Recursion theory over a model

David Belanger

6 January 2016, at the IMS, National University of Singapore

General motivation

A theory T_{1} is Π_{1}^{1} conservative over a second theory T_{0} if every Π_{1}^{1} sentence provable from $T_{0} \cup T_{1}$ is already provable from T_{0}. Examples:

1 (Harrington) WKL_{0} is Π_{1}^{1} conservative over RCA_{0}.
2 (Chong, Slaman, Yang) COH is Π_{1}^{1} conservative over $\mathrm{RCA}_{0}+\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{2}}$.
3 (H. Friedman) ACA_{0} is Π_{1}^{1} conservative over $\mathrm{RCA}_{0}+\mathrm{PA}$.

Proof recipe:

■ Suppose $T_{0} \nvdash(\forall X) \Theta$ with Θ arithmetical.

- Then there is a countable model $\mathcal{M} \vDash T_{0}+(\exists X) \neg \Theta$.

■ By adding sets to \mathcal{M}, expand to a model \mathcal{N} of $T_{0} \cup T_{1}$.
■ Then $\mathcal{N} \vDash(\exists X) \neg \Theta$, so $\mathcal{N} \vDash(\exists X) \neg \Theta$, so $\mathcal{N} \models(\exists X) \neg \Theta$, so $\mathcal{N} \vDash(\exists X) \neg \Theta$, so $T_{0} \cup T_{1} \nvdash(\forall X) \Theta$.

The second-order part of a model

If $\mathcal{M}=(M, \mathcal{S})$ is a model of RCA_{0}, then \mathcal{S} is
■ closed under $A \oplus B=\{2 n: n \in A\} \cup\{2 n+1: n \in B\}$

- downward-closed in the ' Δ_{1} in' relation.

If \mathcal{M} is an ω-model, \mathcal{S} is a Turing ideal.

Some definitions

Let $\mathcal{M}=(M, \mathcal{S})$ be a model of RCA_{0}. Let $X \subseteq M$ be any set.
X is bounded if some $a \in M$ is greater than every $x \in X$.
X is finite if it is bounded and is encoded as an element of M (perhaps in binary).
X is regular if each initial segment $X \cap\{0, \ldots, a\}$ is finite.
X is $\boldsymbol{\Sigma}_{\mathbf{n}}$ if it is Σ_{n} with parameters from \mathcal{M}.
In particular, X is $\boldsymbol{\Delta}_{\mathbf{1}}$ iff $X \in \mathcal{S}$.
$\boldsymbol{I} \boldsymbol{\Sigma}_{\mathbf{n}}$: Every $\boldsymbol{\Sigma}_{\mathbf{n}}$ set is regular.
$B \boldsymbol{\Sigma}_{\mathbf{n}}$: Every $\boldsymbol{\Delta}_{\boldsymbol{n}}$ set is regular.

Some bad sets

Say we want to add sets to a model \mathcal{M} while preserving $\mathbf{I} \boldsymbol{\Sigma}_{\mathbf{1}}$.

We want to expand while preserving $\mathbf{I}_{\mathbf{1}}$
Cannot adjoin: A proper cut because then it would be bounded and Δ_{1} with no maximum. Cannot adjoin: A cofinal sequence of order type ω

Some bad sets

Say we want to add sets to a model \mathcal{M} while preserving $\mathbf{I} \boldsymbol{\Sigma}_{\mathbf{1}}$.

We want to expand while preserving $\mathbf{I}_{\boldsymbol{1}}$
Cannot adjoin: A proper cut

because then it would be bounded and $\boldsymbol{\Delta}_{\mathbf{1}}$ with no maximum.
Cannot adjoin: A cofinal sequence of order type ω
because then ω would be bounded and $\boldsymbol{\Sigma}_{1}$ with no maximum.

Many possible extensions

$\mathcal{M} \models \mathrm{RCA}_{0}+\mathbf{I} \boldsymbol{\Sigma}_{\mathbf{2}}$ is topped.

Some good sets

Suppose $\mathcal{M}=(M, \mathcal{S})$ is topped, i.e., there is a single $A \in \mathcal{S}$ which can be used as the parameter for defining any $\boldsymbol{\Sigma}_{\mathbf{n}}$ set.

A set $X \subseteq M$ is low if $\mathcal{M}[X]$ has the same $\boldsymbol{\Delta}_{\mathbf{2}}$ sets as \mathcal{M}.
$\mathbf{B} \boldsymbol{\Sigma}_{2}$ and X is low

Some good sets

Suppose $\mathcal{M}=(M, \mathcal{S})$ is topped, i.e., there is a single $A \in \mathcal{S}$ which can be used as the parameter for defining any $\boldsymbol{\Sigma}_{\mathbf{n}}$ set.

