname{Prov}_{T}(x)$ is $\Sigma_{1}$, assuming $T$ has a c.e. axiom set. (We will always assume that.)


## Definition (Truth predicate)

- Truth predicate for $\Pi_{n}$-sentences, $\operatorname{True}_{\Pi_{n}}(x)$
- $\operatorname{True}_{\Pi_{n}}(\ulcorner\phi\urcorner) \leftrightarrow \phi$ for $\phi \in \Pi_{n}$


## Formalization of reflection (cont.)

## Theorem

$\operatorname{True}_{\Pi_{n}}(x)$ is $\Pi_{n}$-definable.
(For $n=0, \Delta_{1}$-definable.)

## Formalization of reflection (cont.)

## Theorem

$\operatorname{True}_{\Pi_{n}}(x)$ is $\Pi_{n}$-definable.
(For $n=0, \Delta_{1}$-definable.)

## Sketch of proof

For $n=1$ one can take for $\operatorname{True}_{\Pi_{1}}(x)$ the sentence:
If $x$ codes $\forall n \phi_{0}(n)$,
the TM searching for a minimal $n$ with $\neg \phi_{0}(n)$ does not terminate.

## Formalization of reflection (cont.)

## Theorem

$\operatorname{True}_{\Pi_{n}}(x)$ is $\Pi_{n}$-definable. (For $n=0, \Delta_{1}$-definable.)

## Sketch of proof

For $n=1$ one can take for $\operatorname{True}_{\Pi_{1}}(x)$ the sentence:
If $x$ codes $\forall n \phi_{0}(n)$,
the TM searching for a minimal $n$ with $\neg \phi_{0}(n)$
does not terminate.

## Definition (Reflection)

Reflection for a theory $T$ and $\Pi_{n}$ statements

$$
\operatorname{RFN}_{T}\left(\Pi_{n}\right): \equiv \operatorname{Prov}_{T}(x) \rightarrow \operatorname{True}_{\Pi_{n}}(x) .
$$

## Relation to induction

Let EA $:=I \Delta_{0}+\exp$.

## Relation to induction

Let $\mathrm{EA}:=I \Delta_{0}+\exp$. EA is contained in $\mathrm{RCA}_{0}^{*}$.

## Relation to induction

Let EA $:=I \Delta_{0}+\exp$.
EA is contained in $\mathrm{RCA}_{0}^{*}$.
Theorem (Leivant '83, Ono '87)
$\mathrm{EA} \vdash \operatorname{RFN}_{\mathrm{EA}}\left(\Pi_{n+2}\right) \leftrightarrow I \Sigma_{n} \quad(n \geq 1)$

## Relation to induction

Let EA $:=I \Delta_{0}+\exp$.
EA is contained in $\mathrm{RCA}_{0}^{*}$.
Theorem (Leivant '83, Ono '87)
$\mathrm{EA} \vdash \operatorname{RFN}_{\mathrm{EA}}\left(\Pi_{n+2}\right) \leftrightarrow I \Sigma_{n} \quad(n \geq 1)$
Sketch of proof
$\rightarrow$ : Let $\phi(x) \in \Sigma_{n}$.
Assume BC : $\phi(0)$ and IS : $\forall x(\phi(x) \rightarrow \phi(x+1))$.

## Relation to induction

Let EA $:=I \Delta_{0}+\exp$.
EA is contained in $\mathrm{RCA}_{0}^{*}$.
Theorem (Leivant '83, Ono '87)
$\mathrm{EA} \vdash \mathrm{RFN}_{\mathrm{EA}}\left(\Pi_{n+2}\right) \leftrightarrow I \Sigma_{n} \quad(n \geq 1)$
Sketch of proof
$\rightarrow$ : Let $\phi(x) \in \Sigma_{n}$.
Assume BC : $\phi(0)$ and IS : $\forall x(\phi(x) \rightarrow \phi(x+1))$.
Internally, there is a derivation of $\phi(d)$. Apply BC and $d$-times IS!

