Reflection and the fine structure theorem

Alexander P. Kreuzer
joint work with
Chi Tat Chong and Yang Yue

National University of Singapore

JSPS-IMS Workshop 15.1.2016

Reflection

Let T be a theory.

Reflection is the statement

if ϕ is provable from T, then ϕ is true.

This statement should be understood internally.

Formulas will coded using the standard Gödel numbers.

Definition (Provability predicate)

• Provability predicate:

 $\mathtt{Prov}_T(x)$

Formulas will coded using the standard Gödel numbers.

Definition (Provability predicate)

Provability predicate:

$$Prov_T(x)$$

• It states that there exists a (code of a) derivation of the formula coded by x in T.

Formulas will coded using the standard Gödel numbers.

Definition (Provability predicate)

Provability predicate:

$$Prov_T(x)$$

- It states that there exists a (code of a) derivation of the formula coded by x in T.
- $\operatorname{Prov}_T(x)$ is Σ_1 , assuming T has a c.e. axiom set. (We will always assume that.)

Formulas will coded using the standard Gödel numbers.

Definition (Provability predicate)

Provability predicate:

$$Prov_T(x)$$

- It states that there exists a (code of a) derivation of the formula coded by x in T.
- $\operatorname{Prov}_T(x)$ is Σ_1 , assuming T has a c.e. axiom set. (We will always assume that.)

Definition (Truth predicate)

- Truth predicate for Π_n -sentences, ${\tt True}_{\Pi_n}(x)$
- True $\Pi_n(\lceil \phi \rceil) \leftrightarrow \phi$ for $\phi \in \Pi_n$

Formalization of reflection (cont.)

Theorem

 $\operatorname{True}_{\Pi_n}(x)$ is Π_n -definable.

(For n = 0, Δ_1 -definable.)

Formalization of reflection (cont.)

Theorem

True $\Pi_n(x)$ is Π_n -definable. (For n = 0, Δ_1 -definable.)

Sketch of proof

For n=1 one can take for ${\tt True}_{\Pi_1}(x)$ the sentence: If x codes $\forall n \, \phi_0(n)$,

the TM searching for a minimal n with $\neg \phi_0(n)$ does **not terminate**.

Formalization of reflection (cont.)

Theorem

True $\Pi_n(x)$ is Π_n -definable. (For n = 0, Δ_1 -definable.)

Sketch of proof

For n=1 one can take for $\mathtt{True}_{\Pi_1}(x)$ the sentence:

If x codes $\forall n \phi_0(n)$, the TM searching for a minimal n with $\neg \phi_0(n)$

does not terminate.

Definition (Reflection)

Reflection for a theory T and Π_n statements

$$RFN_T(\Pi_n) :\equiv Prov_T(x) \rightarrow True_{\Pi_n}(x).$$

Let $\mathsf{EA} := I\Delta_0 + \mathsf{exp}$.

Let EA := $I\Delta_0 + \exp$. EA is contained in RCA $_0^*$.

Let $EA := I\Delta_0 + \exp$.

EA is contained in RCA_0^* .

Theorem (Leivant '83, Ono '87)

 $\mathsf{EA} \vdash \mathtt{RFN}_{\mathsf{EA}}(\Pi_{n+2}) \leftrightarrow I\Sigma_n \qquad (n \ge 1)$

Let $EA := I\Delta_0 + \exp$.

EA is contained in RCA_0^* .

Theorem (Leivant '83, Ono '87)

$$\mathsf{EA} \vdash \mathsf{RFN}_{\mathsf{EA}}(\Pi_{n+2}) \leftrightarrow I\Sigma_n \qquad (n \ge 1)$$

Sketch of proof

$$\rightarrow$$
: Let $\phi(x) \in \Sigma_n$.

Assume BC : $\phi(0)$ and IS : $\forall x (\phi(x) \rightarrow \phi(x+1))$.

Let $\mathsf{EA} := I\Delta_0 + \mathsf{exp}$.

