Ramsey Properties of

Partial Orderings

Challenges in
Reverse Mathematcis
Institute for Mathematical Sciences
National University of Singapore
January 3-16, 2016

Marcia Groszek

results include joint work with Jared Corduan and with Jared Corduan and Joseph Mileti

For this talk, I'm interested in the questions.

CHM: Chubb, Hirst, and McNicholl, Journal of Symbolic Logic.

CGM: Corduan, Groszek, and Mileti, Journal of Symbolic Logic.

G: Groszek, Electronic Journal of Combinatorics.

CG: Corduan and Groszek, Notre Dame Journal of Formal Logic, to appear.

Structural Ramsey Theory: Color copies of a structure \mathbf{B} embedded in a structure \mathcal{A}. Look for homogeneous (monochromatic) substructures of \mathcal{A}.

Definition: If \mathcal{A} is a countable infinite structure, and \mathbf{B} is a finite (potential) substructure, then \mathcal{A} is \mathbf{B}-Ramsey if:

For every coloring of the copies of \mathbf{B} in \mathcal{A} with finitely many colors, there is a monochromatic substructure of \mathcal{A} that is isomorphic to \mathcal{A}.

Definition: Structures \mathcal{A} and \mathcal{C} are biembeddable if each contains a copy of the other.

Observation: Biembeddable structures have the same Ramsey properties.

Example: If ω (ordered as usual) is viewed as a linear ordering, and $n=\{0,1, \ldots, n-1\}$ as an n-element linear ordering, then ω is n-Ramsey.

Example: The complete countably infinite graph is K_{n}-Ramsey for every n.

Example: Let \mathcal{A} be the bipartite graph with bottom level $\left\{a_{0}, a_{1}, a_{2}, a_{3} \ldots\right\}$, with top level $\left\{b_{1}, b_{2}, b_{3} \ldots\right\}$, and with an edge between a_{m} and b_{n} iff $m<n$. Let \mathbf{B} denote the graph consisting of two vertices connected by a single edge. Then \mathcal{A} is B -Ramsey (\mathcal{A} is edgeRamsey). This example will come up again.

These are all consequences of the usual infinitary Ramsey's theorem (in the last case, for colorings of pairs).

Definition: In the context of partial orderings, n denotes an n-element linear ordering.

Definition: A partial ordering \mathbb{P} is chain-Ramsey if it is n-Ramsey for every n.

Definition: $2^{<\omega}$ denotes the complete binary tree.

Fact: $2^{<\omega}$ is chain-Ramsey.

Chubb, Hirst, and McNicholl (CHM) investigated the reverse mathematics of this.

Definition (CHM): $T T^{n}$ is the statement that $2^{<\omega}$ is n-Ramsey.

Results of CHM (over $R C A_{0}$):
For standard $n \geq 3$
$A C A_{0} \Longleftrightarrow\left(T T^{n}\right)\left[\Longleftrightarrow\left(R T^{n}\right)\right]$
$A C A_{0} \Longrightarrow\left(T T^{2}\right) \Longrightarrow\left(R T^{2}\right)$
$I \Sigma_{2}^{0} \Longrightarrow\left(T T^{1}\right) \Longrightarrow B \Sigma_{2}^{0}\left[\Longleftrightarrow\left(R T^{1}\right)\right]$

Questions of CHM (over $R C A_{0}$):

What is the precise strength of $T T^{1}$? Is it equivalent to $B \Sigma_{2}^{0}$? To $I \Sigma_{2}^{0}$?
[Partial answer: It is strictly stronger than $B \boldsymbol{\Sigma}_{2}^{0}$.]
What is the precise strength of $T T^{2}$? Is it equivalent to $R T^{2}$? To $A C A_{0}$?

What about other partial orderings?
[Partial answer ahead.]

Is there a partial ordering \mathbb{P} such that " \mathbb{P} is 2-Ramsey" is equivalent to $A C A_{0}$?
[Answer: Yes.]

Ramsey properties of trees (CGM)

Definition: By a tree we mean a countably infinite rooted tree.

Results over $R C A_{0}$:

A tree is 1-Ramsey only if it has height ω and either is a single branch or contains a copy of $2^{<\omega}$. Thus, up to biembeddability, there are at most two chain-Ramsey trees: a single branch, and the complete binary tree.
$B \Sigma_{2}^{0} \nRightarrow\left(T T^{1}\right)$. Thus the pigeonhole principle for the complete binary tree is stronger than the usual pigeonhole principle.
(Precise result: If a theory \mathcal{T} extends $R C A_{0}+$ $B \Sigma_{2}^{0}$ by the addition of Π_{1}^{1} axioms, then

$$
\left(\mathcal{T} \vdash T T^{1}\right) \Longleftrightarrow\left(\mathcal{T} \vdash I \Sigma_{2}^{0}\right)
$$

In particular, $R C A_{0}+B \Sigma_{2}^{0} \neq\left(T T^{1}\right)$.)

What about other partial orderings?

Scheme: Prove a general theorem about chainRamsey partial orderings. Then investigate its reverse mathematical properties.

Fact: If \mathbb{P} is a countable partial ordering with at least one three-element chain, and \mathbb{P} is 2Ramsey, then either \mathbb{P} or \mathbb{P}^{*} (upside-down \mathbb{P}) is well-founded of height ω.

Observation: \mathbb{P} and \mathbb{P}^{*} have the same n-Ramsey properties.

Convention: From now on, partial ordering will mean a countably infinite partial ordering of height ω with least element.

Definition: A partial ordering \mathbb{P} is densely selfembeddable if for every element $p \in \mathbb{P}$, there is an embedding of \mathbb{P} into itself above \mathbb{P}.

