Weak Choice Principles in the Weihrauch Degrees

Takayuki Kihara

University of California, Berkeley, USA

Workshop on New Challenges in Reverse Mathematics, IMS, NUS, Singapore

Dagstuhl Problems (Sep. 2015)

- (Pauly 2012) $(\exists k \in \omega)$ AOUC \star AOUC \leq_W AOUC^k? Here, AOUC is the *all-or-unique* choice principle.
- ② (Le Roux-Pauly 2015) (∃ $k \in ω$) XC ★ XC ≤_W XC^k? Here, XC is the *convex* choice principle.

It is easy to see that **LLPO** $<_W$ **AoUC** $<_W$ **XC** $<_W$ **WKL** (any recursion theorist can separate them).

Main Theorem (K. and Pauly)

- **O** Problem 1 is false: **LLPO** \star **AOUC** \leq_W **AOUC**^k for all k.
- ② Problem 2 is false: XC ★ AoUC \leq_W XC_k for all k. Here, XC_k is the k-dimensional convex choice principle.
- However, it is true that

AoUC \star AoUC \star AoUC \leq_W AoUC⁴ \star AoUC³.

A Π_2 -principle is *non-uniformly computable* if any *x*-computable instance has an *x*-computable solution. Equivalently, it has a σ -computable realizer, where *f* is σ -computable if it is decomposable into countably many computable functions.

(this is an effective version of σ -continuity in the sense of Nikolai Luzin).

Non-uniformly Computable Principles (below WKL)

- **1 LLPO**: de Morgan's law for Σ_1^0 -formulas.
- **2 C**_{*n*}: Given nonempty closed $F \subseteq \{1, \ldots, n\}$, choose $i \in F$.
- ③ $C_{[0,1],\#\leq n}$: Given nonempty closed $F \subseteq [0,1]$, if *F* has at most *n* many elements, choose *x* ∈ *F*.
- AoUC: Given nonempty closed $F \subseteq [0, 1]$, if F = [0, 1] or F is singleton, choose $x \in F$.
- **5** XC: Given nonempty convex closed $F \subseteq [0, 1]$, choose $x \in F$.

Clear: LLPO $\equiv_W C_2 <_W C_{[0,1],\# \le 2} <_W AoUC <_W XC <_W WKL.$

Definition (Weihrauch Reducibility)

 $f \leq_W g$ iff there are computable H, K such that for any realizer G of g, K(id, GH) realizes f.

(Brattka-Gherardi-Marcone) Classify Π_2 -theorems in the Weihrauch lattice.

There are some challenges to connect the Weihrauch lattice with intuitionistic linear logic:

- Yoshimura (submitted in 2013; still unpublished?): Some partial result using fibration in categorical logic.
- Kuyper: Some relationship with EL₀ plus Markov's principle (Σ⁰₁-DNE) via realizability.
- EL_0 = Heyting Arithmetic **HA** restricted to quantifier-free induction **QF-IND** with the axiom λ -convesion, the axiom of recursor, and the quantifier-free axiom of choice **QF-AC**₀₀

Note that $RCA_0 = EL_0 +$ "the law of excluded middle".

Constructive Reverse Mathematics

- EL₀ proves the equivalence of the following:
 - **BE**: every real number has a *binary expansion*. (a real number is represented by a rapid Cauchy sequence)
 - C_{[0,1],#≤2}: for any infinite binary tree *T*, if every level of *T* has at most 2 nodes, then *T* has an infinite path.
- 2 EL₀ proves the equivalence of the following:
 - IVT: the intermediate value theorem.
 - XC: every infinite binary *convex* tree has an infinite path.
- (Pauly 2010; Brattka-Gherardi-Hölzl 2015) **NASH** $≡_W$ **AoUC**^{*}: Does **EL**₀ (+**MP**) prove the equivalence of the following?
 - NASH: every bi-matrix game has a Nash equilibrium.
 - **AoUC**: every infinite binary *all-or-unique* tree has an infinite path.