## Relation to induction

Let EA $:=I \Delta_{0}+\exp$.
EA is contained in $\mathrm{RCA}_{0}^{*}$.
Theorem (Leivant '83, Ono '87)
$\mathrm{EA} \vdash \operatorname{RFN}_{\mathrm{EA}}\left(\Pi_{n+2}\right) \leftrightarrow I \Sigma_{n} \quad(n \geq 1)$

## Sketch of proof

$\rightarrow$ : Let $\phi(x) \in \Sigma_{n}$.
Assume BC : $\phi(0)$ and IS : $\forall x(\phi(x) \rightarrow \phi(x+1))$.
Internally, there is a derivation of $\phi(d)$. Apply BC and $d$-times IS!
$\mathrm{RFN}_{\mathrm{EA}}\left(\Pi_{n+2}\right)$ gives 1

$$
\mathrm{BC} \wedge \mathrm{IS} \rightarrow \phi(d)
$$

uniformly for all $d$.

## Relation to induction

Let EA $:=I \Delta_{0}+\exp$.
EA is contained in $\mathrm{RCA}_{0}^{*}$.
Theorem (Leivant '83, Ono '87)
$\mathrm{EA} \vdash \operatorname{RFN}_{\mathrm{EA}}\left(\Pi_{n+2}\right) \leftrightarrow I \Sigma_{n} \quad(n \geq 1)$

## Sketch of proof

$\rightarrow$ : Let $\phi(x) \in \Sigma_{n}$.
Assume BC : $\phi(0)$ and IS : $\forall x(\phi(x) \rightarrow \phi(x+1))$.
Internally, there is a derivation of $\phi(d)$. Apply BC and $d$-times IS!
$\mathrm{RFN}_{\mathrm{EA}}\left(\Pi_{n+2}\right)$ gives 1

$$
\mathrm{BC} \wedge \mathrm{IS} \rightarrow \phi(d)
$$

uniformly for all $d$.
$\leftarrow$ : Cut-elimination.

## Why reflection?

## Theorem (partly K., Yokoyama '15)

The following are equivalent over $I \Sigma_{1}$ :

- $\mathrm{RFN}_{I \Sigma_{1}}\left(\Pi_{3}\right)$,
- well-foundedness of $\omega^{\omega}$,
- Hilbert Basis theorem (Simpson '88),
- Formanek/Lawrence Theorem (Hatzikiriakou, Simpson '15)
- $P \Sigma_{1}$ (introduced by Hájek, Paris '86/'87)
- $\mathrm{BME}_{1}$ (introduced by Chong, Slaman, Yang, '14)
- The Ackermann function relative to any total function is total.


## Why reflection?

## Theorem (partly K., Yokoyama '15)

The following are equivalent over $I \Sigma_{1}$ :

- $\mathrm{RFN}_{I \Sigma_{1}}\left(\Pi_{3}\right)$,
- well-foundedness of $\omega^{\omega}$,
- Hilbert Basis theorem (Simpson '88),
- Formanek/Lawrence Theorem (Hatzikiriakou, Simpson '15)
- $P \Sigma_{1}$ (introduced by Hájek, Paris '86/'87)
- $\mathrm{BME}_{1}$ (introduced by Chong, Slaman, Yang, '14)
- The Ackermann function relative to any total function is total.
- In particular, $\operatorname{RFN}_{I \Sigma_{1}}\left(\Pi_{3}\right)$ lies strictly between $I \Sigma_{1}$ and $I \Sigma_{2}$.


## Why reflection?

## Theorem (partly K., Yokoyama '15)

The following are equivalent over $I \Sigma_{1}$ :

- $\mathrm{RFN}_{I \Sigma_{1}}\left(\Pi_{3}\right)$,
- well-foundedness of $\omega^{\omega}$,
- Hilbert Basis theorem (Simpson '88),
- Formanek/Lawrence Theorem (Hatzikiriakou, Simpson '15)
- $P \Sigma_{1}$ (introduced by Hájek, Paris '86/'87)
- $\mathrm{BME}_{1}$ (introduced by Chong, Slaman, Yang, '14)
- The Ackermann function relative to any total function is total.
- In particular, $\operatorname{RFN}_{I \Sigma_{1}}\left(\Pi_{3}\right)$ lies strictly between $I \Sigma_{1}$ and $I \Sigma_{2}$.
- Observe $\operatorname{RFN}_{I \Sigma_{1}}\left(\Pi_{3}\right) \equiv \operatorname{RFN}_{\operatorname{RFN}_{E A}\left(\Pi_{3}\right)}\left(\Pi_{3}\right)$. (Iterated reflection!)


