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Brown’s lemma asserts that piecewise syndetic sets are partition
regular, that is whenever we partition a piecewise syndetic set into
finitely many sets, at least one set must be piecewise syndetic.

Other examples of partition regular classes are the sets of positive
upper density (Szemerédi’s theorem) and sets containing arbitrarily
long arithmetic progressions (Van der Waerden’s theorem).

This lemma was established by T.C. Brown in the context of
locally finite semigroups and generalized by Justin in order to
obtain an extension of van der Waerden’s theorem to semigroups.

There are various applications of Brown’s lemma (locally finite
semigroups, tiling theory).
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Theorem (Brown’s Lemma)

Every finite coloring f : N→ r has an f -homogeneous piecewise
syndetic set.

Definition (RCA0)

A set X is syndetic if there exists d ∈ N such that X has gaps
bounded by d .

A set X ⊆ N is piecewise syndetic if there exists d ∈ N such that
X contains arbitrarily large finite sets with gaps bounded by d .

We say that X is d-piecewise syndetic if d witnesses that X is
piecewise syndetic.
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For instance, the 2-coloring

01001100011100001111 . . .

has 1-piecewise syndetic homogeneous sets for both colors but no
syndetic homogeneous sets.

The 2-coloring
01010101010101 . . .

has 2-syndetic homogeneous sets in both colors but no 1-piecewise
syndetic homogeneous set.

The 2-coloring
0011001100110011 . . .

has 3-syndetic homogeneous sets but no 2-piecewise syndetic
homogeneous sets.
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The classical proof of Brown’s lemma is elementary and easily
formalizable in second-order arithmetic. However, it is based on
the following variant of König’s lemma, which is easily seen to be
equivalent to ACA0.

Lemma
If S ⊆ r<N is infinite, then there exists g : N→ r such that for all
n there is σ ∈ S with g � n ⊆ σ.

Proposition

ACA0 is equivalent to Σ0
1-WKL0.
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Theorem (F)

Over RCA0 (even RCA∗0), Brown’s Lemma is equivalent to IΣ0
2.

Piecewise syndetic sets are Σ3-definable and closed under
supersets. Brown’s lemma does not actually assert the existence of
a set. It is a Π1

1-statement. A partition lemma of this form has no
computational strength but only inductive strength.

We conjecture that a statement of the form

† Every finite coloring f : N→ r has an f -homogeneous large
set,

where large is a property about sets closed under supersets, is
equivalent to

• IΣ0
n if large is Σn+1-definable,

• BΣ0
n if large is Πn-definable.
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Evidence

Brown’s lemma and the infinite pigeonhole principle (RT1) serve as
an example for n = 2.

The following is equivalent to IΣ0
2 (Hirst):

• For every finite coloring f : N→ r there is b such that for all
x > a there is y > x such that f (x) = f (y).

The following version of Folkman’s theorem is equivalent to BΣ0
2:

Theorem
Every f : N→ r has an f -homogeneous set X such that for every k
there exists a set F ⊆ X of size k with FS(F ) ⊆ X .

The proof uses the finite version of Folkman’s theorem.
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Brown’s Lemma vs van der Waerden’s Theorem

In ”Ramsey theory on the integers” page 279:

Comparing this statement to the statements given in
Theorem 2.5, we see that Brown’s lemma is very
reminiscent of van der Waerden’s theorem. However, it is
known that Brown’s lemma neither implies, nor is implied
by, van der Waerden’s theorem

I asked the authors what that means.

By this we mean that assuming only BL, we cannot prove
VDW (as you state you need VDW finite version to show
infinite BL implies infinite VDW) and assuming only
VDW, we cannot prove BL. So, even through infinite BL
may be stronger than infinite VDW, the infinite BL does
not by itself imply infinite VDW (or even finite VDW).

Here VDW is the the finite one.
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Theorem (Van Der Waerden’s Theorem)

Every finite coloring f : N→ r has an f -homogenous set with
arbitrarily long arithmetic progressions.