(1) and (2) are confirmed by Berger-Ishihara-K.-Nemoto (we need some nontrivial work on eliminating Markov's principle).

There are a huge number of works in constructive reverse math...

Definition

For $f :\subseteq X \Rightarrow Y$ and $g :\subseteq Z \Rightarrow W$,

•
$$f \times g(x,z) = f(x) \times g(z)$$
.

$$f \circ g(x) = \bigcup \{f(y) : y \in g(x)\}.$$

For $X = \mathbb{N}, 2^{\mathbb{N}}, \mathbb{N}^{\mathbb{N}}, \mathbb{R}$, etc., we have:

(Brattka-Le Roux-Pauly) $XC <_W XC \times XC$.

Dagstuhl Problems (Sep. 2015)

(Pauly 2012) ($\exists k \in \omega$) AoUC \star AoUC \leq_W AoUC^k?

(Le Roux-Pauly 2015) $(\exists k \in \omega) XC \star XC \leq_W XC^k$?

Main Theorem (K. and Pauly)

- **O** Problem 1 is false: **LLPO** \star **AOUC** $\not\leq_W$ **AOUC**^{*k*} for all *k*.
- ② Problem 2 is false: **XC** ★ **AoUC** \leq_W **XC**^{*k*} for all *k*. Here, **XC**^{*k*} is the *k*-dimensional convex choice principle.
- O However, it is true that

AoUC \star AoUC \star AoUC \leq_W AoUC⁴ \star AoUC³.

In particular, we have

NASH $<_W$ NASH \star NASH \equiv_W NASH \star NASH \star NASH.

$XC \star AoUC \not\leq_W XC_k$ for all k.

 (P_e, φ_e, ψ_e) : the *e*-th triple constructed by the opponent **Opp**

- The *e*-th co-c.e. closed subset of $P_e \subseteq [0, 1]^k$.
- The *e*-th partial computable $\varphi_e :\subseteq \mathbb{N}^{\mathbb{N}} \to 2^{\mathbb{N}}$.
- The *e*-th partial computable $\psi_e :\subseteq \mathbb{N}^{\mathbb{N}} \to [0, 1]$.

The W-reduction proceeds as follows:

- We first give an all-or-unique tree T_r ⊆ 2^{<ω} and a map J_r : 2^ω → {nonempty intervals}.
- **Opp** reacts with a convex $P_r \subseteq [0, 1]^k$, and ensure that
 - if z is a name of a point in Pr,
 - then $\varphi_r(z) = x$ is a path through T_r ,
 - and $\psi_r(z)$ chooses an element of the interval $J_r(x)$, where Opp can use information on (names of) T_r and J_r to construct φ_r and ψ_r .
- Our purpose is to prevent **Opp**'s strategy.

By the recursion theorem, I know who I am.

- The *e*-th strategy constructs an a.o.u. tree *T_e* and an interval-valued map *J_e*.
- The q-th substrategy S_q :
 - S_q acts under the assumption that the substrategies (S_p)_{p<q} will eventually force the Opp's convex set P_e to be at most (k − q)-dimensional.
 - The *t*-th action of S_q forces the measure λ^{k-q}(P̃_e) of a nonempty open subset P̃_e of P_e to be less than or equal to 2^{q-t} · ε_t, where ε_t = Σ^{t+1}_{i=0} 2^{-j} < 2.
 - If S_q acts infinitely often, then it forces P_e to be at most (k q 1)-dimensional (under the assumption that P_e is convex).

How can we approximate the value of λ^{k-q} by an effective way? Obvious obstacles:

Even if we know that a co-c.e. closed X ⊆ [0, 1]^k is at most *d*-dimensional for some *d* < k, it is still possible that X[s] can always be at least k-dimensional for all s ∈ ω.