## Extended Paris-Kirby hierarchy



## Reflection and consistency

- Let $\operatorname{Con}(T)$ be the consistency of $T$.
- This can be formulated as $\neg \operatorname{Prov}_{T}(\ulcorner\perp\urcorner)$

Theorem<br>$\mathrm{RFN}_{T}\left(\Pi_{1}\right)$ implies Con $(T)$.

## Reflection and consistency

- Let $\operatorname{Con}(T)$ be the consistency of $T$.
- This can be formulated as $\neg \operatorname{Prov}_{T}(\ulcorner\perp\urcorner)$


## Theorem <br> $\mathrm{RFN}_{T}\left(\Pi_{1}\right)$ implies Con $(T)$.

## Sketch of Proof

- Suppose $\neg \operatorname{Con}(T)$, then $\operatorname{Prov}_{T}(\ulcorner\perp\urcorner)$.



## Reflection and consistency

- Let $\operatorname{Con}(T)$ be the consistency of $T$.
- This can be formulated as $\neg \operatorname{Prov}_{T}(\ulcorner\perp\urcorner)$


## Theorem

$\operatorname{RFN}_{T}\left(\Pi_{1}\right)$ implies Con $(T)$.

## Sketch of Proof

- Suppose $\neg \operatorname{Con}(T)$, then $\operatorname{Prov}_{T}(\ulcorner\perp\urcorner)$.
- ${\left.\operatorname{By~} \operatorname{RFN}_{T}\left(\Pi_{1}\right) \text { one gets } \operatorname{True}_{\Pi_{1}}(\ulcorner\perp\urcorner) \text {, i.e., } \perp \text {. }\right\} ~}_{2}$
- Let $\operatorname{Con}\left(\Pi_{n}+T\right)$ be the consistency of $T$ plus all $\Pi_{n}$-sentences.
- This can be formulated as $\forall x \operatorname{True}_{\Pi_{n}}(x) \rightarrow \neg \operatorname{Prov}_{T}(\tilde{\neg} x)$.


## Reflection and consistency

- Let $\operatorname{Con}(T)$ be the consistency of $T$.
- This can be formulated as $\neg \operatorname{Prov}_{T}(\ulcorner\perp\urcorner)$


## Theorem

$\operatorname{RFN}_{T}\left(\Pi_{1}\right)$ implies Con $(T)$.

## Sketch of Proof

- Suppose $\neg \operatorname{Con}(T)$, then $\operatorname{Prov}_{T}(\ulcorner\perp\urcorner)$.

- Let $\operatorname{Con}\left(\Pi_{n}+T\right)$ be the consistency of $T$ plus all $\Pi_{n}$-sentences.
- This can be formulated as $\forall x \operatorname{True}_{\Pi_{n}}(x) \rightarrow \neg \operatorname{Prov}_{T}(\tilde{\neg} x)$.


## Theorem

$\operatorname{RFN}_{T}\left(\Pi_{n+1}\right) \leftrightarrow \operatorname{Con}\left(\Pi_{n}+T\right)$.

## Existence of models

## Theorem (Simpson)

WKL ${ }_{0}^{*}$ proves the completeness theorem, i.e., every consistent theory has a model.

Model $\mathcal{M}$ is here coded a the set of (Gödel numbers of) sentences true in $\mathcal{M}$.

## Existence of models (cont.)

```
Theorem
Let \(n \geq 1\) and \(T\) be a theory.
A model \((\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right)\) has an n-elementary end extension \(\mathcal{I}\) satisfying \(T\).
```


## Existence of models (cont.)

## Theorem

Let $n \geq 1$ and $T$ be a theory.
A model $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right)$ has an n-elementary end extension $\mathcal{I}$ satisfying $T$.

## Proof.

- Let $(\mathcal{M}, \mathcal{S})$ be a second-order model with

$$
(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right) .
$$

## Existence of models (cont.)

## Theorem

Let $n \geq 1$ and $T$ be a theory.
A model $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right)$ has an n-elementary end extension $\mathcal{I}$ satisfying $T$.

## Proof.

- Let $(\mathcal{M}, \mathcal{S})$ be a second-order model with $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right)$.
- Then $\left(\mathcal{M}, \Delta_{n+1}^{0}(\mathcal{S})\right) \models \mathrm{RCA}_{0}^{*}$. (Here we use $B \Sigma_{n+1}$.)


## Existence of models (cont.)

## Theorem

Let $n \geq 1$ and $T$ be a theory.
A model $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right)$ has an n-elementary end extension $\mathcal{I}$ satisfying $T$.

