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Finite Automata

Recognising Multiples of Three
Three states: Remainders 0 (initial), 1, 2.
Update of state on digit: (s,d) 7→ (s+ d)mod3;
for example, state 2 and input 8 give new state 1.
Accept numbers where final state is 0.
Input: 2 5 6 1 0 2 4 2 0 4 8

State: 0 2 1 1 2 2 1 2 1 1 2 1

Final Decision: Reject

Multiples of p
States {0,1, . . . ,p− 1}; initial state 0.
Update: (s,d) 7→ ((s · 10) + d)modp.
Accept numbers where final state is 0.
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Automatic Structures - Example

Operations calculated or verified by finite automata
Automaton reads (from front or from end) inputs and has
missing digits be replaced by symbol different from the
alphabet. Here decimal adder with three states: n (no carry
and correct), c (carry and correct), i (incorrect). Automaton
works from the back to the front; start state and accepting
state are n; states i and c are rejecting.

Correct Addition Incorrect Addition

# 2 3 5 8 . 2 2 5 3 3 3 3 . 3 3 #

# 9 1 1 2 . # # # # # 2 2 . 2 2 2

1 1 4 7 0 . 2 2 5 # 1 5 5 . 5 5 2

n c n n c n n n n n i i n n n n n n n

Alignment at the positions of “.”; if no alignment rule is
given, alignment at the first member of the string; “#” are
placed to fill up free positions after alignment is done.
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Automatic Structures - Formal

In an automatic structure,

• the domain is coded as a regular set;

• each relation in the structure is recognised by a finite
automaton reading all inputs at same speed;

• each function in the structure is verified by a finite
automaton: the automaton recognises the graph
consisting of all valid (input,output)-tuples.

Examples: integers with addition and order; rationals with
order, minimum and maximum; positive terminating decimal
numbers with addition; finite subsets of the natural numbers
with union and intersection and set-inclusion.

The inventors: Bernard R. Hodgson (1976, 1983); Bakha-
dyr Khoussainov and Anil Nerode (1995); Achim Blumen-
sath and Erich Grädel (1999, 2000).
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Characterising automatic functions

Theorem [Case, Jain, Seah and Stephan 2013].
A function f : Σ∗ → Σ∗ is automatic iff there is a Turing
machine with exactly one tape which computes f in linear
time and which lets its output start at the same position
where originally the input started.

Turing machine can use tape alphabet Γ much larger than
Σ; time-bound linear in input-length.

Finite Automaton Turing Machine
Goes in one direction Goes forward and backward
Reads symbols Reads and writes symbols
Finitely many states Finitely many states;

however, utilises tape as
additional memory
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Groups

A group (G,+) satisfies the following axioms:

• (Associativity) ∀x,y, z ∈ G [(x+ y) + z = x+ (y + z)];

• (Neutral element) 0 ∈ G∧∀x ∈ G [x+ 0 = x∧ 0+x = x];

• (Inverse element) ∀x ∈ G ∃y ∈ G [x+ y = 0].

Abelian groups are commutative: ∀x,y ∈ G [x+ y = y + x].

Examples are integers, rationals and reals with addition as
well as finite groups (remainder groups):

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1
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Abelian-by-Finite Groups

Definition. A group (G,+) is Abelian-by-Finite iff it has a
Abelian subgroup (A,+) and a finite subset F ⊆ G such
that G = {x+ y : x ∈ A ∧ y ∈ F}.

Definition. A group (G,+) is finitely generated iff there is a
finite set F such that G equals to the set of finite sums over
the members of F.

Theorem [Oliver and Thomas 2005]. A finitely generated
group is automatic iff it is Abelian-by-finite.

Theorem [Nies and Thomas 2008]. Every finitely generated
subgroup of an automatic group is Abelian-by-finite.