A set $X \subseteq M$ is low if $\mathcal{M}[X]$ has the same $\boldsymbol{\Delta}_{\mathbf{2}}$ sets as \mathcal{M}.
Recall: $\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{n}} \Longleftrightarrow$ Every $\boldsymbol{\Delta}_{\mathbf{n}}$ set is regular.
Thus if $\mathcal{M} \vDash \mathrm{RCA}_{0}+\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{2}}$ and X is low, $\mathcal{M}[X] \vDash \mathrm{RCA}_{0}+\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{2}}$.

Some good sets

Suppose $\mathcal{M}=(M, \mathcal{S})$ is topped, i.e., there is a single $A \in \mathcal{S}$ which can be used as the parameter for defining any $\boldsymbol{\Sigma}_{\mathbf{n}}$ set.

A set $X \subseteq M$ is low if $\mathcal{M}[X]$ has the same $\boldsymbol{\Delta}_{\mathbf{2}}$ sets as \mathcal{M}.
Recall: $\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{n}} \Longleftrightarrow$ Every $\boldsymbol{\Delta}_{\mathbf{n}}$ set is regular.
Thus if $\mathcal{M}=\mathrm{RCA}_{0}+\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{2}}$ and X is low, $\mathcal{M}[X]=\mathrm{RCA}_{0}+\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{2}}$.
Lemma (Formalized Low Basis Theorem)
If $\mathcal{M} \models \mathrm{RCA}_{0}+\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{2}}$ then every infinite $\boldsymbol{\Delta}_{\mathbf{1}}$ binary tree has a low infinite path.

Corollary (Hajek)
WKL_{0} is Π_{1}^{1} conservative over $\mathrm{RCA}_{0}+\mathbf{B} \boldsymbol{\Sigma}_{2}$.
Similarly for all $\mathbf{I} \boldsymbol{\Sigma}_{\mathbf{n}}, \mathbf{B} \boldsymbol{\Sigma}_{\mathbf{n}}, n \geq 2$.

Some better sets

A set $X \subseteq M$ is ω-r.e. if there are a uniformly $\boldsymbol{\Delta}_{\mathbf{1}}$ sequence $\left\langle X_{0}, X_{1}, \ldots\right\rangle$ and a $\boldsymbol{\Delta}_{\mathbf{1}}$ function f such that

- $\left\langle X_{s}\right\rangle_{s}$ converges pointwise to X, and

■ $\mid\left\{s: k\right.$ enters or leaves $\left.X_{s}\right\} \mid<f(k)$ for each k.

Recall: $\Sigma_{n} \Longleftrightarrow$ Every Σ_{n} set is regular

Some better sets

A set $X \subseteq M$ is ω-r.e. if there are a uniformly $\boldsymbol{\Delta}_{\mathbf{1}}$ sequence $\left\langle X_{0}, X_{1}, \ldots\right\rangle$ and a $\boldsymbol{\Delta}_{\mathbf{1}}$ function f such that

- $\left\langle X_{s}\right\rangle_{s}$ converges pointwise to X, and
- $\mid\left\{s: k\right.$ enters or leaves $\left.X_{s}\right\} \mid<f(k)$ for each k.

Recall: $\quad \boldsymbol{I}_{\mathbf{n}} \Longleftrightarrow$ Every $\boldsymbol{\Sigma}_{\mathbf{n}}$ set is regular.

Lemma

$\mathbf{I} \boldsymbol{\Sigma}_{\mathbf{1}} \Longleftrightarrow$ Every ω-r.e. set is regular.

Lemma (Formalized Superlow Basis Theorem)

If $\mathcal{M} \models \mathrm{RCA}_{0}$ then every infinite $\boldsymbol{\Delta}_{\mathbf{1}}$ binary tree has an infinite path P such that $\mathcal{M}[P]$ has no new ω-r.e. sets.

Corollary (Harrington; new proof)
WKL_{0} is Π_{1}^{1} conservative over RCA_{0}.

The Turing jump

The jump of a set $X \subseteq M$ is $\left\{e: \Phi_{e}^{X}(e)\right.$ converges $\}$.

The system RCA_{0}^{*} is like RCA_{0} with $\mathbf{B} \boldsymbol{\Sigma}_{\boldsymbol{1}}$ in place of $\mathbf{I} \boldsymbol{\Sigma}_{\boldsymbol{1}}$.

Over RCA_{0}^{*} :

- $\mathcal{M} \models \mathbf{I} \boldsymbol{\Sigma}_{\mathbf{1}} \Longleftrightarrow A^{\prime}$ is regular for every $\boldsymbol{\Delta}_{\mathbf{1}}$ set A.

■ $\mathcal{M} \models \mathbf{I} \boldsymbol{\Sigma}_{\mathbf{n}+\mathbf{1}} \Longleftrightarrow \mathcal{M}\left[A^{\prime}\right] \equiv \mathbf{I} \boldsymbol{\Sigma}_{\mathbf{n}}$ for every $\boldsymbol{\Delta}_{\mathbf{1}}$ set A.

- Similarly for $\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{n}+\mathbf{1}}$.