## Proof.

- Let $(\mathcal{M}, \mathcal{S})$ be a second-order model with $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right)$.
- Then $\left(\mathcal{M}, \Delta_{n+1}^{0}(\mathcal{S})\right) \models \mathrm{RCA}_{0}^{*}$. (Here we use $B \Sigma_{n+1}$.)
- In this model the set of all true $\Pi_{n}$-sentences $X$ exists.


## Existence of models (cont.)

## Theorem

Let $n \geq 1$ and $T$ be a theory.
A model $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right)$ has an n-elementary end extension $\mathcal{I}$ satisfying $T$.

## Proof.

- Let $(\mathcal{M}, \mathcal{S})$ be a second-order model with $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right)$.
- Then $\left(\mathcal{M}, \Delta_{n+1}^{0}(\mathcal{S})\right) \models \mathrm{RCA}_{0}^{*}$. (Here we use $B \Sigma_{n+1}$.)
- In this model the set of all true $\Pi_{n}$-sentences $X$ exists.
- Extend $\left(\mathcal{M}, \Delta_{n+1}^{0}(\mathcal{S})\right)$ to satisfy $\mathrm{WKL}_{0}^{*}$.


## Existence of models (cont.)

## Theorem

Let $n \geq 1$ and $T$ be a theory.
A model $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right)$ has an n-elementary end extension $\mathcal{I}$ satisfying $T$.

## Proof.

- Let $(\mathcal{M}, \mathcal{S})$ be a second-order model with $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right)$.
- Then $\left(\mathcal{M}, \Delta_{n+1}^{0}(\mathcal{S})\right) \models \mathrm{RCA}_{0}^{*}$. (Here we use $B \Sigma_{n+1}$.)
- In this model the set of all true $\Pi_{n}$-sentences $X$ exists.
- Extend $\left(\mathcal{M}, \Delta_{n+1}^{0}(\mathcal{S})\right)$ to satisfy $\mathrm{WKL}_{0}^{*}$.
- Let $T^{\prime}:=T+X+$ "constants for each element of $\mathcal{M}$ ".


## Existence of models (cont.)

## Theorem

Let $n \geq 1$ and $T$ be a theory.
A model $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right)$ has an n-elementary end extension $\mathcal{I}$ satisfying $T$.

## Proof.

- Let $(\mathcal{M}, \mathcal{S})$ be a second-order model with $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right)$.
- Then $\left(\mathcal{M}, \Delta_{n+1}^{0}(\mathcal{S})\right) \models \mathrm{RCA}_{0}^{*}$. (Here we use $B \Sigma_{n+1}$.)
- In this model the set of all true $\Pi_{n}$-sentences $X$ exists.
- Extend $\left(\mathcal{M}, \Delta_{n+1}^{0}(\mathcal{S})\right)$ to satisfy $\mathrm{WKL}_{0}^{*}$.
- Let $T^{\prime}:=T+X+$ "constants for each element of $\mathcal{M}$ ".
- By $\operatorname{Con}\left(\Pi_{n}+T\right)$, the theory $T^{\prime}$ is consistent. By WKL there exists a model of $T^{\prime}$. By definition $T^{\prime}$ is an $n$-elementary end-extension.


## Existence of models (cont.)

## Remark

To make sure that is a true end-extension one can replace $T^{\prime}$ by $T^{\prime}+\neg \operatorname{Con}\left(T^{\prime}\right)$. By Gödel's incompleteness theorem, $T^{\prime}+\neg \operatorname{Con}\left(T^{\prime}\right)$ is also consistent.

## Existence of models (cont.)

## Remark

To make sure that is a true end-extension one can replace $T^{\prime}$ by $T^{\prime}+\neg \operatorname{Con}\left(T^{\prime}\right)$. By Gödel's incompleteness theorem, $T^{\prime}+\neg \operatorname{Con}\left(T^{\prime}\right)$ is also consistent.

## Remark

In the previous proof we used $B \Sigma_{n}$ only to get the set of all true $\Pi_{n}$-sentences. If the end-extension $\mathcal{I}$ should satisfy one sentence $\Pi_{n}$-sentence then $\mathrm{RCA}_{0}^{*}$ is sufficient.