Question [Nies 2007]. Is every torsion-free automatic group
Abelian-by-finite?
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Groups and Order

An ordered group (G,+, <) satisfies the group axioms, that
< is transitive, that for each x,y ∈ G exactly one of x < y,
x = y and y < x is true, that for each x,y, z ∈ G the
condition x < y implies x+ z < y + z and z+ x < z+ y. A
group is left-ordered if x < y only implies z+ x < z+ y but
not the other condition.

Theorem [Jain, Khoussainov, Stephan, Teng and Zou
2014]. Every automatic ordered group is Abelian, even if
only the group operation and not the ordering is automatic.
However, the Klein bottle group with lexicographic order is a
left-ordered automatic group.

Klein bottle group: Two generators a,b with a ◦ b = b−1 ◦ a
and aibj < ahbk ⇔ i < h ∨ (i = h ∧ j < k).
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Two-Dimensional Integer-Groups

Theorem [Jain, Khoussainov, Stephan, Teng and Zou
2014]. The ordered group (Z+

√
3 · Z,+, <) is automatic.

Representation. Sequences an . . . a1a0.a−1 . . . a−m of
coefficients in {−3,−2,−1,0,1,2,3} representing
a =

∑
k=−m,...,nu

k · ak aligned at the dot where u = 2+
√
3.

Important Equation is 4uk = uk+1 + uk−1.

Basic Automatic Algorithm. (Next Slide) Assume that
dk ∈ {−9, . . . ,9} for all k. This algorithm checks whether
d =

∑
k dk · uk is negative, zero or positive.

Comparison. To check whether a < b, compute digits
dk = bk − ak and determine the sign of d.

Addition. To check whether a+ b = c, compute all digits
dk = ak + bk − ck and determine the sign of d.
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Basic Automatic Algorithm.

Input anan−1 . . . a2a1a0.a−1a−2 . . . a−m.
Initialisation v = 0; w = 0; k = n+ 1.
While k > −m and v,w ∈ {−30,−29, . . . ,29,30}
Do Begin k = k− 1; (v,w) = (4v +w,−v + ak) End;
Represented Value is

v · uk+1 +w · uk +
∑

h<k

ah · uh;

If v > 30 Then Say “positive”; If v < −30 Then Say
“negative”; If −30 ≤ v ≤ +30 Then Take Sign of v · u+w.

Verification. If w is out of range then so is v.
If v is out of range then v determines the sign.

Algorithm can be carried out by finite automaton as v,w
take only finitely many possible values.
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Does Addition Determine Order?

Question [Jain, Khoussainov, Stephan, Teng and Zou
2014]. Is there an automatic copy (A,+) of the integers with
addition such that < is not automatic?

Comment. This is equivalent to asking whether there is an
automatic copy (A,+) of the integers such that
{x ∈ A : x ≥ 0} is not regular.

Theorem [Jain, Khoussainov, Stephan, Teng and Zou
2014]. There is an automatic copy of {x · 2y · 3z : x,y, z ∈ Z}
in which the addition is automatic but not the order.

The reason is that for every integers a,k there are integers
b, c,d with a/6k = b/2k + c/3k + d and 0 ≤ b < 2k and
0 ≤ c < 3k where b is represented in binary and c is
represented in ternary. The addition on numbers
represented in that way is automatic but the order not.
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Semiautomatic Structures

Automatic structures are quite restrictive and many
structures cannot be represented.

Theorem [Tsankov 2011]. The additive group of the
rationals is not automatic.

Semiautomatic structures try to represent more structures
using automata. Idea: Instead of requiring that a function is
an automatic function in all inputs, one requires only that
the projected functions obtained by fixing all but one inputs
by constants are automatic; similarly for relations including
equality.

More formally, a structure like (Q,=, <; +) is semiautomatic
if the sets and relations and functions before the semicolon
are automatic and those after the semicolon are only
semiautomatic.
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Semiautomatic Groups and Rings

Theorem [Tsankov 2011]. A subring (A,+,=, <; ·) of the
rationals is semiautomatic iff there is a positive natural
number p such that every element in A is of the form x · py

for some x,y ∈ Z.

