Recursion theory over a model

David Belanger

6 January 2016, at the IMS, National University of Singapore

A theory T_1 is Π_1^1 conservative over a second theory T_0 if every Π_1^1 sentence provable from $T_0 \cup T_1$ is already provable from T_0 . **Examples:**

- **1** (Harrington) WKL₀ is Π_1^1 conservative over RCA₀.
- 2 (Chong, Slaman, Yang) COH is Π_1^1 conservative over $\operatorname{RCA}_0 + B\Sigma_2$.
- **3** (H. Friedman) ACA_0 is Π_1^1 conservative over $RCA_0 + PA$.

Proof recipe:

- Suppose $T_0 \not\vdash (\forall X) \Theta$ with Θ arithmetical.
- Then there is a countable model $\mathcal{M} \models T_0 + (\exists X) \neg \Theta$.
- By adding sets to \mathcal{M} , expand to a model \mathcal{N} of $T_0 \cup T_1$.
- Then $\mathcal{N} \models (\exists X) \neg \Theta$, so $\mathcal{T}_0 \cup \mathcal{T}_1 \not\vdash (\forall X) \Theta$.

The second-order part of a model

If $\mathcal{M} = (\mathcal{M}, \mathcal{S})$ is a model of RCA_0 , then \mathcal{S} is

- closed under $A \oplus B = \{2n : n \in A\} \cup \{2n+1 : n \in B\}$
- downward-closed in the ' Δ_1 in' relation.

If \mathcal{M} is an ω -model, \mathcal{S} is a Turing ideal.

Let $\mathcal{M} = (\mathcal{M}, \mathcal{S})$ be a model of RCA₀. Let $X \subseteq \mathcal{M}$ be any set.

X is bounded if some $a \in M$ is greater than every $x \in X$.

X is *finite* if it is bounded and is encoded as an element of M (perhaps in binary).

X is *regular* if each initial segment $X \cap \{0, \ldots, a\}$ is finite.

X is Σ_n if it is Σ_n with parameters from \mathcal{M} . In particular, X is Δ_1 iff $X \in S$.

 $\begin{array}{ll} I\boldsymbol{\Sigma}_n \text{: Every } \boldsymbol{\Sigma}_n \text{ set is regular.} \\ B\boldsymbol{\Sigma}_n \text{: Every } \boldsymbol{\Delta}_n \text{ set is regular.} \end{array}$

Say we want to add sets to a model \mathcal{M} while preserving I Σ_1 .

because then ω would be bounded and Σ_1 with no maximum.

Say we want to add sets to a model \mathcal{M} while preserving I Σ_1 .

We want to expand while preserving $I\Sigma_1$

Cannot adjoin: A proper cut

because then it would be bounded and Δ_1 with no maximum.

Cannot adjoin: A cofinal sequence of order type ω

 $\bullet \bullet \qquad \bullet \qquad \bullet \qquad \bullet \qquad \cdots$

because then ω would be bounded and Σ_1 with no maximum.

 $\mathcal{M} \models \mathrm{RCA}_0 + I\Sigma_2$ is topped.

Some good sets

Suppose $\mathcal{M} = (\mathcal{M}, \mathcal{S})$ is *topped*, i.e., there is a single $\mathcal{A} \in \mathcal{S}$ which can be used as the parameter for defining any Σ_n set.

A set $X \subseteq M$ is *low* if $\mathcal{M}[X]$ has the same Δ_2 sets as \mathcal{M} .

Recall: $B\Sigma_n \iff$ Every Δ_n set is regular.

Thus if $\mathcal{M} \models \operatorname{RCA}_0 + \mathbf{B}\Sigma_2$ and X is low, $\mathcal{M}[X] \models \operatorname{RCA}_0 + \mathbf{B}\Sigma_2$.

Lemma (Formalized Low Basis Theorem)

If $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$ then every infinite Δ_1 binary tree has a low infinite path.

Corollary (Hajek)

WKL₀ is Π_1^1 conservative over $RCA_0 + \mathbf{B}\boldsymbol{\Sigma}_2$.

Similarly for all $I\Sigma_n$, $B\Sigma_n$, $n \ge 2$.

Some good sets

Suppose $\mathcal{M} = (\mathcal{M}, \mathcal{S})$ is *topped*, i.e., there is a single $\mathcal{A} \in \mathcal{S}$ which can be used as the parameter for defining any Σ_n set.

A set $X \subseteq M$ is *low* if $\mathcal{M}[X]$ has the same Δ_2 sets as \mathcal{M} .

Recall: $B\Sigma_n \iff$ Every Δ_n set is regular.