EA is contained in RCA_0^* .

Theorem (Leivant '83, Ono '87)

$$\mathsf{EA} \vdash \mathsf{RFN}_{\mathsf{EA}}(\Pi_{n+2}) \leftrightarrow I\Sigma_n \qquad (n \ge 1)$$

Sketch of proof

 \rightarrow : Let $\phi(x) \in \Sigma_n$.

Assume BC : $\phi(0)$ and IS : $\forall x (\phi(x) \rightarrow \phi(x+1))$.

Internally, there is a derivation of $\phi(d)$. Apply BC and d-times IS!

Let $EA := I\Delta_0 + \exp$.

EA is contained in RCA_0^* .

Theorem (Leivant '83, Ono '87)

$$\mathsf{EA} \vdash \mathsf{RFN}_{\mathsf{EA}}(\Pi_{n+2}) \leftrightarrow I\Sigma_n \qquad (n \ge 1)$$

Sketch of proof

$$\rightarrow$$
: Let $\phi(x) \in \Sigma_n$.

Assume BC : $\phi(0)$ and IS : $\forall x (\phi(x) \rightarrow \phi(x+1))$.

Internally, there is a derivation of $\phi(d).$ Apply BC and d-times IS!

 $RFN_{EA}(\Pi_{n+2})$ gives 1

$$BC \wedge IS \rightarrow \phi(d)$$

uniformly for all d.

Let $EA := I\Delta_0 + \exp$.

EA is contained in RCA_0^* .

Theorem (Leivant '83, Ono '87)

$$\mathsf{EA} \vdash \mathsf{RFN}_{\mathsf{EA}}(\Pi_{n+2}) \leftrightarrow I\Sigma_n \qquad (n \ge 1)$$

Sketch of proof

$$\rightarrow$$
: Let $\phi(x) \in \Sigma_n$.

Assume BC : $\phi(0)$ and IS : $\forall x (\phi(x) \rightarrow \phi(x+1))$.

Internally, there is a derivation of $\phi(d).$ Apply BC and d-times IS!

$$\mathtt{RFN}_{\mathsf{EA}}(\Pi_{n+2})$$
 gives 1

$$BC \wedge IS \rightarrow \phi(d)$$

uniformly for all d.

←: Cut-elimination.

Why reflection?

Theorem (partly K., Yokoyama '15)

The following are equivalent over $I\Sigma_1$:

- RFN $_{I\Sigma_1}(\Pi_3)$,
- well-foundedness of ω^{ω} ,
- Hilbert Basis theorem (Simpson '88),
- Formanek/Lawrence Theorem (Hatzikiriakou, Simpson '15)
- $P\Sigma_1$ (introduced by Hájek, Paris '86/'87)
- BME₁ (introduced by Chong, Slaman, Yang, '14)
- The Ackermann function relative to any total function is total.

Why reflection?

Theorem (partly K., Yokoyama '15)

The following are equivalent over $I\Sigma_1$:

- RFN $_{I\Sigma_1}(\Pi_3)$,
- well-foundedness of ω^{ω} ,
- Hilbert Basis theorem (Simpson '88),
- Formanek/Lawrence Theorem (Hatzikiriakou, Simpson '15)
- $P\Sigma_1$ (introduced by Hájek, Paris '86/'87)
- BME₁ (introduced by Chong, Slaman, Yang, '14)
- The Ackermann function relative to any total function is total.
- In particular, RFN $_{I\Sigma_1}(\Pi_3)$ lies strictly between $I\Sigma_1$ and $I\Sigma_2$.

Why reflection?

