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Main question

Question (Cholak/Jockusch/Slaman 2001)

What is the proof-theoretic strength, or provably total functions (in
other words, N3-part) of RT5?

There are so many studies of the strength of RT_%.

Theorem (Hirst 1987)
RCAg + RT3 implies BEJ.

Theorem (Cholak/Jockusch/Slaman 2001)

WKLo + RT3 + 1% is a I} -conservative extension of RCAq + IX.

Thus, the first order strength of RT3 is in between B9 and I%0.
Note that BX) is a M3-conservative extension of PRA, while IL) is
strictly stronger.
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Main question

Recently, there are several important improvements.
Theorem (Chong/Slaman/Yang 2014)
WKL, + RT3 does not imply I9.

Theorem (Chong/Kreuzer/Yang 2015)
WKLo + SRT3 is N3-conservative over RCAg + WF(w®).

Here is our main result.

Theorem (Patey/Y)

WKLo + RT2 is a [13-conservative extension of RCAq.
(Here f1°-formula is of the form X6 where 6 is 19.)

This is a optimal conservation result over RCAg since there is a

¥9-consequence of RCA + RT3 which is not provable in RCA.




Outline

o Density, a-largeness and I:Ig-conservation
@ PH3 and density
@ Conservation via density
@ Decomposition of density by a-largeness

@ Bounding w*-large(RT2) sets
@ Decomposition by RT2 = ADS + EM
@ Bounding a-large(ADS) sets
@ Bounding a-large(EM) sets by the finite grouping principle

e The strength of the grouping principle
@ Infinite grouping principle
@ Computability theoretic strength of GP%
@ Conservation for GP3
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Density, a-largeness and f13-conservation PH3 and density

Conservation via density
Decomposition of density by e-largeness

Ramsey’s theorem and its finite approximation

An important finite consequence of Ramsey’s theorem is the
following Paris-Harrington principle.

Theorem (PH3)

For any Xo Cint N, there exists F Cg, Xo such that for any

f: [F]> — 2 there exists H C F such that H is homogeneous for f
and H is relatively large, i.e., |H| > min H.

@ PH3 is an easy consequence of WKLy + RT3.
@ Actually, we can prove it just within RCAg.

@ The I:Ig-part of (infinite) Ramsey’s theorem is characterized by
“iterated version” Paris-Harrington-like principles.
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Ramsey’s theorem and its finite approximation

Definition (RCAy)
@ A finite set X C N is said to be 0-dense if | X| > min X.

@ A finite set X is said to be m + 1-dense if for any P : [X]? — 2,
there exists Y C X which is m-dense and P-homogeneous.

Note that “X is m-dense(n, k)” can be expressed by a Zg-formula.

Definition

@ mPH3: for any Xy Cint N, there exists F Cgn Xo such that F is
m-dense.

Note that mPH3 is still a consequence of WKLg -+ RT3 for any
me w.
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Conservation via density

By a simple generalization of indicator arguments we have the
following.

Theorem (A generalization of Bovykin/Weiermann)

WKLo + RT3 is a M13-conservative extension of
RCAo + {mPH2 | m € w}.

Thus, to prove the main theorem, what we need is the following.

For each m € w, prove mPH3 within RCA,.

Since m-dense sets are very complicated, we will decompose the
density notion.

Keita Yokoyama The proof-theoretic strength of RTg
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a-large sets

We want to bound the size of m-dense sets.
For that, we use a tool from proof theory.

For ordinals below w® (with a fixed primitive recursive ordinal
notation),

@ X is said to be a + 1-large if X — {min X} is a-large,

X is said to be y-large if X — {min X} is y[min X]-large (y: limit),
where a + o*[x] = a + W' - x.

X is m-large if | X| = m.

X is w-large if | X| = min X, i.e., relatively large.

X is w**'-large if X — {min X} splits up into min X many
wk-large sets.
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PH3 with a-large sets

Definition

X is said to be a-large(RT2) if for any P : [X]? — k, there exists
Y € X which is a-large and P-homogeneous.

Here is an important result connecting a-largeness and PH.
Theorem (Solovay/Katonen 1981)
X is 3 + w® + k + 4-large = X is w-large(RT2).

Thus, any w®-large set (with min > 3) is w—large(RTg), which is
1-dense. (In what follows, we only consider finite sets with thier min > 3.)

Proposition

For any k € w, RCAq + “any infinite set contains wX-large set.”

Thus, 1PH3 is provable in RCA.
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Density, a-largeness and f13-conservation PHZ and density
Conservation via density

Decomposition of density by e-largeness

We want to generalize the previous situation.

