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~ Introduction ]

The first goal of this talk is to provide a framework to prove the
following kind of result.

Given an instance of problem P, namely I, and an instance of
problem Q, namely J, if the set of solutions of J is complex
enough, then there exists a "non trivial" solution of | that does
not "computes” the set of solutions of J.

For example,
Theorem 1 ([7])

Given a set A that is not effectively compressible, and a
computable binary tree T, if [T| does not admit computable
strong enumeration, then there exists an infinite subset of A,
namely G, such that G does not compute a strong enumeration

of [T].

o
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We begin with examples of some notions.
@ Problem: (1)RT}; (2)WWKL; (3) SUBSET;

@ Instance /. (1)a coloring; (2)a tree defining a closed set of
positive measure; (3)a set;

@ Solutions of instance /, .#' :(1)homogeneous set of the
coloring; (2)a path; (3) a subset of the set;

@ Non trivial: (1)infinite; (2) infinite long;(3)infinite;
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If .#! forces v and .#Y forces ¢ then .#!.7Y forces ¢ A .
(Where .#' 7Y is short for #'(N.#Y. And .#' forces ¢ means
every Y € .#/ satisfy p(Y).)
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Forcing condition

Forcing condition: essentially a set of solutions of problem P.
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~ Forcing condition

Forcing condition: essentially a set of solutions of problem P.
In this method, it is defined by

some pq,--- ,px € 2%,
some closed sets of instance of P, namely &2, --- , Pn,

some B C P({1,2,---,m}),

U U U (1)

LeP hePy  ImePm
I gl ... gl gr 4 gl gl gl gre
tooiq I gl gl g
4 gl gl gl grr o gy glo o gl gee
4o dq gl glo oL gly gri

Where {r,---,r}, {t,---,ti},--- are all elements of B.
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Forcing condition

Or equivalently,

U U U (2)

hePy bePs Im€EPm

> Y o]

j<k BcB icB

As usual, the forcing condition is a set of candidates.
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Forcing condition

We assume that,

Assumption 2 |

e .7!is effectively closed in /.

@ The mathematical problem as a function from instance to
solution set / — .#! is continuous.

The purpose is: solutions encoded by a forcing condition is an
effectively closed set provided every &; is effectively closed.
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How to extend the forcing condition

Definition 3 (Type 1 extension)

Type 1 extension simply extends some p; to some 7 = p; such
that the forcing condition still encode "sufficiently many"
solutions while preserving all other components of the forcing

condition. )
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How to extend the forcing condition

Try to force ®%(n) to be a wrong description. (For each n a
description of [T] lies within a finite set V = {ay,--- , an}.)

This can be done if there exists 7 > p; which is a solution of the
given instance / of P such that the forcing condition after the
type 1 extension still encode "sufficiently many" solutions.
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How to extend the forcing condition

Let W denote the set of wrong answers. View ®-(n) as a
partial function 2<% — V. Consider following cases,
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How to extend the forcing condition

Let W denote the set of wrong answers. View ®-(n) as a
partial function 2<% — V. Consider following cases,

@ For "sufficiently many" instance J including the actual
instance I, ®¢(n)~ (W) has non empty intersection with

Sy 1!
i<k BeB jeB

for "sufficiently many" I; € &2;,i < K.
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How to extend the forcing condition

Let W denote the set of wrong answers. View ®-(n) as a
partial function 2<% — V. Consider following cases,

@ For "sufficiently many" instance J including the actual
instance I, ®¢(n)~ (W) has non empty intersection with

Sy 1!
i<k BeB jeB

for "sufficiently many" I; € &2;,i < K.
@ Similar to item 1 but / is not included.
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How to extend the forcing condition

Let W denote the set of wrong answers. View ®-(n) as a
partial function 2<% — V. Consider following cases,

@ For "sufficiently many" instance J including the actual
instance I, ®¢(n)~ (W) has non empty intersection with

> 1177
i<k BeB jeB
for "sufficiently many" I; € &2;,i < K.
@ Similar to item 1 but / is not included.

© Contrary to item 1, ®s(n)~' (W) does not cover "sufficiently
many" instance, sets of answers V C W that ®,(n)~1(V°)
does not cover "sufficiently many" instance are not so
"diverse".
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How to extend the forcing condition

Let W denote the set of wrong answers. View ®-(n) as a
partial function 2<% — V. Consider following cases,

@ For "sufficiently many" instance J including the actual
instance I, ®¢(n)~ (W) has non empty intersection with

> I

i<k BeB jeB

for "sufficiently many" I; € &2;,i < K.
@ Similar to item 1 but / is not included.

