Weak Choice Principles in the Weihrauch Degrees

Takayuki Kihara

University of California, Berkeley, USA

Workshop on New Challenges in Reverse Mathematics, IMS, NUS, Singapore

Dagstuhl Problems (Sep. 2015)

(1) (Pauly 2012) $(\exists k \in \omega)$ AoUC \star AoUC $\leq w$ AoUC k ? Here, AoUC is the all-or-unique choice principle.
(2) (Le Roux-Pauly 2015) $(\exists k \in \omega) X C \star X C \leq w X^{k}$? Here, $\mathbf{X C}$ is the convex choice principle.

It is easy to see that LLPO $<_{w}$ AoUC $<w$ XC $<w$ WKL (any recursion theorist can separate them).

Main Theorem (K. and Pauly)

(1) Problem 1 is false: LLPO \star AoUC $\not \Varangle_{w}$ AoUC ${ }^{\boldsymbol{k}}$ for all \boldsymbol{k}.
(2) Problem 2 is false: XC \star AoUC $\not \mathbf{z}_{w} \mathrm{XC}_{\boldsymbol{k}}$ for all \boldsymbol{k}. Here, $\mathbf{X C}_{\boldsymbol{k}}$ is the \boldsymbol{k}-dimensional convex choice principle.
(3) However, it is true that

$$
\text { AoUC } \star \operatorname{AoUC} \star \operatorname{AoUC} \leq w \text { AoUC }{ }^{4} \star \text { AoUC }^{3} .
$$

A Π_{2}-principle is non-uniformly computable if any \boldsymbol{x}-computable instance has an \boldsymbol{x}-computable solution.

Equivalently, it has a $\boldsymbol{\sigma}$-computable realizer, where \boldsymbol{f} is $\boldsymbol{\sigma}$-computable if it is decomposable into countably many computable functions. (this is an effective version of σ-continuity in the sense of Nikolai Luzin).

Non-uniformly Computable Principles (below WKL)

(1) LLPO: de Morgan's law for $\boldsymbol{\Sigma}_{1}^{0}$-formulas.
(2) C_{n} : Given nonempty closed $F \subseteq\{1, \ldots, n\}$, choose $i \in F$.
(3) $\mathrm{C}_{[0,1], \# \leq n}$: Given nonempty closed $F \subseteq[0,1]$, if \boldsymbol{F} has at most \boldsymbol{n} many elements, choose $\boldsymbol{x} \in \boldsymbol{F}$.
(4) AoUC: Given nonempty closed $F \subseteq[0,1]$, if $F=[0,1]$ or F is singleton, choose $x \in F$.
(5) XC: Given nonempty convex closed $F \subseteq[0,1]$, choose $x \in F$.

Clear: LLPO $\equiv{ }_{w} \mathrm{C}_{2}<{ }_{w} \mathrm{C}_{[0,1], \# \leq 2}<{ }_{w} \mathrm{AoUC}<{ }_{w} \mathrm{XC}<{ }_{w} \mathrm{WKL}$.

Definition (Weihrauch Reducibility)

$\boldsymbol{f} \leq w \boldsymbol{g}$ iff there are computable $\boldsymbol{H}, \boldsymbol{K}$ such that for any realizer \boldsymbol{G} of $\boldsymbol{g}, \boldsymbol{K}(\mathbf{i d}, \mathbf{G H})$ realizes \boldsymbol{f}.
(Brattka-Gherardi-Marcone) Classify $\boldsymbol{\Pi}_{\mathbf{2}}$-theorems in the Weihrauch lattice.

There are some challenges to connect the Weihrauch lattice with intuitionistic linear logic:

- Yoshimura (submitted in 2013; still unpublished?): Some partial result using fibration in categorical logic.
- Kuyper: Some relationship with $E L_{0}$ plus Markov's principle (Σ_{1}^{0}-DNE) via realizability.
$E L_{0}=$ Heyting Arithmetic HA restricted to quantifier-free induction QF-IND
with the axiom λ-convesion, the axiom of recursor, and the quantifier-free axiom of choice QF-AC ${ }_{00}$

Note that $\mathbf{R C A}_{\mathbf{0}}=\mathrm{EL}_{0}+$ "the law of excluded middle".