Remark: For the partial orderings we will consider, \mathbb{P} being biembeddable with a densely selfembeddable partial ordering is analogous to a tree containing a copy of $2^{<\omega}$.

Observation: If \mathbb{P} (a partial ordering with least element) is 1 -Ramsey, then \mathbb{P} is biembeddable with a densely self-embeddable partial ordering.

Remark: The proof colors elements $p \in \mathbb{P}$ according to whether \mathbb{P} can be embedded in itself above p.

Definition: The $n^{\text {th }}$ level of \mathbb{P} consists of all elements of \mathbb{P} of height n in the partial ordering.
\mathbb{P} is finite-level if every level of \mathbb{P} is finite.

Proposition (G): If \mathbb{P} is finite-level and n-Ramsey for $n=1,2,3$, then \mathbb{P} omits N_{5} (pictured) as a substructure.

Consequences:

Incomparable nodes with a common successor must have the same predecessors.

The ordering on \mathbb{P} is the transitive closure of the ordering between adjacent levels.

Definition: A countably infinite partial ordering is weakly proto-Ramsey if it has a least element, is well-founded of height ω, and omits N_{5}.

It is proto-Ramsey if it is also densely selfembeddable.

Remark: We do not assume \mathbb{P} is finite-level in these definitions.

For purposes of proving a general theorem about finite-level chain-Ramsey partial orderings (with least element) in the real world (ZFC), we can restrict our attention to (biembeddability classes of) proto-Ramsey partial orderings.

The distinction between proto-Ramsey and weakly proto-Ramsey is significant when it comes to reverse mathematics.

A (weakly) proto-Ramsey partial ordering:

Note that on level 2, the o nodes and the • nodes have different predecessors, so cannot have any common successor. This introduces branching.

From the structure of \mathbb{P} we obtain a collection of bipartite graphs as follows:

Consider each pair of adjacent levels (for examples, levels 2 and 3 above) as a bipartite graph with edges between comparable points:

Take each connected component (for example, the right-hand one) and identify points on the top level that have the same predecessors:

The collection of bipartite graphs (with distinguished top and bottom parts) obtained is $\mathcal{G}(\mathbb{P})$.

If \mathbb{P} is finite-level, then all elements of $\mathcal{G}(\mathbb{P})$ are finite. Furthermore, if \mathbb{P} is proto-Ramsey and all elements of $\mathcal{G}(\mathbb{P})$ are finite, then \mathbb{P} is biembeddable with a finite-level proto-Ramsey partial ordering.

Theorem (G): Let \mathbb{P} be a proto-Ramsey partial ordering. Then \mathbb{P} is chain-Ramsey if and only of $\mathcal{G}(\mathbb{P})$ has the following two properties:

Joint embedding property: For any two elements G and H, there is an element K in which both G and H can be embedded.

Edge-Ramsey (as a collection of structures): For any element G and number m, there is an element H such that if the edges of H are colored in m colors, then H contains a monochromatic copy of G.

Corollary (G): Let \mathbb{P} be a weakly proto-Ramsey partial ordering. Then \mathbb{P} is chain-Ramsey if and only if \mathbb{P} is biembeddable with a proto-Ramsey partial ordering, and $\mathcal{G}(\mathbb{P})$ has the above two properties.

The reverse mathematics (CG):

Essentially (modulo choosing the right way to phrase things), for a fixed finite number $n \geq 3$ of colors, the theorem for the finite-level case is equivalent to $A C A_{0}$ over $R C A_{0}$, and the corollary for the finite-level case is provable in $A T R_{0}$.

Question: For trees, the essential part of the corollary is actually provable in $R C A_{0}$. How much strength do we actually need for the general finite-level case?

Question: What about the reverse mathematics of the infinite-level case?

Example: Let \mathbb{P} be the partial ordering whose elements are finite sequences of natural numbers, with the following ordering:
$\left\langle i_{0}, i_{1}, \ldots, i_{m}\right\rangle \leq\left\langle j_{0}, j_{1}, \ldots, j_{n}\right\rangle$ if and only if
(1.) $m<n$,
(2.) $i_{k}=j_{k}$ for $0 \leq k<m$, and
(3.) $i_{m} \leq j_{m}$.

Picture \mathbb{P} by beginning with the complete ω branching tree $\omega^{<\omega}$ and putting in extra connections between adjacent levels by connecting $\sigma^{\frown} m$ to all immediate successors of $\sigma^{\frown} n$ whenever $m<n$.

$\mathcal{G}(\mathbb{P})$ contains two graphs, a single edge, and the edge-Ramsey infinite bipartite graph described at the beginning of the talk.

Theorem (CG): "P is 2-Ramsey" is equivalent over $R C A_{0}$ to $A C A_{0}$.

Question: Are there different examples of partial orderings whose n-Ramsey properties are unexpectedly strong?

References:

Chubb, J., J. Hirst and T. McNicholl, Reverse mathematics, computability, and partitions of trees. Journal of Symbolic Logic, Volume 74, Issue 1 (2009), 201-215.

Corduan, J., M. Groszek and J. Mileti, Reverse mathematics and Ramsey's property for trees. Journal of Symbolic Logic, Volume 75, Issue 3 (2010), 945-954.

Corduan, J. and M. Groszek, Reverse mathematics and Ramsey properties of partial orderings. Notre Dame Journal of Formal Logic, to appear.

Groszek, M., Ramsey properties of countably infinite partial orderings, Electronic Journal of Combinatorics, Volume 20, Issue 1 (2013).

