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CHM: Chubb, Hirst, and McNicholl, Journal of

Symbolic Logic.

CGM: Corduan, Groszek, and Mileti, Journal

of Symbolic Logic.

G: Groszek, Electronic Journal of Combina-

torics.

CG: Corduan and Groszek, Notre Dame Jour-

nal of Formal Logic, to appear.



Structural Ramsey Theory: Color copies of a

structure B embedded in a structure A. Look

for homogeneous (monochromatic) substruc-

tures of A.

Definition: If A is a countable infinite struc-

ture, and B is a finite (potential) substructure,

then A is B-Ramsey if:

For every coloring of the copies of B in

A with finitely many colors, there is a

monochromatic substructure of A that

is isomorphic to A.

Definition: Structures A and C are biembed-

dable if each contains a copy of the other.

Observation: Biembeddable structures have the

same Ramsey properties.



Example: If ω (ordered as usual) is viewed as a

linear ordering, and n = {0,1, . . . , n − 1} as an

n-element linear ordering, then ω is n-Ramsey.

Example: The complete countably infinite graph

is Kn-Ramsey for every n.

Example: Let A be the bipartite graph with

bottom level {a0, a1, a2, a3 . . . }, with top level

{b1, b2, b3 . . . }, and with an edge between am

and bn iff m < n. Let B denote the graph

consisting of two vertices connected by a sin-

gle edge. Then A is B-Ramsey (A is edge-

Ramsey). This example will come up again.

• • • • . . .

• • • • • . . .

These are all consequences of the usual infini-

tary Ramsey’s theorem (in the last case, for

colorings of pairs).



Definition: In the context of partial orderings,

n denotes an n-element linear ordering.

Definition: A partial ordering P is chain-Ramsey

if it is n-Ramsey for every n.

Definition: 2<ω denotes the complete binary

tree.

Fact: 2<ω is chain-Ramsey.

Chubb, Hirst, and McNicholl (CHM) investi-

gated the reverse mathematics of this.



Definition (CHM): TTn is the statement that

2<ω is n-Ramsey.

Results of CHM (over RCA0):

For standard n ≥ 3

ACA0 ⇐⇒ (TTn) [⇐⇒ (RTn)]

ACA0 =⇒ (TT2) =⇒ (RT2)

IΣ0
2 =⇒ (TT1) =⇒ BΣ0

2 [⇐⇒ (RT1)]



Questions of CHM (over RCA0):

What is the precise strength of TT1? Is it

equivalent to BΣ0
2? To IΣ0

2?

[Partial answer: It is strictly stronger than BΣ0
2.]

What is the precise strength of TT2? Is it

equivalent to RT2? To ACA0?

What about other partial orderings?

[Partial answer ahead.]

Is there a partial ordering P such that “P is

2-Ramsey” is equivalent to ACA0?

[Answer: Yes.]



Ramsey properties of trees (CGM)

Definition: By a tree we mean a countably

infinite rooted tree.

Results over RCA0:

A tree is 1-Ramsey only if it has height ω and

either is a single branch or contains a copy of

2<ω. Thus, up to biembeddability, there are at

most two chain-Ramsey trees: a single branch,

and the complete binary tree.

BΣ0
2 6=⇒ (TT1). Thus the pigeonhole principle

for the complete binary tree is stronger than

the usual pigeonhole principle.

(Precise result: If a theory T extends RCA0 +

BΣ0
2 by the addition of Π1

1 axioms, then

(T ` TT1) ⇐⇒ (T ` IΣ0
2).

In particular, RCA0 +BΣ0
2 6=⇒ (TT1).)



What about other partial orderings?

Scheme: Prove a general theorem about chain-

Ramsey partial orderings. Then investigate its

reverse mathematical properties.

Fact: If P is a countable partial ordering with

at least one three-element chain, and P is 2-

Ramsey, then either P or P∗ (upside-down P) is

well-founded of height ω.

Observation: P and P∗ have the same n-Ramsey

properties.

Convention: From now on, partial ordering will

mean a countably infinite partial ordering of

height ω with least element.



Definition: A partial ordering P is densely self-

embeddable if for every element p ∈ P, there is

an embedding of P into itself above P.

Remark: For the partial orderings we will con-

sider, P being biembeddable with a densely self-

embeddable partial ordering is analogous to a

tree containing a copy of 2<ω.

Observation: If P (a partial ordering with least

element) is 1-Ramsey, then P is biembeddable

with a densely self-embeddable partial order-

ing.