Constructive Reverse Mathematics

(1) $E L_{0}$ proves the equivalence of the following:

- BE: every real number has a binary expansion. (a real number is represented by a rapid Cauchy sequence)
- $\mathrm{C}_{[0,1], \# \leq 2}$: for any infinite binary tree \boldsymbol{T}, if every level of \boldsymbol{T} has at most 2 nodes, then \boldsymbol{T} has an infinite path.
(2) $E L_{0}$ proves the equivalence of the following:
- IVT: the intermediate value theorem.
- XC: every infinite binary convex tree has an infinite path.
(3) (Pauly 2010; Brattka-Gherardi-Hölzl 2015) NASH \equiv_{w} AoUC*: Does $\mathrm{EL}_{0}(+\mathrm{MP})$ prove the equivalence of the following?
- NASH: every bi-matrix game has a Nash equilibrium.
- AoUC: every infinite binary all-or-unique tree has an infinite path.
(1) and (2) are confirmed by Berger-Ishihara-K.-Nemoto (we need some nontrivial work on eliminating Markov's principle).
There are a huge number of works in constructive reverse math...

Definition

For $\boldsymbol{f}: \subseteq X \rightrightarrows \boldsymbol{Y}$ and $\boldsymbol{g}: \subseteq \mathbf{Z} \rightrightarrows W$,
(1) $f \times g(x, z)=f(x) \times g(z)$.
(2) $f \circ g(x)=\bigcup\{f(y): y \in g(x)\}$.
(3) $f \star g=\max _{\leq_{w}}\left\{f_{0} \circ g_{0}: f_{0} \leq_{w} f\right.$ and $\left.g_{0} \leq w g\right\}$.

For $\boldsymbol{X}=\mathbb{N}, \mathbf{2}^{\mathbb{N}}, \mathbb{N}^{\mathbb{N}}, \mathbb{R}$, etc., we have:
(1) $\mathrm{C}_{X} \star \mathrm{C}_{X} \equiv{ }_{w} \mathrm{C}_{X} \times \mathrm{C}_{X} \equiv{ }_{w} \mathrm{C}_{X}$.
(2) $\mathrm{PC}_{X} \star \mathrm{PC}_{x} \equiv_{w} \mathrm{PC}_{x} \times \mathrm{PC}_{x} \equiv{ }_{w} \mathrm{PC}_{x}$.
(3) $\mathrm{C}_{x, \# \leq n} \star \mathrm{C}_{X, \# \leq n} \equiv{ }_{w} \mathrm{C}_{x, \# \leq n} \times \mathrm{C}_{X, \# \leq n}$.
(Brattka-Le Roux-Pauly) XC $<w \mathbf{X C} \times \mathbf{X C}$.
Dagstuhl Problems (Sep. 2015)
(1) (Pauly 2012) $(\exists \boldsymbol{k} \in \omega)$ AoUC \star AoUC $\leq w$ AoUC ${ }^{k}$?
(2) (Le Roux-Pauly 2015) $(\exists k \in \omega) \mathrm{XC} \star \mathrm{XC} \leq w \mathrm{XC}^{k}$?

Main Theorem (K. and Pauly)

(1) Problem 1 is false: LLPO \star AoUC $\not \mathrm{K}_{w}$ AoUC $^{\boldsymbol{k}}$ for all \boldsymbol{k}.
(2) Problem 2 is false: $\mathbf{X C} \star$ AoUC $\not{ }_{w} \mathbf{X C}_{\boldsymbol{k}}$ for all \boldsymbol{k}. Here, $\mathbf{X C}_{\boldsymbol{k}}$ is the \boldsymbol{k}-dimensional convex choice principle.
(0) However, it is true that

$$
\text { AoUC } \star \text { AoUC } \star \text { AoUC } \leq w \text { AoUC }^{4} \star \text { AoUC }^{3} .
$$

In particular, we have

$$
\text { NASH }<_{w} \text { NASH } \star \text { NASH } \equiv_{w} \text { NASH } \star \text { NASH } \star \text { NASH. }
$$

$\left(P_{e}, \varphi_{e}, \psi_{e}\right)$: the \boldsymbol{e}-th triple constructed by the opponent $\mathbf{O p p}$

- The e-th co-c.e. closed subset of $P_{e} \subseteq[0,1]^{k}$.
- The e-th partial computable $\varphi_{e}: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$.
- The e-th partial computable $\psi_{e}: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow[0,1]$.

