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� Maximal sets are hyperhypersimple. So all high c.e. degrees contain
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A is Q-reducible to B, A ≤Q B, if there exists a computable function f with

x ∈ A ⇔ Wf (x) ⊆ B.

I reflexive and transitive

I ω, forget it.

I If A ≤Q B and B is a Πn set, then so is A.

I There exists a least Q-degree, i.e. the degree of Π1 sets.
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I A ≤Q K if and only if A is Π2.

I When A,B are both c.e. sets, A ≤Q B implies A ≤T B.

So, on c.e. sets, Q-reduction is strictly stronger than Turing reduction.

I When A, B are both c.e., we can require f satisfying Wf (x) finite for each
x .

A set A is Q-complete if it is r.e. and K ≤Q A.

I Hyperhypersimple sets are not Q-complete. (Soloviev, 1974)
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Semirecursive sets
A set A is semirecursive if there is a computable function f of two variables
such that

1. f (x , y) = x or f (x , y) = y ,

2. f (x , y) is in A if either x or y is in A.

This concept was proposed by Jockusch in 1968.

I Computable sets are semirecursive.

I The complement of a semirecursive set is also semirecursive.

I If a simple set A is also semirecursive, then A is hypersimple.

I Every nonzero c.e. T -degree contains a semirecurisve hypersimple set.

Theorem [Marchenkov 1976]

If a c.e. set A is semirecursive and not Q-complete, then A is not T -complete.
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Ershov’s definition

1. An equivalence relation η is positive if η is c.e.

2. A set A is η-closed if it consists of equivalence classes w.r.t. η.

3. The η-closure [A]η is the smallest η-closed set containing A.

4. An η-closed set A is η-finite or η-infinite, if it consists of finite or infinite
number of equivalence classes of A.

5. η-simple, η-hypersimple, η-hyperhypersimple sets.

6. η-hyperhypersimple sets are not Q-complete. (Marchenkov 1976)

7. There exists an incomputable, semirecursive, η-hyperhypersimple c.e. set.

This provides a solution to Post’s problem.

You know it: Friedberg-Muchnik’s work.
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I Nonbranching degrees.

I The largest c.e. Q-degree does not split.

I Above any incomplete c.e. Q-degree, there is a splittable c.e. Q-degree.

I The theory of c.e. Q-degrees is undecidable.
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D.c.e. Q-degrees and isolation in Q-degrees

I Isolated degrees

I Nonisolated degrees

I Pseudo-isolated degrees

Work in progress.



Thanks!