## Existence of models (cont.)

## Example

Over $\mathrm{RCA}_{0}^{*}$ the statement $\operatorname{Con}\left(\Pi_{1}+I \Delta_{0}+\exp \right)$ proves the totality of superexp, i.e., $n \mapsto \underbrace{2^{2}}_{n \text { times }}$.

## Existence of models (cont.)

## Example

Over $\mathrm{RCA}_{0}^{*}$ the statement $\operatorname{Con}\left(\Pi_{1}+I \Delta_{0}+\exp \right)$ proves the totality of superexp, i.e., $n \mapsto \underbrace{2^{2}}_{n \text { times }}$.

Proof.

- Let $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}^{*}+\operatorname{Con}\left(\Pi_{1}+I \Delta_{0}+\exp \right)$.


## Existence of models (cont.)

## Example

Over $\mathrm{RCA}_{0}^{*}$ the statement $\operatorname{Con}\left(\Pi_{1}+I \Delta_{0}+\exp \right)$ proves the totality of superexp, i.e., $n \mapsto \underbrace{2^{2 \cdot}}_{n \text { times }}$.

## Proof.

- Let $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}^{*}+\operatorname{Con}\left(\Pi_{1}+I \Delta_{0}+\exp \right)$.
- Assume that superexp is not total.

Then there is an $c \in \mathcal{M}$, such that superexp $(c)$ is does not exists. In detail, let $\phi(x, y)$ be the $\Sigma_{1}$-formula defining superexp. Then $\mathcal{M} \models \forall y \neg \phi(c, y)$.

## Existence of models (cont.)

## Example

Over $\mathrm{RCA}_{0}^{*}$ the statement $\operatorname{Con}\left(\Pi_{1}+I \Delta_{0}+\exp \right)$ proves the totality of superexp, i.e., $n \mapsto \underbrace{2^{2}}_{n \text { times }}$.

## Proof.

- Let $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}^{*}+\operatorname{Con}\left(\Pi_{1}+I \Delta_{0}+\exp \right)$.
- Assume that superexp is not total.

Then there is an $c \in \mathcal{M}$, such that superexp $(c)$ is does not exists. In detail, let $\phi(x, y)$ be the $\Sigma_{1}$-formula defining superexp. Then $\mathcal{M} \models \forall y \neg \phi(c, y)$.

- Note that we have

$$
\mathcal{M} \models \exists y \phi(0, y), \forall x(\exists y \phi(c, y) \rightarrow \exists y \phi(c+1, y)) .
$$

## Existence of models (cont.)

## Example

Over $\mathrm{RCA}_{0}^{*}$ the statement $\operatorname{Con}\left(\Pi_{1}+I \Delta_{0}+\exp \right)$ proves the totality of superexp, i.e., $n \mapsto \underbrace{2^{2}}_{n \text { times }}$.

## Proof.

- Let $(\mathcal{M}, \mathcal{S}) \models \mathrm{RCA}_{0}^{*}+\operatorname{Con}\left(\Pi_{1}+I \Delta_{0}+\exp \right)$.
- Assume that superexp is not total.

Then there is an $c \in \mathcal{M}$, such that superexp $(c)$ is does not exists. In detail, let $\phi(x, y)$ be the $\Sigma_{1}$-formula defining superexp. Then $\mathcal{M} \models \forall y \neg \phi(c, y)$.

- Note that we have

$$
\mathcal{M} \models \exists y \phi(0, y), \forall x(\exists y \phi(c, y) \rightarrow \exists y \phi(c+1, y)) .
$$

Proof (continued).

- Let $\mathcal{I}$ be a true end-extension of $\mathcal{M}$ such that $\mathcal{I} \models I \Delta_{0}+\exp +\forall y \neg \phi(c, y)$.


## Proof (continued).

- Let $\mathcal{I}$ be a true end-extension of $\mathcal{M}$ such that $\mathcal{I} \models I \Delta_{0}+\exp +\forall y \neg \phi(c, y)$.
- We have

$$
\mathcal{I} \models \exists y \phi(0, y), \forall x(\exists y \phi(x, y) \rightarrow \exists y \phi(x+1, y)) .
$$

## Proof (continued).

- Let $\mathcal{I}$ be a true end-extension of $\mathcal{M}$ such that $\mathcal{I} \models I \Delta_{0}+\exp +\forall y \neg \phi(c, y)$.
- We have

$$
\mathcal{I} \models \exists y \phi(0, y), \forall x(\exists y \phi(x, y) \rightarrow \exists y \phi(x+1, y)) .
$$

- Working in $\mathcal{M}$, using $I \Delta_{0}(\mathcal{I})$, we can apply the implication $c$ times and obtain that $\mathcal{I} \models \exists y \phi(c, y)$. 子


## Iterated reflection

## Notation

Let $T$ be a theory.

