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Main question

Question (Cholak/Jockusch/Slaman 2001)

What is the proof-theoretic strength, or provably total functions (in
other words, Π0

2-part) of RT2
2?

There are so many studies of the strength of RT2
2.

Theorem (Hirst 1987)

RCA0 + RT2
2 implies BΣ0

2.

Theorem (Cholak/Jockusch/Slaman 2001)

WKL0 + RT2
2 + IΣ0

2 is a Π1
1-conservative extension of RCA0 + IΣ0

2.

Thus, the first order strength of RT2
2 is in between BΣ0

2 and IΣ0
2.

Note that BΣ0
2 is a Π0

2-conservative extension of PRA, while IΣ0
2 is

strictly stronger.
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Recently, there are several important improvements.

Theorem (Chong/Slaman/Yang 2014)

WKL0 + RT2
2 does not imply IΣ0

2.

Theorem (Chong/Kreuzer/Yang 2015)

WKL0 + SRT2
2 is Π0

3-conservative over RCA0 + WF(ωω).

Here is our main result.

Theorem (Patey/Y)

WKL0 + RT2
2 is a Π̃0

3-conservative extension of RCA0.
(Here Π̃0

n-formula is of the form ∀Xθ where θ is Π0
n.)

This is a optimal conservation result over RCA0 since there is a
Σ0

3-consequence of RCA0 + RT2
2 which is not provable in RCA0.
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Ramsey’s theorem and its finite approximation

An important finite consequence of Ramsey’s theorem is the
following Paris-Harrington principle.

Theorem (PH2
2)

For any X0 ⊆inf N, there exists F ⊆fin X0 such that for any
f : [F ]2 → 2 there exists H ⊆ F such that H is homogeneous for f
and H is relatively large, i.e., |H| > min H.

PH2
2 is an easy consequence of WKL0 + RT2

2.

Actually, we can prove it just within RCA0.

The Π̃0
3-part of (infinite) Ramsey’s theorem is characterized by

“iterated version” Paris-Harrington-like principles.
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Ramsey’s theorem and its finite approximation

Definition (RCA0)

A finite set X ⊆ N is said to be 0-dense if |X | > min X.

A finite set X is said to be m + 1-dense if for any P : [X ]2 → 2,
there exists Y ⊆ X which is m-dense and P-homogeneous.

Note that “X is m-dense(n, k)” can be expressed by a Σ0
0-formula.

Definition

mPH2
2: for any X0 ⊆inf N, there exists F ⊆fin X0 such that F is

m-dense.

Note that mPH2
2 is still a consequence of WKL0 + RT2

2 for any
m ∈ ω.
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Conservation via density

By a simple generalization of indicator arguments we have the
following.

Theorem (A generalization of Bovykin/Weiermann)

WKL0 + RT2
2 is a Π̃0

3-conservative extension of
RCA0 + {mPH2

2 | m ∈ ω}.

Thus, to prove the main theorem, what we need is the following.

WANT

For each m ∈ ω, prove mPH2
2 within RCA0.

Since m-dense sets are very complicated, we will decompose the
density notion.
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α-large sets

We want to bound the size of m-dense sets.
For that, we use a tool from proof theory.

Definition
For ordinals below ωω (with a fixed primitive recursive ordinal
notation),

X is said to be α+ 1-large if X − {min X} is α-large,

X is said to be γ-large if X − {min X} is γ[min X ]-large (γ: limit),
where α+ ωk [x] = α+ ωk−1 · x.

X is m-large if |X | ≥ m.
X is ω-large if |X | ≥ min X, i.e., relatively large.
X is ωk+1-large if X − {min X} splits up into min X many
ωk -large sets.
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PH2
2 with α-large sets

Definition

X is said to be α-large(RT2
k ) if for any P : [X ]2 → k , there exists

Y ⊆ X which is α-large and P-homogeneous.