© Contrary to item 1, ®s(n)~' (W) does not cover "sufficiently
many" instance, sets of answers V C W that ®,(n)~1(V°)
does not cover "sufficiently many" instance are not so
"diverse".

@ Similar to item 3 but sets of answers V C W that
®o(n)~1(V°) does not cover "sufficiently many" instance
are "diverse".
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How to extend the forcing condition
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How to extend the forcing condition

@ In case (1), by assumption 6 (see later), there exists type 1
extension forcing ®%(n) to be wrong.

Lu Liu Cone avoid result under certain combinatorial condition



How to extend the forcing condition

@ In case (1), by assumption 6 (see later), there exists type 1
extension forcing ®%(n) to be wrong.
@ Case (2). Intuitively, this case means many instances

make mistakes but the actual instance / does not. We
compute a "description" of / in this case contradicting with

assumption on /in theorem 1.
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How to extend the forcing condition

@ In case (1), by assumption 6 (see later), there exists type 1
extension forcing ®%(n) to be wrong.

@ Case (2). Intuitively, this case means many instances
make mistakes but the actual instance / does not. We
compute a "description" of / in this case contradicting with
assumption on /in theorem 1.

@ Case (3). The collection of sets of answer that is not
disagreed is "concentrated" and include the set of correct
answers. We can compute a "description” of [T], a
contradiction.
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How to extend the forcing condition

In case (1), by assumption 6 (see later), there exists type 1
extension forcing ®%(n) to be wrong.

Case (2). Intuitively, this case means many instances
make mistakes but the actual instance / does not. We
compute a "description" of / in this case contradicting with
assumption on /in theorem 1.

Case (3). The collection of sets of answer that is not
disagreed is "concentrated" and include the set of correct
answers. We can compute a "description” of [T], a
contradiction.

Case (4). In this case we apply type 2 extension defined as
following.
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How to extend the forcing condition

To force a MY requirement v, say ®%(n) 1, consider the sets of
answers that is not disagreed, i.e., V C V s.t.,

[TS] =9 {1 : for every solutionY in.Z' ne¢,d)(n) + vol(n) e V} # 0
(3)
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How to extend the forcing condition

To force a MY requirement v, say ®%(n) 1, consider the sets of
answers that is not disagreed, i.e., V C V s.i.,

[TS] =9 {1 : for every solutionY in.Z' ne¢,d)(n) + vol(n) e V} # 0
(3)

Definition 4 |

A type 2 extension of ¢ induced by &1, Pmi2, -, Pman,
KCP{m+1,---,m+ n})is,

c() (4)
J U X1

Imi1€Pmiq Imin€EPmin KEK jeK
U~ U Xy I
I1€e@1 Im+n69m+n i<k KE’C,BEBjEKUB
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How to extend the forcing condition

Note that,

@ if a collection of set of answers {V;},/ € K has empty
intersection, then 7?1 T[] 7 forces ®%(n) 1 (for any

jeEKUB
B € B).
@ [T{] is effectively closed.
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How to extend the forcing condition

Note that,

@ if a collection of set of answers {V;},/ € K has empty
intersection, then 7?1 T[] 7 forces ®%(n) 1 (for any

jeEKUB
B € B).
@ [T{] is effectively closed.
The key point is,

If the collection of the set of answers that is not disagreed,

Vi, .-+, Vw, are not so "diverse”, and [Ty, | contain "sufficiently
many " instances, let K = {K C {1,--- ,w}: (] V; =0}, then
JeK

type 2 extension of ¢ induced by IC, [T\‘}j],f < w still contains
"sufficiently many" solutions.
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What role does combinatorics play

Assumption 6 |

For any forcing condition ¢ encoding "sufficiently many"
solutions, let E be a set of initial segment of solutions, if
whenever for some instance J .#£ has non empty intersection

with
NN ]
i<k BeB jeB

for "sufficiently many" [; € &7;,i < k, then there exists v € E,
i < k such that .#7 N .77 + () and type 1 extension ~ = p; of the
forcing condition still encode "sufficiently many" solutions.

v

In another words, it is "easy" to apply type 1 extension without
destroying the "sufficiently many" property.