The W-reduction proceeds as follows:

- We first give an all-or-unique tree $\boldsymbol{T}_{r} \subseteq \mathbf{2}^{<\omega}$ and a map $\boldsymbol{J}_{r}: \mathbf{2}^{\omega} \rightarrow$ \{nonempty intervals\}.
- Opp reacts with a convex $\boldsymbol{P}_{r} \subseteq[0,1]^{k}$, and ensure that
- if \boldsymbol{z} is a name of a point in \boldsymbol{P}_{r},
- then $\varphi_{r}(\boldsymbol{z})=\boldsymbol{x}$ is a path through \boldsymbol{T}_{r},
- and $\psi_{r}(\boldsymbol{z})$ chooses an element of the interval $\boldsymbol{J}_{r}(\boldsymbol{x})$, where Opp can use information on (names of) \boldsymbol{T}_{r} and \boldsymbol{J}_{r} to construct φ_{r} and ψ_{r}.
- Our purpose is to prevent Opp's strategy.

By the recursion theorem, I know who I am.

- The \boldsymbol{e}-th strategy constructs an a.o.u. tree $\boldsymbol{T}_{\boldsymbol{e}}$ and an interval-valued map J_{e}.
- The \boldsymbol{q}-th substrategy $\boldsymbol{S}_{\boldsymbol{q}}$:
- \mathcal{S}_{q} acts under the assumption that the substrategies $\left(\mathcal{S}_{p}\right)_{p<q}$ will eventually force the Opp's convex set $\boldsymbol{P}_{\boldsymbol{e}}$ to be at most $(\mathbf{k}-\mathbf{q})$-dimensional.
- The \boldsymbol{t}-th action of \boldsymbol{S}_{q} forces the measure $\lambda^{k-q}\left(\tilde{\boldsymbol{P}}_{e}\right)$ of a nonempty open subset $\tilde{\boldsymbol{P}}_{\boldsymbol{e}}$ of $\boldsymbol{P}_{\boldsymbol{e}}$ to be less than or equal to $\mathbf{2}^{q-t} \cdot \varepsilon_{t}$, where $\varepsilon_{t}=\sum_{j=0}^{t+1} \mathbf{2}^{-j}<2$.
- If \mathcal{S}_{q} acts infinitely often, then it forces $\boldsymbol{P}_{\boldsymbol{e}}$ to be at most ($\boldsymbol{k} \mathbf{- q} \mathbf{- 1}$)-dimensional (under the assumption that $\boldsymbol{P}_{\boldsymbol{e}}$ is convex).

How can we approximate the value of λ^{k-q} by an effective way?
Obvious obstacles:

- Even if we know that a co-c.e. closed $\boldsymbol{X} \subseteq[0,1]^{k}$ is at most \boldsymbol{d}-dimensional for some $\boldsymbol{d}<\boldsymbol{k}$, it is still possible that $\boldsymbol{X}[\boldsymbol{s}]$ can always be at least \boldsymbol{k}-dimensional for all $\boldsymbol{s} \in \omega$.
Fortunately, however, if a convex closed set $\boldsymbol{X} \subseteq[0,1]^{k}$ is at most \boldsymbol{d}-dimensional for some $\boldsymbol{d}<\boldsymbol{k}$:
- By convexity, \boldsymbol{X} is a subset of \boldsymbol{d}-dim. hyperplane \boldsymbol{L}.
- By compactness, $\boldsymbol{X}[\boldsymbol{s}]$ for sufficiently large \boldsymbol{s} is eventually covered by a thin \boldsymbol{k}-parallelotope $\widehat{\boldsymbol{L}}$ obtained by expanding \boldsymbol{d}-hyperplane \boldsymbol{L}.
- For instance, if $X \subseteq[0,1]^{3}$ is included in the plane $L=\{1 / 2\} \times[0,1]^{2}$, then for all $\boldsymbol{t} \in \omega$, there is $\boldsymbol{s} \in \omega$ such that $X[s] \subseteq \widehat{L}\left(2^{-t}\right):=\left[1 / 2-2^{-t}, 1 / 2+2^{-t}\right] \times[0,1]^{2}$ by compactness.
- We call such $\widehat{L}\left(2^{-t}\right)$ as the 2^{-t}-thin expansion of \boldsymbol{L}.