Fortunately, however, if a convex closed set $X \subseteq [0, 1]^k$ is at most *d*-dimensional for some d < k:

- By convexity, **X** is a subset of **d**-dim. hyperplane **L**.
- By compactness, X[s] for sufficiently large s is eventually covered by a *thin* k-parallelotope L obtained by expanding d-hyperplane L.
- For instance, if $X \subseteq [0, 1]^3$ is included in the plane $L = \{1/2\} \times [0, 1]^2$, then for all $t \in \omega$, there is $s \in \omega$ such that $X[s] \subseteq \widehat{L}(2^{-t}) := [1/2 2^{-t}, 1/2 + 2^{-t}] \times [0, 1]^2$ by compactness.
- We call such $\widehat{L}(2^{-t})$ as the 2^{-t} -thin expansion of L.

The *d*-dim. measure λ^d is defined on Borel subsets of *d*-hyperplanes in $[0, 1]^k$ whose values are consistent with the *d*-dim. volume (defined by the wedge product) on *d*-parallelotopes in $[0, 1]^k$.

- Assume: We know that a convex set X ⊆ [0, 1]^k is at most d-dim., and moreover, a co-c.e. closed X̃ ⊆ X satisfies that λ^d(X̃) < r.
- Given ε > 0, there must be a rational closed subset Y of a
 d-hyperplane L such that X̃ is covered by the ε-thin expansion Ỹ(ε) of Y, and moreover, Y is very close to X̃.
 - If Y is a rational closed subset of a d-hyperplane, one can calculate λ^d(Y).
 - Indeed, we can compute the maximum value $m^d(Y, \varepsilon)$ of $\lambda^d(\widehat{Y}(\varepsilon) \cap L')$ where L' ranges over all d-hyperplanes.
 - For instance, if $Y = [0, s] \times \{y\}$, it is easy to see that

$$m^1(Y,\varepsilon) = \sqrt{s^2 + (2\varepsilon)^2}.$$

- If $\lambda^d(\tilde{X}) < r$, given *n*, one can effectively find *s*, *Y*, ε such that $\tilde{X}[s] \subseteq \hat{Y}(\varepsilon)$ and $m^d(Y, \varepsilon) < r + 2^{-n}$.
- In this way, if the inequality $\lambda^d(\tilde{X}) < r$ holds for a co-c.e. closed subset \tilde{X} of a *d*-dimensional convex set *X*, then one can effectively confirm this fact.

$XC \star AoUC \not\leq_W XC_k$ for all k.

Opp: (convex) closed $P_e \subseteq [0, 1]^k$, which helps φ_e to find a path p of T_e , and ψ_e to find an element of $J_e(p)$.

The action of the q-th substrategy S_q :

- Ask whether $\varphi_e(z)$ already computes a node of length at least p + 1 for any name z of an element of P_e .
 - Yes \Rightarrow Go next // No \Rightarrow Wait.
- 3 Ask whether there is some $\tau \in 2^{q+1}$ such that any point in P_e has a name z such that $\varphi_e(z)$ does not extend τ .
 - No ⇒ Go next.
 - Yes \Rightarrow Let T_e be a tree with a *unique* path $\tau^{\circ} \mathbf{0}^{\omega}$; then we win.
- Now S_q believes that (S_p)_{p<q} eventually forces P_e to be at most (k q)-dimensional. Under this assumption, S_q believes that S_q has forced λ^{k-q}(P̃_e) < 2^{q-t+1} ⋅ ε_{t-1} (P̃_e is an open subset of P_e) by S_q's (t 1)-st action.
- 3 Ask whether for any name z of a point of P_e , whenever $\varphi_e(z)$ extends $0^{q}1$, the value of $\psi_e(z)$ is already approximated with precision 3^{-t-2} .
 - Yes ⇒ Go next // No ⇒ Wait.

$XC \star AoUC \not\leq_W XC_k$ for all k.