Lu Liu Cone avoid result under certain combinatorial condition




What role does combinatorics play

Assumption 7 |

The "sufficiently many" (instance and solution) property
mentioned in assumption 6 can be computed in a ¢c.e. way and
should imply existence of "non trivial" solution.

Some interesting point is,
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What role does combinatorics play

Assumption 7 |

The "sufficiently many" (instance and solution) property
mentioned in assumption 6 can be computed in a ¢c.e. way and
should imply existence of "non trivial" solution.

Some interesting point is,
@ assumption 6 is purely combinatorial;
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What role does combinatorics play

Assumption 7 |

The "sufficiently many" (instance and solution) property
mentioned in assumption 6 can be computed in a ¢c.e. way and
should imply existence of "non trivial" solution.

Some interesting point is,
@ assumption 6 is purely combinatorial;

@ to deal with problem P, it is not necessary to restrict on the
coding of solutions given by .#p;
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 What role does combinatorics play

Assumption 7 |

The "sufficiently many" (instance and solution) property
mentioned in assumption 6 can be computed in a ¢c.e. way and
should imply existence of "non trivial" solution.

Some interesting point is,
@ assumption 6 is purely combinatorial;

@ to deal with problem P, it is not necessary to restrict on the
coding of solutions given by .#p;

@ pre-choose a solution from the forcing condition if you are
dealing with some problem (property) that WKL, does not
Imply (preserve).
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What about results like,

There exists instance I of Q such that for any instance of P, Ip,
there exists "non trivial" solution G of Ip such that G does not
compute any non trivial solution of .

Theorem 9

for any instance of P, |, there exists "non trivial” solution G that
is generalized low;
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What about results like,

There exists instance I of Q such that for any instance of P, Ip,
there exists "non trivial" solution G of Ip such that G does not
compute any non trivial solution of .

Theorem 9

for any instance of P, |, there exists "non trivial” solution G that
is generalized low;

Usually, it matters that whether ®7(n) halt but the outcome
does not. So a deliberate Type 2 extension is not needed, but
assumption 6 is still required.
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Further discussion

The result suggest to characterize the power of a problem in
terms of describing path through trees.
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| Further discussion o

The result suggest to characterize the power of a problem in
terms of describing path through trees.
An attempt looks like,

Definition 10 |

There exists a uniformly /-enumerable tree T' C w<¥, such that

@ forall pc w<¥, |{r € T': 7 = p}| = oo implies there exists
some path extending ;

@ any path of [T'] computes a non trivial solution of /;

@ any nontrivial solution of / computes a certain description
of [T].

A description of [T] is simply a sequence of clopen set.

The point is study the combinatorics restriction of admissible
description.
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| Further discussion

‘Question 11 |

Does there exists an instance of RT3, /3 such that for any

instance of RT3, 1} and any solution of [}, namely G, G does
not compute a non trivial solution of /3?

Question 12 |

Does there exists a 1-random X such that for any instance of
RT3, I} and any solution of I}, namely G, G does not
derandomize X?
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 Appendix

Definition 13 |

Let D, be the canonical representation of finite set of 2<%.
An enumeration of T C 2<“ isa h: w — w such that
(Yn)Dpmy N T # 0. Moreover, his

@ k-enumeration iff (vYn)|Dpp)| < k;
@ non-trivial iff (YnVp € Dppy) |p| = n;
@ strong iff it is a k-enumeration for some k € N;
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 Appendix _

Fix the SUBSET problem .# : | — ¢/ ={Y .Y C

Definition 14 |

@ An effectively closed set of instance is said to contain
sufficiently many instances if it contains both J, J° for some
instance J.

@ A forcing condition c is said to contain sufficiently many
solutions iff there exists [; ¢ &2;,i < k with (Vi,j < k)p; C |;

and
J( ) =w

BeB jeB
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Appendix

Requirements are,

Pe:|GNA|l > e

R. : S is not a non-trivial strong e—enumeration of [7], i.e.
one of the following holds:

1 ®%™ is not total;

2 @n)eg™(m] N [T] =0;
3 (3)[0GA(n)) > e

4 (3n) p e 6SA(n), |pl £
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Appendix

Definition 15 (Diverse)

For a collection of sets V = {V4,..., Vi }, V is K-disperse iff for

all K-partitions of { V4,---, Viy },

PiUPoU---UPx ={Vy,---, Vy}, there exists k < K such that
n vi=0.

Vie Py
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End

Thank you
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