The \boldsymbol{d}-dim. measure λ^{d} is defined on Borel subsets of \boldsymbol{d}-hyperplanes in $[0,1]^{k}$ whose values are consistent with the \boldsymbol{d}-dim. volume (defined by the wedge product) on d-parallelotopes in $[0,1]^{k}$.

- Assume: We know that a convex set $\boldsymbol{X} \subseteq[\mathbf{0 , 1}]^{k}$ is at most \boldsymbol{d}-dim., and moreover, a co-c.e. closed $\tilde{\boldsymbol{X}} \subseteq \boldsymbol{X}$ satisfies that $\lambda^{d}(\tilde{\boldsymbol{X}})<\boldsymbol{r}$.
- Given $\varepsilon>0$, there must be a rational closed subset \boldsymbol{Y} of a \boldsymbol{d}-hyperplane L such that $\tilde{\boldsymbol{X}}$ is covered by the ε-thin expansion $\widehat{\boldsymbol{Y}}(\varepsilon)$ of \boldsymbol{Y}, and moreover, \boldsymbol{Y} is very close to $\tilde{\boldsymbol{X}}$.
- If \boldsymbol{Y} is a rational closed subset of a \boldsymbol{d}-hyperplane, one can calculate $\lambda^{d}(\boldsymbol{Y})$.
- Indeed, we can compute the maximum value $m^{d}(Y, \varepsilon)$ of $\lambda^{d}\left(\widehat{Y}(\varepsilon) \cap L^{\prime}\right)$ where L^{\prime} ranges over all \boldsymbol{d}-hyperplanes.
- For instance, if $\boldsymbol{Y}=[\mathbf{0}, \boldsymbol{s}] \times\{\boldsymbol{y}\}$, it is easy to see that

$$
m^{1}(Y, \varepsilon)=\sqrt{s^{2}+(2 \varepsilon)^{2}}
$$

- If $\lambda^{d}(\tilde{\boldsymbol{X}})<\boldsymbol{r}$, given \boldsymbol{n}, one can effectively find $\boldsymbol{s}, \boldsymbol{Y}, \varepsilon$ such that

$$
\tilde{X}[s] \subseteq \widehat{Y}(\varepsilon) \text { and } m^{d}(Y, \varepsilon)<r+2^{-n} .
$$

- In this way, if the inequality $\lambda^{d}(\tilde{\boldsymbol{X}})<\boldsymbol{r}$ holds for a co-c.e. closed subset $\tilde{\boldsymbol{X}}$ of a \boldsymbol{d}-dimensional convex set \boldsymbol{X}, then one can effectively confirm this fact.

$X C \star A_{0} U C \not{ }_{w} X C_{k}$ for all k.

Opp: (convex) closed $P_{e} \subseteq[0,1]^{k}$, which helps φ_{e} to find a path p of T_{e}, and ψ_{e} to find an element of $\boldsymbol{J}_{e}(\boldsymbol{p})$.
The action of the \boldsymbol{q}-th substrategy $\mathcal{S}_{\boldsymbol{q}}$:
(1) Ask whether $\varphi_{e}(\mathbf{z})$ already computes a node of length at least $\boldsymbol{p}+\mathbf{1}$ for any name \boldsymbol{z} of an element of $\boldsymbol{P}_{\mathbf{e}}$.