Let N = {0, 1, . . . ,N − 1}.

Theorem (Van Der Waerden’s Theorem, finite)

For all r , l there exists N such that every coloring C : N → r has a
C -homogeneous arithmetic progression of length l .

Shelah provided primitive recursive upper bounds for the van der
Waerden numbers as a byproduct of a new elementary proof of
Hales-Jewett theorem that uses Σ1-induction.

Theorem (Folklore)

The finite version of van der Waerden’s theorem is provable in
RCA0.
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Shelah’s proof of Hales-Jewett theorem avoids the use of double
induction which results in Ackermannian upper bounds. Gowers in
his celebrated work on Szemerédi’s theorem obtained elementary
recursive upper bounds for the van der Waerden’s numbers.
Gowers’ bound is the following:

W (r , l) ≤ 22
f (r,l)

, where f (r , l) = r2
2l+9

.

However, the proof is far from elementary and so we can only
conjecture that van der Waerden’s theorem is provable in EFA
(Elementary Function Arithmetic). On the other hand, the lower
bounds for the van der Waerden’s numbers are exponential, and
hence van der Waerden’s theorem is not provable in bounded
arithmetic.
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By the finite van der Waerden’s theorem, every piecewise syndetic
set contains arbitrarily long arithmetic progressions and this
implication can be proved within RCA0. Therefore it is not
surprising that within RCA0 Brown’s lemma implies van der
Waerden’s theorem.

We establish this by showing:

Proposition

Over RCA0 (even RCA∗0), van der Waerden’s theorem is equivalent
to BΣ0

2.

Notice that the proof in BΣ0
2 uses the finite van der Waerden’s

theorem.

Corollary

Over RCA0 (even RCA∗0), Brown’s lemma implies van der
Waerden’s theorem.
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A proof in IΣ0
3

Theorem
Over RCA0, IΣ0

3 implies Brown’s Lemma.

Proof.
Let f : N→ r be a finite coloring. By bounded Σ0

3-comprehension
let:

C = {c < r : {x ∈ N : f (x) ≥ c} is piecewise syndetic}.

Let c be the maximum element of C . If c + 1 = r , we are done.
Suppose c + 1 < r .

Let d ∈ N be such that {x ∈ N : f (x) ≥ c} is d-ps. By the choice
of c , {x ∈ N : f (x) ≥ c + 1} is not ps, and in particular is not
d-ps. Then there must be an e ∈ N such that every finite set of
size e and gaps bounded by d contains an x such that f (x) ≤ c .
Show that {x ∈ N : f (x) = c} is d · e-ps.
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From Brown’s Lemma to IΣ0
2

The number d does not depend on r .

Lemma (RCA0, Diagonalization Lemma)

There exists a function g : N× N→ 2 such that for all d the finite
2-coloring f (x) = g(d , x) has no f -homogeneous d-piecewise
syndetic sets.

Proof.
For d = 3 let 000111000111000 . . ..

Theorem
Over RCA0 (even RCA∗0), Brown’s Lemma implies IΣ0

2.

Proof.
We aim to prove SΠ0

1, strong collection for Π0
1-formulas, that is:

(∀a)(∃b)(∀n < a)
(
∃mθ(n,m)→ (∃m < b)θ(n,m)

)
,

where θ is Π0
1.

Emanuele Frittaion (Tohoku University) 13 / 22



Define h : N× N→ N such that h(n) = lims→∞ h(n, s) = the least
m such that θ(n,m), provided that ∃mθ(n,m).

Suppose for a contradiction that there is an a with no b. Then for
every b there is an n < a such that ∃mθ(n,m) and h(n) ≥ b.