Here is an important result connecting α-largeness and PH.

Theorem (Solovay/Katonen 1981)

X is ωk+3 + ω3 + k + 4-large⇒ X is ω-large(RT2
k ).

Thus, any ω6-large set (with min > 3) is ω-large(RT2
2), which is

1-dense. (In what follows, we only consider finite sets with thier min > 3.)

Proposition

For any k ∈ ω, RCA0 ⊢ “any infinite set contains ωk -large set.”

Thus, 1PH2
2 is provable in RCA0.
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We want to generalize the previous situation.

WANT
For any k ∈ ω, find n ∈ ω so that RCA0 proves

X is ωn-large⇒ X is ωk -large(RT2
2).

This is enough to prove mPH2
2 within RCA0 by the following

argument.
ω6-large⇒ ω-large(RT2

2)⇒ 1-dense.
Take n2 ∈ ω so that ωn2-large⇒ ω6-large(RT2

2).
Then, ωn2-large⇒ 2-dense.
Take n3 ∈ ω so that ωn3-large⇒ ωn2-large(RT2

2).
Then, ωn3-large⇒ 3-dense.

...

Thus, for any m ∈ ω, there exists n ∈ ω such that
ωn-large⇒ m-dense.
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Decomposition by RT2
2 = ADS + EM

RT2
2 can be decomposed into ADS + EM by using the idea of

transitive coloring (Shore/Hirschfeldt and Bovykin/Weiermann).

Definition

X is α-large(ADS) if for any transitive P : [X ]2 → 2, there
exists Y ⊆ X which is α-large and P-homogeneous.

X is α-large(EM) if for any P : [X ]2 → 2, there exists Y ⊆ X
which is α-large such that P is transitive on [Y ]2.

Now, what we need are

WANT
For any k ∈ ω, find n1, n2 ∈ ω so that RCA0 proves

X is ωn1-large⇒ X is ωk -large(ADS).

X is ωn2-large⇒ X is ωk -large(EM).
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Bounding α-large(ADS) sets

Thanks to the transitivity, we can calculate the size of the above
sets directly.

Lemma

X is ω-large(RT2
2k+2)⇒ X is ωk -large(ADS).

Then, by Solovay/Ketonen’s theorem, we have

Theorem

X is ω2k+6-large⇒ X is ωk -large(ADS).

Thus,

Theorem
For any k ∈ ω, there exists n ∈ ω such that RCA0 proves

X is ωn-large⇒ X is ωk -large(ADS).
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Bounding α-large(EM) sets

WANT
For any k ∈ ω, find n ∈ ω so that RCA0 proves

X is ωn-large⇒ X is ωk -large(EM).

Constructing a “large” solution for EM is rather difficult.
By Solovay/Ketonen’s theorem, we can always construct ω-large
solutions. Then, how can we construct ω2-large solution from
them?
⇒ want to combine “ω-large many” ω-large solution.

If f : [N]2 → 2 is transitive on [F1]
2 and [F2]

2, then what is
needed to say that f is transitive on [F1 ∪ F2]

2?

⇒ “∃c ∈ 2∀x ∈ F1 ∀y ∈ F2 f(x, y) = c” is enough.

The following “grouping principle” is essential to use this idea.
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The grouping principle (finite version)

Definition (RCA0)
Let n, k ∈ ω.
Given f : [X ]2 → 2, an (ωn, ωk )-grouping for f is a finite family of
finite sets ⟨Fi ⊆ X | i < l⟩ such that

∀i < j < l max Fi < min Fj ,

∀i < l Fi is ωn-large,

{max Fi | i < l} is ωk -large, and,

∀i < j ∃c < 2∀x ∈ Fi ,∀y ∈ Fj f(x, y) = c.

FGP2
2(ω

n, ωk ): for any X0 ⊆inf N, there exists X ⊆fin X0 such that for
any f : [X ]2 → 2, there exists an (ωn, ωk )-grouping for f .