- Yes \Rightarrow Go next // No \Rightarrow Wait.
(2) Ask whether there is some $\tau \in 2^{q+1}$ such that any point in $\boldsymbol{P}_{\boldsymbol{e}}$ has a name \boldsymbol{z} such that $\varphi_{e}(\boldsymbol{z})$ does not extend τ.
- No \Rightarrow Go next.
- Yes \Rightarrow Let $\boldsymbol{T}_{\boldsymbol{e}}$ be a tree with a unique path $\boldsymbol{\tau}^{\boldsymbol{\sim}} \mathbf{0}^{\boldsymbol{\omega}}$; then we win.
(3) Now \mathcal{S}_{q} believes that $\left(\mathcal{S}_{p}\right)_{p<q}$ eventually forces \boldsymbol{P}_{e} to be at most ($\boldsymbol{k} \boldsymbol{- q}$)-dimensional. Under this assumption, $\boldsymbol{S}_{\boldsymbol{q}}$ believes that $\mathcal{S}_{\boldsymbol{q}}$ has forced $\lambda^{k-q}\left(\tilde{P}_{e}\right)<2^{q-t+1} \cdot \varepsilon_{t-1}\left(\tilde{P}_{e}\right.$ is an open subset of $\left.\boldsymbol{P}_{e}\right)$ by \boldsymbol{S}_{q} 's ($t-1$)-st action.
(4) Ask whether for any name \boldsymbol{z} of a point of $\boldsymbol{P}_{\boldsymbol{e}}$, whenever $\boldsymbol{\varphi}_{\boldsymbol{e}}(\boldsymbol{z})$ extends $\mathbf{0}^{q} \mathbf{1}$, the value of $\psi_{e}(\boldsymbol{z})$ is already approximated with precision 3^{-t-2}.
- Yes \Rightarrow Go next // No \Rightarrow Wait.

$X C \star A_{0} U C \not{ }_{w} X C_{k}$ for all k.

The action of the \boldsymbol{q}-th substrategy $\boldsymbol{S}_{\boldsymbol{q}}$ (Continued):

- We have a nonempty interval $J_{e}\left(0^{q} 1\right)$ at the current stage.
- I_{0}, I_{1} : sufficiently separated subintervals of $J_{e}\left(0^{q} 1\right)$.
- V : names of points in P_{e} whose φ_{e}-values extend $0^{q} 1$.
- \mathcal{S}_{q} believes that \mathcal{S}_{q} has already forced $\lambda^{k-q}(\delta[V]) \leq 2^{q-t+1} \cdot \varepsilon_{t-1}$, where $\boldsymbol{\delta}$ is an open representation of $[0,1]^{k}$.
- Q_{i} : the set of all points in $\overline{\delta[V]}$ all of whose names are still possible to have ψ_{e}-values in $\boldsymbol{I}_{\boldsymbol{i}}$ with precision $\mathbf{3}^{-\boldsymbol{t - 2}}$. One can show:
- Q_{i} is effectively compact.
- $\lambda^{k-q}\left(Q_{0} \cap Q_{1}\right)=0$ whenever $\boldsymbol{P}_{\boldsymbol{e}}$ is at most $(\boldsymbol{k}-\boldsymbol{q})$-dim.
- Therefore, $\lambda^{k-q}\left(Q_{i}\right) \leq 2^{q-t} \cdot \varepsilon_{t-1}$ for some $i<2$.
- Finally, ask whether there is a witness for the above. That is, ask whether one can find $\boldsymbol{s}, \boldsymbol{Y}, \boldsymbol{\varepsilon}, \boldsymbol{i}$ such that

$$
Q_{i}[s] \subseteq \widehat{Y}(\varepsilon) \text { and } m^{k-q}(Y, \varepsilon)<2^{q-t} \cdot \varepsilon_{t}
$$

- No \Rightarrow Wait.
- Yes \Rightarrow Put $\boldsymbol{J}_{\boldsymbol{e}}\left(\mathbf{0}^{q} \mathbf{1}\right)=\boldsymbol{I}_{\boldsymbol{i}}$ and go to the next action $\boldsymbol{t}+\mathbf{1}$.
- The previous action of \mathcal{S}_{q} forces that $\delta[V] \subseteq Q_{i}$; therefore, $\lambda^{k-q}(\delta[V]) \leq \lambda^{k-q}\left(Q_{i}\right) \leq 2^{q-t} \cdot \varepsilon_{t}$.
- If \mathcal{S}_{q} acts infinitely often, then this forces $\lambda^{\boldsymbol{k}-\boldsymbol{q}}(\delta[V])=\mathbf{0}$; therefore convexity of \boldsymbol{P}_{e} implies $\lambda^{k-q}\left(\boldsymbol{P}_{e}\right)=\mathbf{0}$ since $\delta[V]$ is an open subset of $\boldsymbol{P}_{\boldsymbol{e}}$.