- $(T)_{0}^{n}:=T$,
- $(T)_{\alpha+1}^{n}:=(T)_{\alpha}^{n}+\operatorname{RFN}_{(T)_{\alpha}^{n}}\left(\Pi_{n}\right)$,
- $(T)_{\lambda}^{n}:=\bigcup_{\alpha<\lambda}(T)_{\alpha}^{n}$.


## Iterated reflection

## Notation

Let $T$ be a theory.

- $(T)_{0}^{n}:=T$,
- $(T)_{\alpha+1}^{n}:=(T)_{\alpha}^{n}+\operatorname{RFN}_{(T)_{\alpha}^{n}}\left(\Pi_{n}\right)$,
- $(T)_{\lambda}^{n}:=\bigcup_{\alpha<\lambda}(T)_{\alpha}^{n}$.


## Example

- $(E A)_{1}^{3}=I \Sigma_{1}$,
- (EA $)_{2}^{3}=\left(I \Sigma_{1}\right)_{1}^{3}=$ "well-foundedness of $\omega^{\omega}$ ",
- $(\mathrm{EA})_{1}^{4}=I \Sigma_{2}$,
- $(E A)_{1}^{2}=I \Delta_{0}+\exp +$ superexp.
- (EA) ${ }_{\omega}^{2}=$ PRA.


## Iterated reflection

## Notation

Let $T$ be a theory.

- $(T)_{0}^{n}:=T$,
- $(T)_{\alpha+1}^{n}:=(T)_{\alpha}^{n}+\operatorname{RFN}_{(T)_{\alpha}^{n}}\left(\Pi_{n}\right)$,
- $(T)_{\lambda}^{n}:=\bigcup_{\alpha<\lambda}(T)_{\alpha}^{n}$.


## Example

- $(E A)_{1}^{3}=I \Sigma_{1}$,
- (EA $)_{2}^{3}=\left(I \Sigma_{1}\right)_{1}^{3}=$ "well-foundedness of $\omega^{\omega}$ ",
- $(\mathrm{EA})_{1}^{4}=I \Sigma_{2}$,
- (EA $)_{1}^{2}=I \Delta_{0}+\exp +$ superexp.
- (EA) ${ }_{\omega}^{2}=$ PRA.

Theorem (Beklemishev '97)
$(E A)_{\alpha}^{2}$ is the same as Grzegorczyk arithmetic of level $\alpha+3$.

## Fine structure theorem

```
Theorem (Schemerl's formula, '79,)
Let \(n \geq 1\) and \(T\) be a \(\Pi_{n+1}\)-axiomatic extension of EA. \((T)_{1}^{n+1}\) is \(\Pi_{n}\)-conservative over \((T)_{\omega}^{n}\). \((n \geq 1)\)
```


## Fine structure theorem

```
Theorem (Schemerl's formula, '79,)
Let \(n \geq 1\) and \(T\) be a \(\Pi_{n+1}\)-axiomatic extension of EA. \((T)_{1}^{n+1}\) is \(\Pi_{n}\)-conservative over \((T)_{\omega}^{n} .(n \geq 1)\)
```

- We prove the case $n=2, T=I \Sigma_{1}$.
- Proof we proceed by contraposition: For $\phi \in \Pi_{2}$ :

$$
\text { If }(T)_{\omega}^{2} \nvdash \phi \quad \text { then } \quad(T)_{1}^{3} \nvdash \phi
$$

## Fine structure theorem

```
Theorem (Schemerl's formula, '79,)
Let n\geq1 and T be a }\mp@subsup{\Pi}{n+1}{}\mathrm{ -axiomatic extension of EA.
(T),
```

- We prove the case $n=2, T=I \Sigma_{1}$.
- Proof we proceed by contraposition: For $\phi \in \Pi_{2}$ :

$$
\text { If }(T)_{\omega}^{2} \nvdash \phi \quad \text { then } \quad(T)_{1}^{3} \nvdash \phi
$$

- This will be shown by a model construction.
- The construction is a refinement of McAllon '78.