Theorem (we will see this in the next section.)

For any n, k ∈ ω, RCA0 ⊢ FGP2
2(ω

n, ωk ).
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Bounding FGP2
2

We can give an “ωm-large type bound” for the finite grouping by the
following theorem.

Theorem (Generalized Parsons theorem)

Let ψ(F) be a Σ0
1-formula with exactly the displayed free variables.

Assume that

RCA0 ⊢ ∀X ⊆ N(X is infinite→ ∃F ⊆fin Xψ(F)).

Then, there exists n ∈ ω such that

RCA0 ⊢ ∀Z ⊆fin N(Z is ωn-large→ ∃F ⊆ Zψ(F)).

Corollary

For any n, k ∈ ω, there exists m ∈ ω such that RCA0 proves

X is ωm-large⇒ any coloring f : [X ]2 → 2 has an
(ωn, ωk )-grouping for f .
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Bounding α-large(EM) sets by FGP2
2

Now we bound α-large(EM) sets inductively.
Assume (within RCA0) X is ωnk -large⇒ X is ωk -large(EM).
(The case k = 1, n1 = 6 is good by Solovay/Ketonen’s theorem.)
Then, FGP2

2(ω
nk , ω6) gives a bound for ωk -large(EM) sets.

Take nk+1 ∈ ω so that any ωnk+1-largeness bounds
FGP2

2(ω
nk , ω6).

Given f : [X ]2 → 2, there exists an (ωnk , ω6)-grouping
⟨Fi | i < l⟩ for f .

Since each of Fi is ωnk -large, there exists ωk -large sets
Hi ⊆ Fi such that f is transitive on [Hi]

2.

Since {max Fi | i < l} is ω6-large, there exists H̄ ⊆ {0, . . . , l − 1}
such that {max Fi | i ∈ H̄} is ω-large and f-homogeneous.

Thus, ∃c < 2, ∀i, j ∈ H̄, i , j, ∀x ∈ Fi ∀y ∈ Fj , f(x, y) = c.
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Bounding α-large(EM) sets by FGP2
2

H =
∪

i∈H̄ Hi is ωk+1-large, since each of Hi is ωk -large and
|H̄| > min{max Fi | i ∈ H̄} > min H.
f is transitive on [H]2, since for x, y, z ∈ H,

if x, y, z ∈ Hi then ok since f is transitive on [Hi]
2,

if x ∈ Hi and y, z ∈ Hj then f(x, y) = f(x, z), similar for the case
x, y ∈ Hi and z ∈ Hj ,
if x, y, z are in different groups, then
f(x, y) = f(y, z) = f(x, z) = c.

Thus, we have “ωnk+1-large⇒ X is ωk+1-large(EM)”

Theorem
For any k ∈ ω, there exists n ∈ ω such that RCA0 proves

X is ωn-large⇒ X is ωk -large(EM).
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To prove the finite grouping principle...

WANT

Prove FGP2
2(ω

n, ωk ) for any n, k ∈ ω within RCA0.

FGP2
2 is a too complicated finite combinatorics and thus

analyzing this within RCA0 directly is hard.

Instead of proving FGP2
2 directly, we will consider infinite

combinatorial principle which implies FGP2
2.

⇒ Go back to infinite combinatorics.
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Infinite grouping principle

Definition (RCA0)

Let α < ωω.
Given f : [N]2 → 2, an infinite α-grouping for f is a infinite family of
finite sets ⟨Fi ⊆ X | i ∈ N⟩ such that

∀i < j,max Fi < min Fj ,

∀i ∈ NFi is α-large,

∀i < j ∃c < 2∀x ∈ Fi ,∀y ∈ Fj f(x, y) = c.

GP2
2(α): for any f : [N]2 → 2, there exists an infinite α-grouping for

f .