Theorem (partly K., Yokoyama '15)

The following are equivalent over $I\Sigma_1$:

- RFN $_{I\Sigma_1}(\Pi_3)$,
- well-foundedness of ω^{ω} ,
- Hilbert Basis theorem (Simpson '88),
- Formanek/Lawrence Theorem (Hatzikiriakou, Simpson '15)
- $P\Sigma_1$ (introduced by Hájek, Paris '86/'87)
- BME₁ (introduced by Chong, Slaman, Yang, '14)
- The Ackermann function relative to any total function is total.
- In particular, RFN $_{I\Sigma_1}(\Pi_3)$ lies strictly between $I\Sigma_1$ and $I\Sigma_2$.
- Observe $\mathtt{RFN}_{I\Sigma_1}(\Pi_3) \equiv \mathtt{RFN}_{\mathtt{RFN}_{EA}(\Pi_3)}(\Pi_3)$. (Iterated reflection!)

Extended Paris-Kirby hierarchy

- Let Con(T) be the consistency of T.
- This can be formulated as $\neg Prov_T(\ulcorner \bot \urcorner)$

Theorem

 $\mathtt{RFN}_T(\Pi_1)$ implies $\mathtt{Con}(T)$.

- Let Con(T) be the consistency of T.
- This can be formulated as $\neg Prov_T(\ulcorner \bot \urcorner)$

Theorem

 $RFN_T(\Pi_1)$ implies Con(T).

Sketch of Proof

- Suppose $\neg Con(T)$, then $Prov_T(\lceil \bot \rceil)$.
- By $\mathtt{RFN}_T(\Pi_1)$ one gets $\mathtt{True}_{\Pi_1}(\ulcorner \bot \urcorner)$, i.e., \bot . 4

- Let Con(T) be the consistency of T.
- This can be formulated as $\neg Prov_T(\ulcorner \bot \urcorner)$

Theorem

 $RFN_T(\Pi_1)$ implies Con(T).

Sketch of Proof

- Suppose $\neg Con(T)$, then $Prov_T(\lceil \bot \rceil)$.
- By $RFN_T(\Pi_1)$ one gets $True_{\Pi_1}(\ulcorner \bot \urcorner)$, i.e., \bot . 4
- Let $Con(\Pi_n + T)$ be the consistency of T plus all Π_n -sentences.
- This can be formulated as $\forall x \, \text{True}_{\Pi_n}(x) \to \neg \text{Prov}_T(\tilde{\neg}x)$.

- Let Con(T) be the consistency of T.
- This can be formulated as $\neg Prov_T(\ulcorner \bot \urcorner)$

Theorem

 $RFN_T(\Pi_1)$ implies Con(T).

Sketch of Proof

- Suppose $\neg Con(T)$, then $Prov_T(\lceil \bot \rceil)$.
- By ${
 m RFN}_T(\Pi_1)$ one gets ${
 m True}_{\Pi_1}(\ulcorner \bot \urcorner)$, i.e., \bot . 4
- Let $Con(\Pi_n + T)$ be the consistency of T plus all Π_n -sentences.
- This can be formulated as $\forall x \, \text{True}_{\Pi_n}(x) \to \neg \text{Prov}_T(\tilde{\neg} x)$.

Theorem

 $RFN_T(\Pi_{n+1}) \leftrightarrow Con(\Pi_n + T).$

Existence of models

Theorem (Simpson)

 WKL^*_0 proves the completeness theorem, i.e., every consistent theory has a model.

Model ${\mathcal M}$ is here coded a the set of (Gödel numbers of) sentences true in ${\mathcal M}.$

Theorem

Let $n \ge 1$ and T be a theory.

A model $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$ has an n-elementary end extension \mathcal{I} satisfying T.

Theorem

Let $n \geq 1$ and T be a theory.

A model $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$ has an n-elementary end extension \mathcal{I} satisfying T.

Proof.

• Let $(\mathcal{M}, \mathcal{S})$ be a second-order model with $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T).$

Theorem

Let $n \ge 1$ and T be a theory.

A model $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$ has an n-elementary end extension \mathcal{I} satisfying T.

- Let $(\mathcal{M}, \mathcal{S})$ be a second-order model with $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T).$
- Then $(\mathcal{M}, \Delta_{n+1}^0(\mathcal{S})) \models \mathsf{RCA}_0^*$. (Here we use $B\Sigma_{n+1}$.)