For any k € w, find n € w so that RCAq proves

o X is w™large = X is w*-large(RT3).

This is enough to prove mPHg within RCA by the following
argument.
@ wb-large = w-large(RT3) = 1-dense.
@ Take n, € w so that w™-large = wb-large(RT3).
Then, w™-large = 2-dense.

@ Take n3 € w so that w™-large = w™-large(RT3).
Then, w™-large = 3-dense.

Thus, for any m € w, there exists n € w such that
w"-large = m-dense.
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Decomposition by RT2 = ADS + EM

RTg can be decomposed into ADS + EM by using the idea of
transitive coloring (Shore/Hirschfeldt and Bovykin/Weiermann).

Definition

@ X is a-large(ADS) if for any transitive P : [X]? — 2, there
exists Y C X which is a-large and P-homogeneous.

@ X is a-large(EM) if for any P : [X]? — 2, there exists Y C X
which is a-large such that P is transitive on [Y]?.

Now, what we need are

For any k € w, find ny, no € w so that RCAq proves
@ Xis w™-large = X is wX-large(ADS).
@ Xis w™-large = X is wX-large(EM).
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Bounding a-large(ADS) sets

Thanks to the transitivity, we can calculate the size of the above
sets directly.

X is w-large(RT5, . ,) = X is w*-large(ADS).

Then, by Solovay/Ketonen’s theorem, we have

X is w?**8-large = X is wk-large(ADS).

Thus,

For any k € w, there exists n € w such that RCAq proves

@ X isw"-large = X is w¥-large(ADS).
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Bounding a-large(EM) sets

For any k € w, find n € w so that RCAq proves
@ Xis w"-large = X is w-large(EM).

Constructing a “large” solution for EM is rather difficult.
By Solovay/Ketonen’s theorem, we can always construct w-large
solutions. Then, how can we construct w?-large solution from
them?
= want to combine “w-large many” w-large solution.
e If f: [N]? — 2is transitive on [F]? and [F,]?, then what is
needed to say that f is transitive on [F; U F,]??
= “dce2Vx e FyVy € F2f(x,y) = c¢”is enough.
The following “grouping principle” is essential to use this idea.
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The grouping principle (finite version)

Definition (RCAy)
Let n, k € w.
Given f : [X]? — 2, an (", w*)-grouping for f is a finite family of
finite sets (F; € X | i < I) such that
@ Vi< j<ImaxF;<minF;,

@ Vi< IFjis w"-large,

@ {maxF;|i< I}is wX-large, and,

@ Vi<jdc<2VxeF,VyeFif(x,y)=c.
FGP3(w", wk): for any Xo Cint N, there exists X S Xo such that for
any f : [X]? — 2, there exists an (", w¥)-grouping for f.

Theorem (we will see this in the next section.)
For any n,k € w, RCAg + FGP3(w", k).
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Bounding FGP3

We can give an “w-large type bound” for the finite grouping by the
following theorem.

Theorem (Generalized Parsons theorem)

Let y/(F) be a X9-formula with exactly the displayed free variables.
Assume that

RCAg + VX C N(X is infinite — AF Cgn Xys(F)).
Then, there exists n € w such that
RCAg + VZ S N(Z is w"-large — 3F C Zy(F)).

Corollary
For any n, k € w, there exists m € w such that RCAq proves

@ X is w™-large = any coloring f : [X]?> — 2 has an
(", w¥)-grouping for f.
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Bounding a-large(EM) sets by FGP3

Now we bound a-large(EM) sets inductively.
Assume (within RCAg) X is w"-large = X is wk-large(EM).
(The case k = 1, ny = 6 is good by Solovay/Ketonen’s theorem.)
Then, FGP3(w™, w®) gives a bound for w¥-large(EM) sets.
@ Take nky1 € w so that any w"+'-largeness bounds
FGP3(w™, ).
@ Given f : [X]? — 2, there exists an (", w®)-grouping
(Fj|i<I)forf.
@ Since each of F; is w™-large, there exists w*-large sets
H; C F; such that f is transitive on [H;]?.
@ Since {max Fi | i < I} is w®-large, there exists H € {0, ...,/ - 1)
such that {max F; | i € H} is w-large and f-homogeneous.