Note that we can generalize GP to versions for n-tuples, k -pairs
and for wider/abstract largeness notions.
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Computability theoretic strength of GP2
2

GP2
2(2) is already non-trivial, moreover, we can see the following.

Theorem (RCA0)

GP2
2(ω) implies rainbow Ramsey theorem for pairs.

As the usual analysis for Ramsey-type statement, considering the
grouping principle for stable colorings (SGP2

2) is useful.

Proposition (RCA0)

COH + SGP2
2 → GP2

2.

Then, one can construct a solution of SGP2
2 by a version of Mathias

forcing.
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Computability theoretic strength of GP2
2

Theorem

SGP2
2(ω

n) has an ω-model with only low sets.

SGP2
2(ω

n) can preserve countably many hyperimmune sets.

Corollary

WKL0 + SGP2
2 + SADS does not imply SRT2

2, SEM or COH.

WKL0 + GP2
2 + EM does not imply ADS.

One can often transform a low solution construction into a
construction of a solution preserving IΣ0

1 in nonstandard
models.

⇒ Can we use this for a conservation proof?
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WANT

Prove FGP2
2(ω

n, ωk ) for any n, k ∈ ω within RCA0.

We will show this by proving Π̃0
3-conservation for WKL0 + GP2

2(ω
n)

over RCA0. By transforming the previous low solution construction,

Theorem

Let (M,S) |= BΣ0
2 and f : [M]2 → 2 is a stable coloring, then there

exists G ⊆ M such that

(M,S ∪ {G}) |= IΣ0
1+“G is an infinite ωn-grouping for f .”
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Conservation for BΣ0
2 vs IΣ0

1

The previous solution construction cannot be repeated. However,
we can still derive Π̃0

3-conservation.

Theorem

Let Γ be a formula of the form ∀X∃Yθ(X ,Y) where θ is Π0
2. Then,

RCA0 + BΣ0
2 + Γ is a Π̃0

3-conservative extension of IΣ0
1 if the

following condition holds:

(†) for any countable recursively saturated model (M,S) |= BΣ0
2

and for any X ∈ S, there exists Y ⊆ M such that
(M,S ∪ {Y }) |= IΣ0

1 + θ(X ,Y).

We have seen that SGP2
2(ω

n) satisfies this.
Note that WKL and ADS, which implies COH, also satisfy this
condition.
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Conservation for GP2
2 and FGP2

2

Corollary

WKL0 + GP2
2(ω

n) is a Π̃0
3-conservative extension of RCA0.

By the compactness argument, we can easily see the following.

Theorem

For any n, k ∈ ω, WKL0 + GP2
2(ω

n) ⊢ FGP2
2(ω

n, ωk ).

Thus, we have

Corollary

For any n, k ∈ ω, FGP2
2(ω

n, ωk ) is provable within RCA0.
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Theorem (Patey/Y)

WKL0 + RT2
2 is a Π̃0

3-conservative extension of RCA0,
thus, it is a Π0

2-conservative extension of PRA.

Corollary

WKL0 + RT2
2 does not imply the consistency of IΣ0

1 nor the totality
of Ackermann function.

The proof of the theorem can be formalizable within WKL0. Thus,
we have the following.

Corollary

PRA proves Con(PRA)↔ Con(WKL0 + RT2
2).
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Questions

Two big questions.

Question

Is WKL0 + RT2
2 Π1

1-conservative over RCA0 + BΣ0
2?

Is there a significant speed-up between RCA0 and
WKL0 + RT2

2?

Many smaller questions.

Question

Does GP2
2(ω

n) imply BΣ0
2 or EM?

Does ADS or EM imply GP2
2(ω

n)?

Do GP2
2(ω

n)’s form a strict hierarchy?

What is the strength of GPn
k in general?
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Thank you!

Ludovic Patey and Y, The proof-theoretic strength of Ramsey’s
theorem for pairs and two colors, draft, available at
http://arxiv.org/abs/1601.00050
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