Theorem

Let $n \ge 1$ and T be a theory.

A model $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$ has an n-elementary end extension \mathcal{I} satisfying T.

- Let $(\mathcal{M}, \mathcal{S})$ be a second-order model with $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T).$
- Then $(\mathcal{M}, \Delta_{n+1}^0(\mathcal{S})) \models \mathsf{RCA}_0^*$. (Here we use $B\Sigma_{n+1}$.)
- In this model the set of all true Π_n -sentences X exists.

Theorem

Let $n \ge 1$ and T be a theory.

A model $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$ has an n-elementary end extension \mathcal{I} satisfying T.

- Let $(\mathcal{M}, \mathcal{S})$ be a second-order model with $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$.
- Then $(\mathcal{M}, \Delta_{n+1}^0(\mathcal{S})) \models \mathsf{RCA}_0^*$. (Here we use $B\Sigma_{n+1}$.)
- In this model the set of all true Π_n -sentences X exists.
- Extend $(\mathcal{M}, \Delta_{n+1}^0(\mathcal{S}))$ to satisfy WKL₀*.

Theorem

Let $n \ge 1$ and T be a theory.

A model $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$ has an n-elementary end extension \mathcal{I} satisfying T.

- Let $(\mathcal{M}, \mathcal{S})$ be a second-order model with $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$.
- Then $(\mathcal{M}, \Delta_{n+1}^0(\mathcal{S})) \models \mathsf{RCA}_0^*$. (Here we use $B\Sigma_{n+1}$.)
- ullet In this model the set of all true Π_n -sentences X exists.
- Extend $(\mathcal{M}, \Delta_{n+1}^0(\mathcal{S}))$ to satisfy WKL₀*.
- Let T' := T + X + "constants for each element of \mathcal{M} ".

Theorem

Let $n \ge 1$ and T be a theory.

A model $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$ has an n-elementary end extension \mathcal{I} satisfying T.

- Let $(\mathcal{M}, \mathcal{S})$ be a second-order model with $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$.
- Then $(\mathcal{M}, \Delta_{n+1}^0(\mathcal{S})) \models \mathsf{RCA}_0^*$. (Here we use $B\Sigma_{n+1}$.)
- In this model the set of all true Π_n -sentences X exists.
- Extend $(\mathcal{M}, \Delta_{n+1}^0(\mathcal{S}))$ to satisfy WKL₀*.
- Let T' := T + X + "constants for each element of \mathcal{M} ".
- By $Con(\Pi_n + T)$, the theory T' is consistent. By WKL there exists a model of T'. By definition T' is an n-elementary end-extension.

Remark

To make sure that is a true end-extension one can replace T' by $T' + \neg \operatorname{Con}(T')$. By Gödel's incompleteness theorem, $T' + \neg \operatorname{Con}(T')$ is also consistent.

Remark

To make sure that is a true end-extension one can replace T' by $T'+\neg {\rm Con}(T')$. By Gödel's incompleteness theorem, $T'+\neg {\rm Con}(T')$ is also consistent.

Remark

In the previous proof we used $B\Sigma_n$ only to get the set of all true Π_n -sentences. If the end-extension $\mathcal I$ should satisfy one sentence Π_n -sentence then RCA $_0^*$ is sufficient.

Example

Over RCA_0^* the statement $\operatorname{Con}(\Pi_1 + I\Delta_0 + \exp)$ proves the totality of superexp, i.e., $n \mapsto \underbrace{2^{2^{\cdot \cdot \cdot}}}_{n \text{ times}}.$

Example

Over RCA_0^* the statement $\mathrm{Con}(\Pi_1 + I\Delta_0 + \mathrm{exp})$ proves the totality of superexp, i.e., $n\mapsto \underbrace{2^{2^{\cdot\cdot\cdot}}}^n$.

Proof.