Proposition.
The ordered group (Q,=, <; +) is semiautomatic.
The groups (Q,=; ·) and (Z∞,=;+) are semiautomatic.

Theorem.
If a is a fixed square-root of an integer then the field
(Q+ a ·Q; +, ·,=, <) is semiautomatic.

Open Question.
Are (Q,=, <; +, ·) and (Q,=;+, ·) semiautomatic?
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Automatic Group Operation

Theorem [Jain, Khoussainov, Stephan, Teng and Zou
2014]. If (A,+;=) is a semiautomatic group with automatic
group operation then (A,+,=) is fully automatic. If
(A,+;<,=) is an ordered semiautomatic group with
automatic group operation then (A,+, <,=) is fully
automatic ordered group.

Note that x = y ⇔ ∃z [x+ z = 0 and y+ z = 0] and therefore
comparing with the fixed element 0 is sufficient for testing
equality. Similarly, in an ordered group,
x < y ⇔ ∃z [x+ z = 0 and 0 < y + z].

Remark. This is not true for semigroups. For example, if
r > 0 is a nonrecursive real then (N+ r ·N,+,=;<) is
semiautomatic but the structure has no automatic copy.
There is a semigroup (A,+;=) which is not automatic.
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Word Problem of Groups

Definition.
Let a finite set of generators, say A = {a,b, c,d} of a
semigroup be given and let it include the inverses (if they
exist). Then {(v,w) : v,w ∈ A∗ and v,w represent the
same semigroup element} is called the word problem of the
semigroup.

Theorem [Based on Known Methods].
The word problem of a finitely generated subgroup of a
semiautomatic group is polynomial time decidable.

Theorem [Jain, Khoussainov, Stephan, Teng, Zou 2015].
There is a semiautomatic monoid where the word problem
is undeciable.
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Algorithm for Group

Let a,b, c,d be the generators. There are automatic
functions fa, fb, fc, fd mapping representatives x to
representatives of x ◦ a, x ◦ b, x ◦ c, x ◦ d, repsectively. Each
function has output at most k symbols longer than input, for
some constant k.

On input x,y, one checks x = y by starting with a
representative of the neutral element and then applying the
functions for the symbols in x and then the functions for the
inverses of symbols in y, the latter in inverted order.

Then one evaluates the regular language which recognises
all representatives of 0.

Each of fa, fb, fc, fd runs in linear time and the length of the
word in the memory increases at most by k · |xy|, hence the
overall time is quadratic. The final test of being the neutral
element is linear.
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Example for Semigroup

Let B ⊆ {a} · {a,b}∗ be some set and consider the
semigroup of all words {a,b, c}∗ with concatenation.
Furthermore, let π exchange a,b and leave c unchanged.
New equality ≡: let v0cv1c . . . cvk ≡ w0cw1c . . . cwk (where
vh,wh ∈ {a,b}∗) iff v0 = w0 and vk = wk and
vh = wh ∨ (vh = π(wh) ∧wh ∈ B) ∨ (vh = π(wh) ∧ vh ∈ B)
for all other h.

Now for u ∈ {a} · {a,b}∗, u ∈ B ⇔ cuc ≡ cπ(u)c.

Similarly equality ≡ in the semigroup can be mapped back
to membership of B with a polynomial time truth-table
reduction.

All representatives of a semigroup member form a finite set;
the semigroup operation with a fixed element can be
implemented as concatenation with a fixed word. Thus the
monoid is semiautomatic.
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Cayley Automatic Groups

Definition [Kharlampovich, Khoussainov and Miasnikov
2011]. A group (A,=; {x 7→ x ◦ a : a ∈ A}) is Cayley
automatic iff it is finitely generated, the domain is regular,
the equality is automatic and for every a ∈ A, the mapping
x 7→ x ◦ a is automatic. If a finitely generated group satisfies
that (A,=; ◦) is semiautomatic then it is called Cayley
biautomatic.