@ Thus,Ic <2,Vi,je H,i+j,¥x€FVyeF,f(x,y)=c.
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Bounding a-large(EM) sets by FGP3

@ H= ;g H: is w**-large, since each of H; is w*-large and
|H| > min{max F; | i € H} > min H.
e fis transitive on [H]?, since for x, y, z € H,
e if x, ¥,z € H; then ok since f is transitive on [H;]?,
e if x € Hyand y, z € H; then f(x, y) = f(x, z), similar for the case
X,y € Hyand z € H;,
e if x, y, z are in different groups, then
f(x,y) =1(y.z) =f(x,z) = c.
@ Thus, we have “w™+1-large = X is wk*'-large(EM)”

For any k € w, there exists n € w such that RCAq proves
e X isw"-large = X is wX-large(EM).
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Infinite grouping principle
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To prove the finite grouping principle...

Prove FGP3(w", wk) for any n, k € w within RCA.

° FGPg is a too complicated finite combinatorics and thus
analyzing this within RCAq directly is hard.

@ Instead of proving FGP% directly, we will consider infinite
combinatorial principle which implies FGP%.

= Go back to infinite combinatorics.
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Infinite grouping principle

Definition (RCAy)
Let o < w®.
Given f : [N]? — 2, an infinite a-grouping for f is a infinite family of
finite sets (F; € X | i € N) such that

@ Vi< j,maxF; <minF;,

@ VYie NF;is a-large,

@ Vi<jdc<2VxeF,VyeFif(x,y)=c.
GP3(a): for any f : [N]? — 2, there exists an infinite a-grouping for
f.

Note that we can generalize GP to versions for n-tuples, k-pairs
and for wider/abstract largeness notions.
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Computability theoretic strength of GP§

GP§(2) is already non-trivial, moreover, we can see the following.

Theorem (RCAy)
GP3(w) implies rainbow Ramsey theorem for pairs.

As the usual analysis for Ramsey-type statement, considering the
grouping principle for stable colorings (SGP3) is useful.

Proposition (RCAy)
COH + SGP5 — GP5.

Then, one can construct a solution of SGP3 by a version of Mathias
forcing.
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Computability theoretic strength of GP§

@ SGP3(w") has an w-model with only low sets.
° SGPg(w”) can preserve countably many hyperimmune sets.

@ WKLo + SGP2 + SADS does not imply SRT3, SEM or COH.
@ WKL, + GP2 + EM does not imply ADS.

@ One can often transform a low solution construction into a
construction of a solution preserving IZ? in nonstandard
models.

= Can we use this for a conservation proof?
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Infinite grouping principle
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Prove FGP3(w", wk) for any n, k € w within RCA,.

We will show this by proving ﬁg—conservation for WKLy + GPg(w”)
over RCAy. By transforming the previous low solution construction,

Let (M, S) = BX3 and f : [M]? - 2 is a stable coloring, then there
exists G € M such that

(M,SU{G}) E IZ?+“G is an infinite w"-grouping for f.”
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Conservation for BYJ vs I3

The previous solution construction cannot be repeated. However,
we can still derive I13-conservation.

Theorem

LetT be a formula of the form YX3Y6(X, Y) where 6 is 13. Then,
RCAq+BX3+Tisa I:Ig-conservative extension of 1LY if the
following condition holds:

() for any countable recursively saturated model (M, S) = BL)
and for any X € S, there exists Y C M such that
(M,SU{Y}) EIZ% +6(X, Y).

We have seen that SGP5(w") satisfies this.
Note that WKL and ADS, which implies COH, also satisfy this
condition.
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Conservation for GP5 and FGP3

WKLo + GP3(w") is a [1J-conservative extension of RCAq.

By the compactness argument, we can easily see the following.

For any n,k € w, WKLo + GP3(w") + FGP3(w", w*).

Thus, we have

For any n, k € w, FGP3(w", ) is provable within RCA,.
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Theorem (Patey/Y)

WKLy + RT§ is a ﬁg-conservative extension of RCAy,
thus, it is a N3-conservative extension of PRA.

Corollary

WKLy + RTg does not imply the consistency of IZ? nor the totality
of Ackermann function.

The proof of the theorem can be formalizable within WKLy. Thus,
we have the following.

PRA proves Con(PRA) & Con(WKLg + RT2).
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Questions

Two big questions.

@ Is WKLo + RT3 M]-conservative over RCAq + BX3?

@ Is there a significant speed-up between RCAg and
WKLy + RTS?

Many smaller questions.

@ Does GP3(w") imply BZJ or EM?
@ Does ADS or EM imply GP3(w")?
@ Do GP3(w™")’s form a strict hierarchy?

@ What is the strength of GP} in general?

Keita Yokoyama The proof-theoretic strength of RTg



Thank you!

@ Ludovic Patey and Y, The proof-theoretic strength of Ramsey’s
theorem for pairs and two colors, draft, available at
http://arxiv.org/abs/1601.00050
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