• Let $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0^* + \mathsf{Con}(\Pi_1 + I\Delta_0 + \mathsf{exp}).$

n times

Existence of models (cont.)

Example

Over RCA_0^* the statement $\mathrm{Con}(\Pi_1 + I\Delta_0 + \mathrm{exp})$ proves the totality of superexp, i.e., $n \mapsto \underbrace{2^{2^{\cdot \cdot \cdot \cdot}}}_{n}$.

Proof.

• Let $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0^* + \mathsf{Con}(\Pi_1 + I\Delta_0 + \mathsf{exp}).$

n times

• Assume that superexp is not total. Then there is an $c \in \mathcal{M}$, such that superexp(c) is does not exists.

In detail, let $\phi(x,y)$ be the Σ_1 -formula defining superexp.

Then $\mathcal{M} \models \forall y \, \neg \phi(c, y)$.

Existence of models (cont.)

Example

Over RCA_0^* the statement $\mathrm{Con}(\Pi_1 + I\Delta_0 + \mathrm{exp})$ proves the totality of superexp, i.e., $n \mapsto \underbrace{2^{2^{\cdot \cdot \cdot \cdot }}}_{n}$.

Proof.

• Let $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0^* + \mathsf{Con}(\Pi_1 + I\Delta_0 + \mathsf{exp}).$

n times

- Assume that superexp is not total. Then there is an $c \in \mathcal{M}$, such that superexp(c) is does not exists. In detail, let $\phi(x,y)$ be the Σ_1 -formula defining superexp. Then $\mathcal{M} \models \forall y \, \neg \phi(c,y)$.
- Note that we have

$$\mathcal{M} \models \exists y \, \phi(0, y), \forall x \, (\exists y \, \phi(c, y) \rightarrow \exists y \, \phi(c+1, y)).$$

Existence of models (cont.)

Example

Over RCA_0^* the statement $\mathrm{Con}(\Pi_1 + I\Delta_0 + \mathrm{exp})$ proves the totality of superexp, i.e., $n \mapsto \underbrace{2^{2^{\cdot \cdot \cdot \cdot }}}_{n}$.

Proof.

• Let $(\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0^* + \mathsf{Con}(\Pi_1 + I\Delta_0 + \mathsf{exp}).$

n times

- Assume that superexp is not total. Then there is an $c \in \mathcal{M}$, such that superexp(c) is does not exists. In detail, let $\phi(x,y)$ be the Σ_1 -formula defining superexp.
 - Then $\mathcal{M} \models \forall y \, \neg \phi(c, y)$.
- Note that we have

$$\mathcal{M} \models \exists y \, \phi(0, y), \forall x \, (\exists y \, \phi(c, y) \rightarrow \exists y \, \phi(c+1, y)).$$

. . .

Proof (continued).

 \bullet Let ${\mathcal I}$ be a true end-extension of ${\mathcal M}$ such that

$$\mathcal{I} \models I\Delta_0 + \exp + \forall y \, \neg \phi(c, y).$$

Proof (continued).

 \bullet Let ${\mathcal I}$ be a true end-extension of ${\mathcal M}$ such that

$$\mathcal{I} \models I\Delta_0 + \exp + \forall y \, \neg \phi(c, y).$$

We have

$$\mathcal{I} \models \exists y \, \phi(0, y), \forall x \, (\exists y \, \phi(x, y) \rightarrow \exists y \, \phi(x + 1, y)).$$

Proof (continued).

- Let ${\mathcal I}$ be a true end-extension of ${\mathcal M}$ such that
- $\mathcal{I} \models I\Delta_0 + \exp + \forall y \, \neg \phi(c, y).$

$$\mathcal{I} \models \exists y \, \phi(0, y), \forall x \, (\exists y \, \phi(x, y) \rightarrow \exists y \, \phi(x+1, y)).$$

• Working in \mathcal{M} , using $I\Delta_0(\mathcal{I})$, we can apply the implication c times and obtain that $\mathcal{I} \models \exists y \, \phi(c, y)$. 4

Iterated reflection

Notation

Let T be a theory.