Thus if $\mathcal{M} \models \operatorname{RCA}_0 + \mathbf{B}\mathbf{\Sigma}_2$ and X is low, $\mathcal{M}[X] \models \operatorname{RCA}_0 + \mathbf{B}\mathbf{\Sigma}_2$.

Lemma (Formalized Low Basis Theorem)

If $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$ then every infinite Δ_1 binary tree has a low infinite path.

Corollary (Hajek)

WKL₀ is Π_1^1 conservative over $RCA_0 + \mathbf{B}\boldsymbol{\Sigma}_2$.

Similarly for all $I\Sigma_n$, $B\Sigma_n$, $n \ge 2$.

Some good sets

Suppose $\mathcal{M} = (\mathcal{M}, \mathcal{S})$ is *topped*, i.e., there is a single $\mathcal{A} \in \mathcal{S}$ which can be used as the parameter for defining any Σ_n set.

A set $X \subseteq M$ is *low* if $\mathcal{M}[X]$ has the same Δ_2 sets as \mathcal{M} .

 $\label{eq:recall: B} \begin{array}{ll} B\boldsymbol{\Sigma}_n \iff \text{Every } \boldsymbol{\Delta}_n \text{ set is regular}. \end{array}$

Thus if $\mathcal{M} \models \operatorname{RCA}_0 + \mathbf{B}\mathbf{\Sigma}_2$ and X is low, $\mathcal{M}[X] \models \operatorname{RCA}_0 + \mathbf{B}\mathbf{\Sigma}_2$.

Lemma (Formalized Low Basis Theorem)

If $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$ then every infinite Δ_1 binary tree has a low infinite path.

Corollary (Hajek)

WKL₀ is Π_1^1 conservative over RCA₀ + **B** Σ_2 .

Similarly for all $I\Sigma_n$, $B\Sigma_n$, $n \ge 2$.

Some better sets

A set $X \subseteq M$ is ω -*r.e.* if there are a uniformly Δ_1 sequence $\langle X_0, X_1, \ldots \rangle$ and a Δ_1 function f such that $\langle X_s \rangle_s$ converges pointwise to X, and $|\{s : k \text{ enters or leaves } X_s\}| < f(k) \text{ for each } k.$

$$\label{eq:recall: I} \begin{split} \textbf{Recall:} \quad \textbf{I}\boldsymbol{\Sigma}_n \iff \text{Every } \boldsymbol{\Sigma}_n \text{ set is regular.} \end{split}$$

Lemma

 $\mathbf{I} \Sigma_1 \iff E$ very ω -r.e. set is regular.

_emma (Formalized Superlow Basis Theorem)

If $\mathcal{M} \models \operatorname{RCA}_0$ then every infinite Δ_1 binary tree has an infinite path P such that $\mathcal{M}[P]$ has no new ω -r.e. sets.

Corollary (Harrington; new proof)

WKL₀ is Π_1^1 conservative over RCA₀.

Some better sets

A set $X \subseteq M$ is ω -*r.e.* if there are a uniformly Δ_1 sequence $\langle X_0, X_1, \ldots \rangle$ and a Δ_1 function f such that $\langle X_s \rangle_s$ converges pointwise to X, and $|\{s : k \text{ enters or leaves } X_s\}| < f(k) \text{ for each } k.$

 $\label{eq:recall: I} \begin{array}{c} I\boldsymbol{\Sigma}_n \iff \text{Every } \boldsymbol{\Sigma}_n \text{ set is regular.} \end{array}$

Lemma

$$\mathbf{I} \Sigma_1 \iff Every \ \omega$$
-r.e. set is regular.

Lemma (Formalized Superlow Basis Theorem)

If $\mathcal{M} \models \text{RCA}_0$ then every infinite Δ_1 binary tree has an infinite path P such that $\mathcal{M}[P]$ has no new ω -r.e. sets.

Corollary (Harrington; new proof)

WKL₀ is Π_1^1 conservative over RCA₀.

The jump of a set $X \subseteq M$ is $\{e : \Phi_e^X(e) \text{ converges}\}$.

The system RCA_0^* is like RCA_0 with $B\Sigma_1$ in place of $I\Sigma_1$.

Over RCA_0^* :

- $\mathcal{M} \models I\Sigma_1 \iff \mathcal{A}'$ is regular for every Δ_1 set \mathcal{A} .
- $\blacksquare \ \mathcal{M} \models I \Sigma_{n+1} \iff \mathcal{M}[A'] \models I \Sigma_n \text{ for every } \Delta_1 \text{ set } A.$
- Similarly for $\mathbf{B}\Sigma_{n+1}$.
- If M ⊨ BΣ₂ then a set Y is Δ₂ iff it is Δ₁ in M[A'] for some Δ₁ set A.