Theorem [Miasnikov and Šunić 2012].
There are Cayley automatic groups which are not Cayley
biautomatic.
The conjugacy problem and the first-order theory of some
Cayley automatic groups are undecidable.

Theorem [Jain, Khoussainov and Stephan 2016].
If (A, ◦) is a Cayley automatic group then (A; ◦,=) is
semiautomatic.
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Implication

Let a Cayley automatic representation
(B,=; {x 7→ x ◦ a : a ∈ A}) be given.

Now A = {(x,y) : x ∈ B} with (x,y) representing x−1 ◦ y.

Inversion: (x,y) 7→ (y,x).
Group operation with constants:
(x,y) 7→ (x,y ◦ a) represents (x−1 ◦ y) ◦ a;
(x,y) 7→ (x ◦ a−1,y) represents a ◦ (x−1 ◦ y).
(x,y) equals a iff x ◦ a−1 = y what can be checked for every
fixed a ∈ B.

In summary: (A,x 7→ x−1; ◦,=) is semiautomatic and
equals the given Cayley automatic group.

Separation: Open Problem for Finitely Generated Groups.
There are semiautomatic groups which are not finitely
generated and thus not Cayley automatic.
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Inversion

Proposition.
If (A; ◦,=) is semiautomatic, so is (B,x 7→ x−1; ◦,=) for a
suitably coded copy B of A.

Here B = {x,x′ : x ∈ A} consist of two regular copies of A
where for each x ∈ A, x′ denotes the complement of x.
The mappings x 7→ x ◦ a and x 7→ a ◦ x are extended from
domain A to domain B by defining x′ ◦ a = (a−1 ◦ x)′ and
a ◦ x′ = (x ◦ a−1)′.
Furthermore, one tests whether x′ = a by testing whether
x = a−1, so the representatives of a form the regular set
{x : x ∈ A and x = a} ∪ {x′ : x ∈ A and x = a−1}.
The inversion maps x ∈ A to x′ and x′ with x ∈ A to x. So ′

is appended if it is not there and deleted if it is at the end of
x. The special symbol ′ is at the end of x or absent.
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Nilpotent Groups

A finitely generated group has nilpotency class k iff for all
elements a0, a1, a2, . . . , ak the sequence b0 = a0 and
bh+1 = b−1

h
◦ a−1

h
◦ bh ◦ ah ends in a bk such that bk

vanishes. Note that bh ◦ ah = ah ◦ bh ◦ bh+1 and therefore
one calls bh+1 also the communitator of ah,bh; groups of
nilpotency class 1 are Abelian.

Theorem [Kharlampovich, Khoussainov and Miasnikov
2011]. Finitely generated groups of nilpotency class 2 are
Cayley automatic.

Theorem [Jain, Khoussainov and Stephan 2016].
If (A, ◦) is finitely generated, has nilpotency class 3 and B is
its commutator subgroup and • the restriction of ◦ to one
operator being from B then (A,B,x 7→ x−1, •; ◦,=) is
semiautomatic. For some choices of A, the structure
(A,B,=, •; ◦) is not semiautomatic.
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Summary

This talk gave an overview of the results from papers at
CSR 2014, CCR 2015 and a submitted paper 2016.

For groups and monoids, the complexity of the word
problem of finitely generated submonoids was determined;
it is in polynomial time for a group and can be arbitrarily
complex for monoids.

For finitely generated groups, one has the implications

automatic ⇒ Cayley biautomatic ⇒ Cayley
automatic ⇒ semiautomatic

and for all groups one has the implications

Cailey biautomatic ⇒ Cayley automatic ⇒
semiautomatic ⇐ automatic

where no further arrow holds. It is open whether every
finitely generated semiautomatic group is Cayley automatic.
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