The action of the q-th substrategy S_q (Continued):

- We have a nonempty interval $J_e(0^q 1)$ at the current stage.
- I_0, I_1 : sufficiently separated subintervals of $J_e(0^q 1)$.
- V: names of points in P_e whose φ_e -values extend $0^q 1$.
- S_q believes that S_q has already forced $\lambda^{k-q}(\delta[V]) \leq 2^{q-t+1} \cdot \varepsilon_{t-1}$, where δ is an open representation of $[0, 1]^k$.
- Q_i: the set of all points in δ[V] all of whose names are still possible to have ψ_e-values in I_i with precision 3^{-t-2}. One can show:
 - **Q**_i is effectively compact.
 - $\lambda^{k-q}(\mathbf{Q}_0 \cap \mathbf{Q}_1) = \mathbf{0}$ whenever \mathbf{P}_e is at most (k q)-dim.
 - Therefore, $\lambda^{k-q}(Q_i) \leq 2^{q-t} \cdot \varepsilon_{t-1}$ for some i < 2.
- Finally, ask whether there is a witness for the above. That is, ask whether one can find *s*, *Y*, ε, *i* such that

$$Q_i[s] \subseteq \widehat{Y}(\varepsilon)$$
 and $m^{k-q}(Y,\varepsilon) < 2^{q-t} \cdot \varepsilon_t$.

- No ⇒ Wait.
- Yes \Rightarrow Put $J_e(0^q 1) = I_i$ and go to the next action t + 1.

- The previous action of S_q forces that δ[V] ⊆ Q_i; therefore, λ^{k-q}(δ[V]) ≤ λ^{k-q}(Q_i) ≤ 2^{q-t} · ε_t.
- If S_q acts infinitely often, then this forces λ^{k-q}(δ[V]) = 0; therefore convexity of P_e implies λ^{k-q}(P_e) = 0 since δ[V] is an open subset of P_e.

Given (T_r, J_r) , **Opp** reacts with $(P_{f(e)}, \varphi_{f(e)}, \psi_{f(e)})$. By the Rec. Thm., there is r s.t. $(P_r, \varphi_r, \psi_r) = (P_{f(r)}, \varphi_{f(r)}, \psi_{f(r)})$. Suppose: **Opp** wins with this triple (P_r, φ_r, ψ_r)

- Then S_q eventually forces P_r to be (k − q − 1)-dimensional; therefore, (S_q)_{q<k} forces P_r to be zero-dimensional.
- Since *P_r* is convex (if **Opp** wins), *P_r* is a singleton or empty.
- Then, there is some τ ∈ 2^{q+1} such that any point in P_r has a name z such that φ_r(z) does not extend τ.
- Then S_q ensures that T_r has a *unique* path $\tau^{-}0^{\omega}$.
- Thus, φ_r fails to choose a path of T_r ; hence **Opp** loses.

Proof of **LLPO** \star **AoUC** $\not\leq_W$ **AoUC**^{*}: Easy. Use the similar argument

Takayuki Kihara (UC Berkeley) Weak Choice Principles in the Weihrauch Degrees

NASH $<_{W}$ NASH \star NASH \equiv_{W} NASH \star NASH \star NASH.

Lemma

• AoUC^m
$$\star$$
 AoUC^k \leq_W C_{2^k} \star (AoUC^{m·2^k+k}).

In particular, AoUC \star AoUC \leq_W LLPO \star (AoUC³).

2 AoUC¹ \star C_m \leq_W AoUC^{1·m} \times C_m.

Corollary

$$AOUC' \star AOUC^m \star AOUC^k \leq_W AOUC^{(l+1)\cdot 2^k} \star AOUC^{m\cdot 2^k + k}$$

In particular,

AoUC \star AoUC \star AoUC \leq_W AoUC⁴ \star AoUC³.

Main Theorem (K. and Pauly)

- **O** Problem 1 is false: **LLPO** \star **AOUC** $\not\leq_W$ **AOUC**^{*k*} for all *k*.
- ② Problem 2 is false: **XC** ★ **AoUC** \leq_W **XC**^{*k*} for all *k*. Here, **XC**^{*k*} is the *k*-dimensional convex choice principle.
- O However, it is true that

AoUC \star AoUC \star AoUC \leq_W AoUC⁴ \star AoUC³.

In particular, we have

NASH $<_W$ NASH \star NASH \equiv_W NASH \star NASH \star NASH.