Define a coloring f : N→ 2a as follows. Let g : N×N→ 2 be as in
the Diagonalization Lemma and let f (x) = 〈g(h(n, x), x) : n < a〉.
By Brown’s Lemma, there exists c ∈ 2a such that
{x ∈ N : f (x) = c} is ps. Let e be a witness. For such an e, there
exists n < a such that h(n) exists and d = h(n) ≥ e.

Show that {x ∈ N : g(d , x) = c(n)} is d-ps, for the desired
contradiction. Let s be such that h(n, x) = h(n) = d for all x > s.
Fix a size k . Let G be a finite set of size s + 1 + k and gaps
bounded by e such that f (x) = c for all x ∈ G .
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Then G contains at least k elements > s. Let F consist of the last
k elements of G . Clearly F has size k and gaps bounded by d .
Moreover, for all x ∈ F we have that
g(d , x) = g(h(n), x) = g(h(n, x), x) = f (x)(n) = c(n).
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A proof in IΣ0
2.

Definition (RCA0)

Let H ⊆ N be finite. Define the gap size of H, denoted gs(H), as
the largest difference between two consecutive elements of H. In
other words, the gap size of H is the least d such that H has gaps
bounded by d .

Theorem (Brown’s Lemma, finite)

Let k : N→ N. Then for all r there exists N such that every
C : N → r has a C -homogeneous set H of size ≥ k(gs(H)).

Theorem
The finite version of Brown’s Lemma is provable in RCA0.
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Lemma (RCA0 + IΣ0
2)

Let k : N→ N be a Σ0
2-definable total function. Then for all r

there exists N such that every P : N → r has a P-homogeneous set
H of size ≥ k(gs(H)).

Theorem
Over RCA0, IΣ0

2 implies Brown’s Lemma.

Proof.
Let f : N→ r be a finite coloring and suppose for a contradiction
that {x ∈ N : f (x) = c} is not piecewise syndetic for every c < r .
Then for all d and c < r there exists a k such that no set of size k
and gaps bounded by d is f -homogeneous for color c . By BΣ0

2, for
all d there exists k such that no set of size k and gaps bounded by
d is f -homogeneous.
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There exists a Σ0
2-definable (in fact ∆0

2-definable) total function
k : N→ N such that for all d no set of size k(d) and gaps
bounded by d is f -homogeneous.

By the modified finite Brown’s Lemma, let N be large enough be
such that every C : N → r has a C -homogeneous set H of size
≥ k(gs(H)). In particular there exists an f -homogeneous set H of
size ≥ k(gs(H)), for the desired contradiction.
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Questions

Let B(r , k), for r > 0 and k : N→ N, be the least natural number
N such that every r -coloring of N has a homogeneuos set F of size
at least k(gs(F )). The proof of the finite Brown’s lemma gives
superexponential upper bounds N(r , k) for B(r , k). For instance, if
k(d) = 2d , then N(r , k) ≥ 2r , where

2r = 22
..
.2

, a tower of r twos.

Question
Is finite Brown’s lemma provable in RCA∗0?

We expect the answer to be positive.
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As the finite van der Waerden’s theorem is already provable in
RCA0 and presumably in RCA∗0, the question whether Brown’s
lemma implies van der Waerden’s theorem and vice versa can be
settled only over a weak system of arithmetic.

Question
What is the relationship between (the finite versions of) Brown’s
lemma and van der Waerden’s theorem over a suitable bounded
fragment of second-order arithmetic?
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Question (Mummert)

What is the Weihrauch degree of Brown’s lemma?

BL :⊆ {f : N→ N}⇒ N, where
BL(f ) = {c : f −1(c) is piecewise syndetic}.
BLr : {f : N→ r}⇒ N, where
BLr (f ) = {c < r : f −1(c) is piecewise syndetic}.
BL∗r : {f : N→ r}⇒ N2, where
BL∗r (f ) = {(c , d) : f −1(c) is d-piecewise syndetic}.

• RT1
r ≤sW BLr .

• CN ≤sW BL2 (Mummert).
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Tks
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