- $(T)_0^n := T$,
- $\bullet (T)_{\alpha+1}^n := (T)_{\alpha}^n + \operatorname{RFN}_{(T)_{\alpha}^n}(\Pi_n),$
- $(T)^n_{\lambda} := \bigcup_{\alpha < \lambda} (T)^n_{\alpha}$.

Iterated reflection

Notation

Let T be a theory.

- $(T)_0^n := T$,
- $\bullet (T)_{\alpha+1}^n := (T)_{\alpha}^n + \operatorname{RFN}_{(T)_{\alpha}^n}(\Pi_n),$
 - $\bullet (T)^n_{\lambda} := \bigcup_{\alpha < \lambda} (T)^n_{\alpha}.$

Example

- $(\mathsf{EA})_1^3 = I\Sigma_1$,
- \bullet (EA) $^3_2=(I\Sigma_1)^3_1=$ "well-foundedness of ω^ω ",
- \bullet (EA) $_1^4=I\Sigma_2$,
- $(\mathsf{EA})_1^2 = I\Delta_0 + \mathsf{exp} + \mathsf{superexp}$.
- $(LA)_1 = I\Delta_0 + \exp + \text{superex}$
- $(EA)^2_\omega = PRA$.

Iterated reflection

Notation

Let T be a theory.

- $(T)_0^n := T$,
- $\bullet (T)_{\alpha+1}^n := (T)_{\alpha}^n + RFN_{(T)_{\alpha}^n}(\Pi_n),$
 - $\bullet (T)^n_{\lambda} := \bigcup_{\alpha < \lambda} (T)^n_{\alpha}.$

Example

- $(\mathsf{EA})_1^3 = I\Sigma_1$,
- $(\mathsf{EA})_2^3 = (I\Sigma_1)_1^3 = \text{``well-foundedness of } \omega^\omega\text{''},$
- $(\mathsf{EA})_1^4 = I\Sigma_2$,
- $(\mathsf{EA})_1^2 = I\Delta_0 + \mathsf{exp} + \mathsf{superexp}.$
- $\bullet \ (\mathsf{EA})^2_\omega = \mathsf{PRA}.$

Theorem (Beklemishev '97)

 $(EA)^2_{\alpha}$ is the same as Grzegorczyk arithmetic of level $\alpha + 3$.

Fine structure theorem

Theorem (Schemerl's formula, '79,)

Let $n \ge 1$ and T be a Π_{n+1} -axiomatic extension of EA. $(T)_1^{n+1}$ is Π_n -conservative over $(T)_{\alpha}^n$. $(n \ge 1)$

Fine structure theorem

Theorem (Schemerl's formula, '79,)

Let $n \ge 1$ and T be a Π_{n+1} -axiomatic extension of EA. $(T)_1^{n+1}$ is Π_n -conservative over $(T)_n^n$. $(n \ge 1)$

- We prove the case n=2, $T=I\Sigma_1$.
- Proof we proceed by contraposition: For $\phi \in \Pi_2$:

If
$$(T)^2_\omega \nvdash \phi$$
 then $(T)^3_1 \nvdash \phi$.

Fine structure theorem

Theorem (Schemerl's formula, '79,)

Let $n \ge 1$ and T be a Π_{n+1} -axiomatic extension of EA. $(T)_1^{n+1}$ is Π_n -conservative over $(T)_n^n$. (n > 1)

- We prove the case n=2, $T=I\Sigma_1$.
- Proof we proceed by contraposition: For $\phi \in \Pi_2$:

If
$$(T)^2_\omega \nvdash \phi$$
 then $(T)^3_1 \nvdash \phi$.

- This will be shown by a model construction.
- The construction is a refinement of McAllon '78.

Proof of Schmerl's formula

Given is a non-standard model $\mathcal{I}_0 \models (T)^2_\omega + \neg \phi$.