## Proof of Schmerl's formula

Given is a non-standard model $\mathcal{I}_{0} \models(T)_{\omega}^{2}+\neg \phi$.

Goal: Construct a model $\mathcal{M} \models(T)_{1}^{3}+\neg \phi$.
Take a non-standard $b \in \mathcal{I}_{0}$ such that $\mathcal{I}_{0} \models(T)_{b}^{2}$.
Let $\mathcal{I}_{1}$ be a true $\Pi_{1}$-elementary end extension satisfying $(T)_{b-1}^{2}$, as constructed before.
By construction $\mathcal{I}_{0} \models \operatorname{Prov}(\ulcorner\psi\urcorner)$ then $\mathcal{I}_{1} \models \psi$. Iterate this construction to get $\mathcal{I}_{n} \models(T)_{b-n}^{2}$.
Let $\mathcal{M}:=\bigcup_{n \in \mathbb{N}} \mathcal{I}_{n}$.

## Lemma

$\mathcal{M} \vDash \operatorname{RFN}_{I \Sigma_{1}}\left(\Pi_{3}\right)$

## Proof of Schmerl's formula (cont.)

## Lemma

$\mathcal{M} \vDash \operatorname{RFN}_{I \Sigma_{1}}\left(\Pi_{3}\right)$

## Proof.

- Let $\psi=\forall x \exists y \forall z \psi_{0}(x, y, z)$.
- Suppose $\mathcal{M} \models \operatorname{Prov}(\ulcorner\psi\urcorner)$. Then there is a derivation of $\psi$ in $\mathcal{I}_{k_{1}}$ for some $k_{1} \in \mathbb{N}$.
- Given $c_{x} \in \mathcal{M}$. Then $c_{x} \in \mathcal{I}_{k_{2}}$ for a $k_{2} \in \mathbb{N}$.
- $\mathcal{I}_{\max \left(k_{1}, k_{2}\right)+1} \models \exists y \forall z \psi_{0}\left(c_{x}, y, z\right)$.
- In other words, there exists $c_{y} \in \mathcal{I}_{\max \left(k_{1}, k_{2}\right)+1}$, s.t.
$\mathcal{I}_{\max \left(k_{1}, k_{2}\right)+1} \models \forall z \psi_{0}\left(c_{x}, c_{y}, z\right)$.
- By $\Pi_{1}$-elementarity

$$
\mathcal{I}_{n}, \mathcal{M} \models \psi_{0}\left(c_{x}, c_{y}, z\right)
$$

for $n \geq \max \left(k_{1}, k_{2}\right)+1$.

## Proof of Schmerl's formula

- Original proof of Schmerl proceeds by comparing well-orders.
- This model-theoretic proof is new.
- Note that it only works for reasonably strong theories $T$.
$I \Sigma_{1}$ is certainly enough.
That means $n \geq 2$ or $T$ contains $I \Sigma_{1}$.
This is need to extend the model to a model of WKL. Here we use Baire Category theorem for the forcing extension. By Simpson '14 the Baire Category theorem is equivalent to $I \Sigma_{1}$.


## Proof of Schmerl's formula

- Original proof of Schmerl proceeds by comparing well-orders.
- This model-theoretic proof is new.
- Note that it only works for reasonably strong theories $T$.
$I \Sigma_{1}$ is certainly enough.
That means $n \geq 2$ or $T$ contains $I \Sigma_{1}$.
This is need to extend the model to a model of WKL. Here we use Baire Category theorem for the forcing extension.
By Simpson '14 the Baire Category theorem is equivalent to $I \Sigma_{1}$.
- Natural reflection model.


## Question

What is the strength of extending a model $\mathcal{M} \models \mathrm{RCA}_{0}^{*}$ to a model of $\mathcal{M}=\mathrm{WKL}_{0}^{*}$ ?

## Construction of a model of SRT ${ }_{2}^{2}$

## Theorem (Chong, Slaman, Yang, '14)

$\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$ does not prove $I \Sigma_{2}$.
Proof proceeds in two steps:
(1) Construct a suitable first-order model.
(2) Extend the model to a second-order model using forcing.

## Construction of a model of SRT ${ }_{2}^{2}$

## Theorem (Chong, Slaman, Yang, '14)

$\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$ does not prove $I \Sigma_{2}$.
Proof proceeds in two steps:
(1) Construct a suitable first-order model.
(2) Extend the model to a second-order model using forcing.