Given ($\left.\boldsymbol{T}_{r}, J_{r}\right)$, Opp reacts with $\left(P_{f(e)}, \varphi_{f(e)}, \psi_{f(e)}\right)$.
By the Rec. Thm., there is r s.t. $\left(\boldsymbol{P}_{r}, \varphi_{r}, \psi_{r}\right)=\left(\boldsymbol{P}_{f(r)}, \varphi_{f(r)}, \psi_{f(r)}\right)$.
Suppose: Opp wins with this triple ($P_{r}, \varphi_{r}, \psi_{r}$)

- Then $\mathcal{S}_{\boldsymbol{q}}$ eventually forces $\boldsymbol{P}_{\boldsymbol{r}}$ to be $(\boldsymbol{k} \boldsymbol{- q} \mathbf{- 1})$-dimensional; therefore, $\left(\mathcal{S}_{q}\right)_{q<k}$ forces \boldsymbol{P}_{r} to be zero-dimensional.
- Since $\boldsymbol{P}_{\boldsymbol{r}}$ is convex (if $\mathbf{O p p}$ wins), $\boldsymbol{P}_{\boldsymbol{r}}$ is a singleton or empty.
- Then, there is some $\tau \in \mathbf{2}^{q+1}$ such that any point in \boldsymbol{P}_{r} has a name \boldsymbol{z} such that $\boldsymbol{\varphi}_{r}(\boldsymbol{z})$ does not extend $\boldsymbol{\tau}$.
- Then \mathcal{S}_{q} ensures that \boldsymbol{T}_{r} has a unique path $\boldsymbol{\tau}^{\wedge} \boldsymbol{0}^{\omega}$.
- Thus, φ_{r} fails to choose a path of $\boldsymbol{T}_{\boldsymbol{r}}$; hence Opp loses.

Proof of LLPO \star AoUC $\not{ }_{\mathbf{L}}$ w AoUC*:

Easy. Use the similar argument

Lemma

(1) $\mathrm{AoUC}^{m} \star \mathrm{AoUC}^{k} \leq w \mathrm{C}_{2^{k}} \star\left(\mathrm{AoUC}^{m \cdot 2^{k}+k}\right)$. In particular, AoUC \star AoUC $\leq w$ LLPO $\star\left(\right.$ AoUC $\left.^{3}\right)$.
(2) $\mathrm{AoUC}^{\prime} \star \mathrm{C}_{m} \leq w$ AoUC ${ }^{1 \cdot m} \times \mathrm{C}_{m}$.

Corollary
AoUC ${ }^{\prime} \star \mathrm{AoUC}^{m} \star \mathrm{AoUC}^{k} \leq w \operatorname{AoUC}{ }^{(l+1) \cdot 2^{k}} \star \mathrm{AoUC}^{m \cdot 2^{k}+k}$.
In particular,

$$
\text { AoUC } \star \text { AoUC } \star \text { AoUC } \leq w \text { AoUC }{ }^{4} \star \text { AoUC }^{3}
$$

Main Theorem (K. and Pauly)

(1) Problem 1 is false: LLPO \star AoUC $\not \mathrm{K}_{w}$ AoUC $^{\boldsymbol{k}}$ for all \boldsymbol{k}.
(2) Problem 2 is false: $\mathbf{X C} \star$ AoUC $\not{ }_{w} \mathbf{X C}_{\boldsymbol{k}}$ for all \boldsymbol{k}. Here, $\mathbf{X C}_{\boldsymbol{k}}$ is the \boldsymbol{k}-dimensional convex choice principle.
(0) However, it is true that

$$
\text { AoUC } \star \text { AoUC } \star \text { AoUC } \leq w \text { AoUC }^{4} \star \text { AoUC }^{3} .
$$

In particular, we have

$$
\text { NASH }<_{w} \text { NASH } \star \text { NASH } \equiv_{w} \text { NASH } \star \text { NASH } \star \text { NASH. }
$$