Goal: Construct a model $\mathcal{M} \models (T)_1^3 + \neg \phi$.

Take a non-standard $b \in \mathcal{I}_0$ such that $\mathcal{I}_0 \models (T)_b^2$.

Let \mathcal{I}_1 be a true Π_1 -elementary end extension satisfying $(T)_{b-1}^2$, as constructed before.

By construction $\mathcal{I}_0 \models \operatorname{Prov}(\lceil \psi \rceil)$ then $\mathcal{I}_1 \models \psi$. Iterate this construction to get $\mathcal{I}_n \models (T)_{b}^2$.

Let $\mathcal{M} := \bigcup_{n \in \mathbb{N}} \mathcal{I}_n$.

Lemma

 $\mathcal{M} \models \mathtt{RFN}_{I\Sigma_1}(\Pi_3)$

Proof of Schmerl's formula (cont.)

Lemma

$$\mathcal{M} \models \mathtt{RFN}_{I\Sigma_1}(\Pi_3)$$

Proof.

- Let $\psi = \forall x \,\exists y \,\forall z \,\psi_0(x,y,z)$.
- Suppose $\mathcal{M} \models \operatorname{Prov}(\lceil \psi \rceil)$. Then there is a derivation of ψ in \mathcal{I}_{k_1} for some $k_1 \in \mathbb{N}$.
- Given $c_x \in \mathcal{M}$. Then $c_x \in \mathcal{I}_{k_2}$ for a $k_2 \in \mathbb{N}$.
- $\mathcal{I}_{\max(k_1,k_2)+1} \models \exists y \, \forall z \, \psi_0(c_x,y,z).$
- In other words, there exists $c_y \in \mathcal{I}_{\max(k_1,k_2)+1}$, s.t. $\mathcal{I}_{\max(k_1,k_2)+1} \models \forall z \, \psi_0(c_x,c_y,z)$.
- By Π_1 -elementarity

$$\mathcal{I}_n, \mathcal{M} \models \psi_0(c_x, c_y, z)$$

for $n \ge \max(k_1, k_2) + 1$.

Proof of Schmerl's formula

- Original proof of Schmerl proceeds by comparing well-orders.
- This model-theoretic proof is new.
 - Note that it only works for reasonably strong theories T. $I\Sigma_1$ is certainly enough.

That means $n \geq 2$ or T contains $I\Sigma_1$.

This is need to extend the model to a model of WKL. Here we use Baire Category theorem for the forcing extension.

By Simpson '14 the Baire Category theorem is equivalent to $I\Sigma_1$.

Proof of Schmerl's formula

- Original proof of Schmerl proceeds by comparing well-orders.
- This model-theoretic proof is new.
 - Note that it only works for reasonably strong theories T. $I\Sigma_1$ is certainly enough.

That means $n \geq 2$ or T contains $I\Sigma_1$.

This is need to extend the model to a model of WKL. Here we use Baire Category theorem for the forcing extension.

By Simpson '14 the Baire Category theorem is equivalent to $I\Sigma_1$.

Natural reflection model.

Question

What is the strength of extending a model $\mathcal{M} \models \mathsf{RCA}_0^*$ to a model of $\mathcal{M} \models \mathsf{WKL}_0^*$?

Theorem (Chong, Slaman, Yang, '14)

 $\mathsf{RCA}_0 + \mathsf{SRT}_2^2$ does not prove $I\Sigma_2$.

Proof proceeds in two steps:

- Construct a suitable first-order model.
- Extend the model to a second-order model using forcing.

Construction of a model of SRT₂²

Theorem (Chong, Slaman, Yang, '14)

 $\mathsf{RCA}_0 + \mathsf{SRT}_2^2$ does not prove $I\Sigma_2$.

Proof proceeds in two steps:

- Construct a suitable first-order model.
- 2 Extend the model to a second-order model using forcing.

Theorem

 $\mathsf{RCA}_0 + \mathsf{SRT}_2^2$ does not prove the well-foundedness of ω^{ω^2} .