## Theorem

$\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$ does not prove the well-foundedness of $\omega^{\omega^{2}}$.

## Construction of a model of SRT ${ }_{2}^{2}$

## Theorem (Chong, Slaman, Yang, '14)

 $\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$ does not prove $I \Sigma_{2}$.Proof proceeds in two steps:
(1) Construct a suitable first-order model.
(2) Extend the model to a second-order model using forcing.

## Theorem

$\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$ does not prove the well-foundedness of $\omega^{\omega^{2}}$.
(1) Use the model constructed earlier.

## Construction of a model of SRT ${ }_{2}^{2}$

## Theorem (Chong, Slaman, Yang, '14)

 $\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$ does not prove $I \Sigma_{2}$.Proof proceeds in two steps:
(1) Construct a suitable first-order model.
(2) Extend the model to a second-order model using forcing.

## Theorem

$\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$ does not prove the well-foundedness of $\omega^{\omega^{2}}$.
(1) Use the model constructed earlier.
(2) Extend the model to a second-order model using (a different) forcing.

## Construction of a model of SRT ${ }_{2}^{2}$

## Theorem (Chong, Slaman, Yang, '14)

 $\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$ does not prove $I \Sigma_{2}$.Proof proceeds in two steps:
(1) Construct a suitable first-order model.
(2) Extend the model to a second-order model using forcing.

## Theorem

$\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$ does not prove the well-foundedness of $\omega^{\omega^{2}}$.
(1) Use the model constructed earlier.
(2) Extend the model to a second-order model using (a different) forcing.

This theorem follows also from K. Yokoama and L. Patey.

## Full fine structure theorem

## Theorem (Fine structure theorem, Schmerl '79)

For each $n, k \geq 1$, and all ordinals $\alpha \geq 1, \beta$, the theory $\left((\mathrm{EA})_{\alpha}^{n+k}\right)_{\beta}^{n}$ proves the same $\Pi_{n}$-sentences as $(\mathrm{EA})_{\omega_{k}(\alpha) \cdot(1+\beta)}^{n}$.

Follows from iterations of Schmerl's formula.
For this to work it is sufficient if $n \geq 3$.

## Note on the Existence of Models theorem

```
Theorem
Let }n\geq1\mathrm{ and T be a theory.
RCA
end extension I satisfying T.
```


## Note on the Existence of Models theorem

```
Theorem
Let }n\geq1\mathrm{ and T be a theory.
RCA
end extension }\mathcal{I}\mathrm{ satisfying T
```

The conclusion of this theorem

There exists a $\Pi_{n}$-elementary model
sometimes also called reflection. This theorem say that these two forms of reflection coincide.

## Note on the Existence of Models theorem

$$
\begin{aligned}
& \text { Theorem } \\
& \text { Let } n \geq 1 \text { and } T \text { be a theory. } \\
& \mathrm{RCA}_{0}+B \Sigma_{n+1}+\operatorname{Con}\left(\Pi_{n}+T\right) \text { proves that there exists an } n \text {-elementary } \\
& \text { end extension } \mathcal{I} \text { satisfying } T \text {. }
\end{aligned}
$$

The conclusion of this theorem

$$
\text { There exists a } \Pi_{n} \text {-elementary model }
$$

sometimes also called reflection. This theorem say that these two forms of reflection coincide.
For stronger $\Sigma_{k}^{1}$ sets this has been analyzed. This is on the level $\Pi_{\infty}^{1}-\mathrm{TI}$. (Friedman, see Simpson's Subsystems of Second Order Arithmetic.)

## Summary

- Model-theoretic proof of the fine structure theorem
- Uses Reverse Mathematics techniques


## Summary

- Model-theoretic proof of the fine structure theorem
- Uses Reverse Mathematics techniques
- Construction for models of well-foundedness of $\omega^{\omega}$.
- $\mathrm{BME}_{1}$
- Hilbert-Basis theorem, Formanek/Lawrence Theorem


## Summary

- Model-theoretic proof of the fine structure theorem
- Uses Reverse Mathematics techniques
- Construction for models of well-foundedness of $\omega^{\omega}$.
- $\mathrm{BME}_{1}$
- Hilbert-Basis theorem, Formanek/Lawrence Theorem


## Thank you for your attention!