■ If $\mathcal{M}=\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{2}}$ then a set Y is $\boldsymbol{\Delta}_{\mathbf{2}}$ iff it is $\boldsymbol{\Delta}_{\mathbf{1}}$ in $\mathcal{M}\left[A^{\prime}\right]$ for some $\boldsymbol{\Delta}_{\mathbf{1}}$ set A.

A jump inversion theorem

Theorem (Friedberg jump theorem)

In the true natural numbers ω, if X Turing-computes \emptyset^{\prime}, there is a Y such that Y^{\prime} is Turing-equivalent to X.

> Lemma (Formalized version. B. (Cf Towsner 2015))
> If $\mathcal{M} \models \mathrm{RCA}_{0}^{*}+\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{n}+\mathbf{1}}$ is topped by A and $\mathcal{M}\left[A^{\prime} \oplus X\right] \models \mathbf{B} \boldsymbol{\Sigma}_{\mathbf{n}}$, then there is a Y such that $\mathcal{M}[Y] \models \mathbf{B} \boldsymbol{\Sigma}_{\mathbf{n}+\mathbf{1}}$ and such that $\mathcal{M}\left[Y^{\prime}\right]=\mathcal{M}\left[A^{\prime} \oplus X\right]$. Similarly for $\mathbf{I} \boldsymbol{\Sigma}_{\mathbf{n}+\mathbf{1}}$.

An application

COH is the statement: If $\left\langle R_{0}, R_{1}, \ldots\right\rangle$ is a uniformly $\boldsymbol{\Delta}_{\mathbf{1}}$ sequence of sets, there is an infinite set C satisfying

$$
\text { (} \forall k)\left[\text { either } C \cap R_{k} \text { or } C \cap \overline{R_{k}}\right. \text { is finite]. }
$$

An application

COH is the statement: If $\left\langle R_{0}, R_{1}, \ldots\right\rangle$ is a uniformly $\boldsymbol{\Delta}_{\mathbf{1}}$ sequence of sets, there is an infinite set C satisfying

$$
(\forall k)\left[\text { either } C \cap R_{k} \text { or } C \cap \overline{R_{k}}\right. \text { is finite]. }
$$

Theorem (B)

$\mathrm{RCA}_{\mathbf{0}}+\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{2}} \vdash \mathrm{COH} \Longleftrightarrow$ Every infinite $\boldsymbol{\Delta}_{\mathbf{2}}$ binary tree has an infinite $\boldsymbol{\Delta}_{\mathbf{2}}$ path.

Corollary (Chong, Slaman, Yang; new proof)
COH is Π_{1}^{1} conservative over $\mathrm{RCA}_{0}+\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{2}}$.
Corollary (Cholak, Jockusch, Slaman; new proof)
COH is Π_{1}^{1} conservative over $\mathrm{RCA}_{0}+\mathbf{I} \boldsymbol{\Sigma}_{\mathbf{2}}$.
And similarly for $\mathbf{B} \boldsymbol{\Sigma}_{\mathbf{n}}, \mathbf{I} \boldsymbol{\Sigma}_{\mathbf{n}}$, all $n \geq 3$.

Extending non-topped models?

Theorem (Towsner 2015)
If $\mathcal{M} \models \mathrm{RCA}_{0}+\mathbf{I}_{\mathbf{n}}$ is countable and $X \subseteq M$ is any set at all, there is an extension $\mathcal{M}[Y] \models \mathrm{RCA}_{0}+\mathbf{I} \boldsymbol{\Sigma}_{\mathbf{n}}$ in which X is $\boldsymbol{\Delta}_{\mathbf{n}+\boldsymbol{1}}$.

Theorem (B)

If $\mathcal{M} \models \mathrm{RCA}_{0}$ is countable, it can be extended to a topped model of RCA_{0}.

Proof uses 'exact pair' forcing with blocking and jump control. With jump inversion, proves the $n=1$ case of Towsner.

Extending non-topped models?

Theorem (Towsner 2015)

If $\mathcal{M} \models \mathrm{RCA}_{0}+\mathbf{I} \boldsymbol{\Sigma}_{\mathbf{n}}$ is countable and $X \subseteq M$ is any set at all, there is an extension $\mathcal{M}[Y] \models \mathrm{RCA}_{0}+\mathbf{I} \boldsymbol{\Sigma}_{\mathbf{n}}$ in which X is $\boldsymbol{\Delta}_{\mathbf{n}+\mathbf{1}}$.

Theorem (B)

If $\mathcal{M} \models \mathrm{RCA}_{0}$ is countable, it can be extended to a topped model of RCA_{0}.

Proof uses 'exact pair' forcing with blocking and jump control. With jump inversion, proves the $n=1$ case of Towsner.

Theorem (Unverified)

Similarly for each $\mathbf{I} \boldsymbol{\Sigma}_{\mathbf{n}}$ and for full PA. (Perhaps with some technical hypotheses about M.)

This would prove Π_{1}^{1} conservation for ACA_{0}^{+}.