Theorem (Chong, Slaman, Yang, '14)

 $\mathsf{RCA}_0 + \mathsf{SRT}_2^2$ does not prove $I\Sigma_2$.

Proof proceeds in two steps:

- Construct a suitable first-order model.
- ② Extend the model to a second-order model using forcing.

Theorem

 $\mathsf{RCA}_0 + \mathsf{SRT}_2^2$ does not prove the well-foundedness of ω^{ω^2} .

1 Use the model constructed earlier.

Theorem (Chong, Slaman, Yang, '14)

 $\mathsf{RCA}_0 + \mathsf{SRT}_2^2$ does not prove $I\Sigma_2$.

Proof proceeds in two steps:

- Construct a suitable first-order model.
- ② Extend the model to a second-order model using forcing.

Theorem

 $\mathsf{RCA}_0 + \mathsf{SRT}_2^2$ does not prove the well-foundedness of ω^{ω^2} .

- Use the model constructed earlier.
- Extend the model to a second-order model using (a different) forcing.

Theorem (Chong, Slaman, Yang, '14)

 $\mathsf{RCA}_0 + \mathsf{SRT}_2^2$ does not prove $I\Sigma_2$.

Proof proceeds in two steps:

- Construct a suitable first-order model.
- ② Extend the model to a second-order model using forcing.

Theorem

 $\mathsf{RCA}_0 + \mathsf{SRT}_2^2$ does not prove the well-foundedness of ω^{ω^2} .

- Use the model constructed earlier.
- ② Extend the model to a second-order model using (a different) forcing.

This theorem follows also from K. Yokoama and L. Patey.

Full fine structure theorem

Theorem (Fine structure theorem, Schmerl '79)

For each $n,k \geq 1$, and all ordinals $\alpha \geq 1$, β , the theory $((\mathsf{EA})^{n+k}_{\alpha})^n_{\beta}$ proves the same Π_n -sentences as $(\mathsf{EA})^n_{\omega_k(\alpha)\cdot(1+\beta)}$.

Follows from iterations of Schmerl's formula.

For this to work it is sufficient if $n \geq 3$.

Note on the Existence of Models theorem

Theorem

Let $n \ge 1$ and T be a theory.

 $\mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$ proves that there exists an n-elementary end extension $\mathcal I$ satisfying T.

Note on the Existence of Models theorem

Theorem

Let $n \ge 1$ and T be a theory.

 $\mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$ proves that there exists an n-elementary end extension $\mathcal I$ satisfying T.

The conclusion of this theorem

There exists a Π_n -elementary model

sometimes also called *reflection*. This theorem say that these two forms of reflection coincide.

Note on the Existence of Models theorem

Theorem

Let $n \ge 1$ and T be a theory.

 $\mathsf{RCA}_0 + B\Sigma_{n+1} + \mathsf{Con}(\Pi_n + T)$ proves that there exists an n-elementary end extension $\mathcal I$ satisfying T.

The conclusion of this theorem

There exists a Π_n -elementary model

sometimes also called *reflection*. This theorem say that these two forms of reflection coincide.

For stronger Σ^1_k sets this has been analyzed. This is on the level Π^1_∞ -TI. (Friedman, see Simpson's Subsystems of Second Order Arithmetic.)

Summary

- Model-theoretic proof of the fine structure theorem
 - Uses Reverse Mathematics techniques

Summary

- Model-theoretic proof of the fine structure theorem
 - Uses Reverse Mathematics techniques
- Construction for models of well-foundedness of ω^{ω} .
 - BME₁
 - Hilbert-Basis theorem, Formanek/Lawrence Theorem

Summary

- Model-theoretic proof of the fine structure theorem
 - Uses Reverse Mathematics techniques
- Construction for models of well-foundedness of ω^{ω} .
 - BME₁
 - Hilbert-Basis theorem, Formanek/Lawrence Theorem

Thank you for your attention!