Remark: The proof colors elements p ∈ P ac-

cording to whether P can be embedded in itself

above p.



Definition: The nth level of P consists of all el-

ements of P of height n in the partial ordering.

P is finite-level if every level of P is finite.

Proposition (G): If P is finite-level and n-Ramsey

for n = 1,2,3, then P omits N5 (pictured) as a

substructure.

•

•

• •

•

Consequences:

Incomparable nodes with a common successor

must have the same predecessors.

The ordering on P is the transitive closure of

the ordering between adjacent levels.



Definition: A countably infinite partial order-

ing is weakly proto-Ramsey if it has a least el-

ement, is well-founded of height ω, and omits

N5.

It is proto-Ramsey if it is also densely self-

embeddable.

Remark: We do not assume P is finite-level in

these definitions.

For purposes of proving a general theorem about

finite-level chain-Ramsey partial orderings (with

least element) in the real world (ZFC), we

can restrict our attention to (biembeddability

classes of) proto-Ramsey partial orderings.

The distinction between proto-Ramsey and weakly

proto-Ramsey is significant when it comes to

reverse mathematics.



A (weakly) proto-Ramsey partial ordering:

... ... ... ... ... ... ... ... ...

◦ • • ◦ ◦ • • • �

◦ ◦ • • •

• • •

•

Note that on level 2, the ◦ nodes and the •
nodes have different predecessors, so cannot

have any common successor. This introduces

branching.

From the structure of P we obtain a collection

of bipartite graphs as follows:



... ... ... ... ... ... ... ... ...

◦ • • ◦ ◦ • • • �

◦ ◦ • • •

• • •

•

Consider each pair of adjacent levels (for ex-

amples, levels 2 and 3 above) as a bipartite

graph with edges between comparable points:

◦ • • ◦ ◦ • • • �

◦ ◦ • • •



◦ • • ◦ ◦ • • • �

◦ ◦ • • •

Take each connected component (for example,

the right-hand one) and identify points on the

top level that have the same predecessors:

◦ • �

• • •

The collection of bipartite graphs (with dis-

tinguished top and bottom parts) obtained is

G(P).

If P is finite-level, then all elements of G(P)

are finite. Furthermore, if P is proto-Ramsey

and all elements of G(P) are finite, then P is

biembeddable with a finite-level proto-Ramsey

partial ordering.



Theorem (G): Let P be a proto-Ramsey partial

ordering. Then P is chain-Ramsey if and only

of G(P) has the following two properties:

Joint embedding property: For any two ele-

ments G and H, there is an element K in which

both G and H can be embedded.

Edge-Ramsey (as a collection of structures):

For any element G and number m, there is an

element H such that if the edges of H are col-

ored in m colors, then H contains a monochro-

matic copy of G.

Corollary (G): Let P be a weakly proto-Ramsey

partial ordering. Then P is chain-Ramsey if and

only if P is biembeddable with a proto-Ramsey

partial ordering, and G(P) has the above two

properties.



The reverse mathematics (CG):

Essentially (modulo choosing the right way to

phrase things), for a fixed finite number n ≥ 3

of colors, the theorem for the finite-level case is

equivalent to ACA0 over RCA0, and the corol-

lary for the finite-level case is provable in ATR0.

Question: For trees, the essential part of the

corollary is actually provable in RCA0. How

much strength do we actually need for the gen-

eral finite-level case?

Question: What about the reverse mathemat-

ics of the infinite-level case?



Example: Let P be the partial ordering whose

elements are finite sequences of natural num-

bers, with the following ordering:

〈i0, i1, . . . , im〉 ≤ 〈j0, j1, . . . , jn〉 if and only if

(1.) m < n,

(2.) ik = jk for 0 ≤ k < m, and

(3.) im ≤ jm.

Picture P by beginning with the complete ω-

branching tree ω<ω and putting in extra con-

nections between adjacent levels by connect-

ing σ_m to all immediate successors of σ_n

whenever m < n.

• • . . . • • . . . • • . . .

• • • . . .

•



G(P) contains two graphs, a single edge, and

the edge-Ramsey infinite bipartite graph de-

scribed at the beginning of the talk.

• • • . . .

• • • . . .

Theorem (CG): “P is 2-Ramsey” is equivalent

over RCA0 to ACA0.

Question: Are there different examples of par-

tial orderings whose n-Ramsey properties are

unexpectedly strong?
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