Theorem (Friedberg jump theorem)

In the true natural numbers ω , if X Turing-computes \emptyset' , there is a Y such that Y' is Turing-equivalent to X.

Lemma (Formalized version. B. (Cf Towsner 2015))

If $\mathcal{M} \models \operatorname{RCA}_0^* + \mathbf{B}\Sigma_{n+1}$ is topped by A and $\mathcal{M}[A' \oplus X] \models \mathbf{B}\Sigma_n$, then there is a Y such that $\mathcal{M}[Y] \models \mathbf{B}\Sigma_{n+1}$ and such that $\mathcal{M}[Y'] = \mathcal{M}[A' \oplus X]$. Similarly for $\mathbf{I}\Sigma_{n+1}$.

An application

COH is the statement: If $\langle R_0, R_1, \ldots \rangle$ is a uniformly Δ_1 sequence of sets, there is an infinite set *C* satisfying

 $(\forall k)$ [either $C \cap R_k$ or $C \cap \overline{R_k}$ is finite].

Theorem (B)

 $\operatorname{RCA}_0 + \mathbf{B}\Sigma_2 \vdash \operatorname{COH} \iff$ Every infinite $\mathbf{\Delta}_2$ binary tree has an infinite $\mathbf{\Delta}_2$ path.

Corollary (Chong, Slaman, Yang; new proof)

COH is Π_1^1 conservative over $\operatorname{RCA}_0 + \mathbf{B}\boldsymbol{\Sigma}_2$.

Corollary (Cholak, Jockusch, Slaman; new proof)

COH is Π_1^1 conservative over $\operatorname{RCA}_0 + \mathbf{I}\boldsymbol{\Sigma}_2$.

And similarly for $\mathbf{B}\Sigma_n$, $\mathbf{I}\Sigma_n$, all $n \geq 3$.

An application

COH is the statement: If $\langle R_0, R_1, \ldots \rangle$ is a uniformly Δ_1 sequence of sets, there is an infinite set *C* satisfying

 $(\forall k)$ [either $C \cap R_k$ or $C \cap \overline{R_k}$ is finite].

Theorem (B)

 $\operatorname{RCA}_0 + B\Sigma_2 \vdash \operatorname{COH} \iff$ Every infinite Δ_2 binary tree has an infinite Δ_2 path.

Corollary (Chong, Slaman, Yang; new proof)

COH is Π_1^1 conservative over $\operatorname{RCA}_0 + \mathbf{B}\boldsymbol{\Sigma}_2$.

Corollary (Cholak, Jockusch, Slaman; new proof)

COH is Π_1^1 conservative over RCA₀ + **I** Σ_2 .

And similarly for $\mathbf{B}\Sigma_n$, $\mathbf{I}\Sigma_n$, all $n \geq 3$.

Theorem (Towsner 2015)

If $\mathcal{M} \models \operatorname{RCA}_0 + \mathbf{I}\Sigma_n$ is countable and $X \subseteq M$ is any set at all, there is an extension $\mathcal{M}[Y] \models \operatorname{RCA}_0 + \mathbf{I}\Sigma_n$ in which X is Δ_{n+1} .

Theorem (B)

If $\mathcal{M} \models RCA_0$ is countable, it can be extended to a topped model of RCA_0 .

Proof uses 'exact pair' forcing with blocking and jump control. With jump inversion, proves the n = 1 case of Towsner.

Theorem (Unverified)

Similarly for each $I\Sigma_n$ and for full PA. (Perhaps with some technical hypotheses about \mathcal{M} .)

This would prove Π_1^1 conservation for ACA_0^+ .

Theorem (Towsner 2015)

If $\mathcal{M} \models \operatorname{RCA}_0 + \mathbf{I}\Sigma_n$ is countable and $X \subseteq M$ is any set at all, there is an extension $\mathcal{M}[Y] \models \operatorname{RCA}_0 + \mathbf{I}\Sigma_n$ in which X is Δ_{n+1} .

Theorem (B)

If $\mathcal{M} \models RCA_0$ is countable, it can be extended to a topped model of RCA_0 .

Proof uses 'exact pair' forcing with blocking and jump control. With jump inversion, proves the n = 1 case of Towsner.

Theorem (Unverified)

Similarly for each $I\Sigma_n$ and for full PA. (Perhaps with some technical hypotheses about \mathcal{M} .)

This would prove Π_1^1 conservation for ACA₀⁺.

Thank you

