Ramsey Properties of Partial Orderings

Challenges in Reverse Mathematcis Institute for Mathematical Sciences National University of Singapore January 3-16, 2016

Marcia Groszek

results include joint work with Jared Corduan and with Jared Corduan and Joseph Mileti

For this talk, I'm interested in the questions.

CHM: Chubb, Hirst, and McNicholl, *Journal of Symbolic Logic*.

CGM: Corduan, Groszek, and Mileti, *Journal* of Symbolic Logic.

G: Groszek, *Electronic Journal of Combinatorics*.

CG: Corduan and Groszek, *Notre Dame Journal of Formal Logic*, to appear. Structural Ramsey Theory: Color copies of a structure **B** embedded in a structure \mathcal{A} . Look for homogeneous (monochromatic) substructures of \mathcal{A} .

Definition: If \mathcal{A} is a countable infinite structure, and **B** is a finite (potential) substructure, then \mathcal{A} is **B**-Ramsey if:

For every coloring of the copies of B in \mathcal{A} with finitely many colors, there is a monochromatic substructure of \mathcal{A} that is isomorphic to \mathcal{A} .

Definition: Structures \mathcal{A} and \mathcal{C} are *biembed-dable* if each contains a copy of the other.

Observation: Biembeddable structures have the same Ramsey properties.

Example: If ω (ordered as usual) is viewed as a linear ordering, and $n = \{0, 1, \dots, n-1\}$ as an *n*-element linear ordering, then ω is *n*-Ramsey.

Example: The complete countably infinite graph is K_n -Ramsey for every n.

Example: Let \mathcal{A} be the bipartite graph with bottom level $\{a_0, a_1, a_2, a_3...\}$, with top level $\{b_1, b_2, b_3...\}$, and with an edge between a_m and b_n iff m < n. Let **B** denote the graph consisting of two vertices connected by a single edge. Then \mathcal{A} is **B**-Ramsey (\mathcal{A} is edge-Ramsey). This example will come up again.

These are all consequences of the usual infinitary Ramsey's theorem (in the last case, for colorings of pairs). Definition: In the context of partial orderings, n denotes an n-element linear ordering.

Definition: A partial ordering \mathbb{P} is chain-Ramsey if it is *n*-Ramsey for every *n*.

Definition: $2^{<\omega}$ denotes the complete binary tree.

Fact: $2^{<\omega}$ is chain-Ramsey.

Chubb, Hirst, and McNicholl (CHM) investigated the reverse mathematics of this. Definition (CHM): TT^n is the statement that $2^{<\omega}$ is *n*-Ramsey.

Results of CHM (over RCA_0):

For standard $n \ge 3$ $ACA_0 \iff (TT^n) \ [\iff (RT^n)]$

$$ACA_0 \Longrightarrow (TT^2) \Longrightarrow (RT^2)$$

 $I\Sigma_2^0 \Longrightarrow (TT^1) \Longrightarrow B\Sigma_2^0 \ [\iff (RT^1)]$

Questions of CHM (over RCA_0):

What is the precise strength of TT^1 ? Is it equivalent to $B\Sigma_2^0$? To $I\Sigma_2^0$?

[Partial answer: It is strictly stronger than $B\Sigma_2^0$.]

What is the precise strength of TT^2 ? Is it equivalent to RT^2 ? To ACA_0 ?

What about other partial orderings?

[Partial answer ahead.]

Is there a partial ordering \mathbb{P} such that " \mathbb{P} is 2-Ramsey" is equivalent to ACA_0 ?

[Answer: Yes.]

Ramsey properties of trees (CGM)

Definition: By a tree we mean a countably infinite rooted tree.

Results over RCA_0 :

A tree is 1-Ramsey only if it has height ω and either is a single branch or contains a copy of $2^{<\omega}$. Thus, up to biembeddability, there are at most two chain-Ramsey trees: a single branch, and the complete binary tree.

 $B\Sigma_2^0 \neq (TT^1)$. Thus the pigeonhole principle for the complete binary tree is stronger than the usual pigeonhole principle.

(Precise result: If a theory \mathcal{T} extends $RCA_0 + B\Sigma_2^0$ by the addition of Π_1^1 axioms, then

 $(\mathcal{T} \vdash TT^1) \iff (\mathcal{T} \vdash I\Sigma_2^0).$

In particular, $RCA_0 + B\Sigma_2^0 \neq (TT^1)$.)

What about other partial orderings?

Scheme: Prove a general theorem about chain-Ramsey partial orderings. Then investigate its reverse mathematical properties.

Fact: If \mathbb{P} is a countable partial ordering with at least one three-element chain, and \mathbb{P} is 2-Ramsey, then either \mathbb{P} or \mathbb{P}^* (upside-down \mathbb{P}) is well-founded of height ω .

Observation: \mathbb{P} and \mathbb{P}^* have the same *n*-Ramsey properties.

Convention: From now on, partial ordering will mean a countably infinite partial ordering of height ω with least element.

Definition: A partial ordering \mathbb{P} is densely selfembeddable if for every element $p \in \mathbb{P}$, there is an embedding of \mathbb{P} into itself above \mathbb{P} .

Remark: For the partial orderings we will consider, \mathbb{P} being biembeddable with a densely selfembeddable partial ordering is analogous to a tree containing a copy of $2^{<\omega}$.

Observation: If \mathbb{P} (a partial ordering with least element) is 1-Ramsey, then \mathbb{P} is biembeddable with a densely self-embeddable partial ordering.

Remark: The proof colors elements $p \in \mathbb{P}$ according to whether \mathbb{P} can be embedded in itself above p.

Definition: The n^{th} level of \mathbb{P} consists of all elements of \mathbb{P} of height n in the partial ordering.

 $\mathbb P$ is finite-level if every level of $\mathbb P$ is finite.

Proposition (G): If \mathbb{P} is finite-level and *n*-Ramsey for n = 1, 2, 3, then \mathbb{P} omits N_5 (pictured) as a substructure.

Consequences:

Incomparable nodes with a common successor must have the same predecessors.

The ordering on \mathbb{P} is the transitive closure of the ordering between adjacent levels.

Definition: A countably infinite partial ordering is weakly proto-Ramsey if it has a least element, is well-founded of height ω , and omits N_5 .

It is proto-Ramsey if it is also densely selfembeddable.

Remark: We do not assume \mathbb{P} is finite-level in these definitions.

For purposes of proving a general theorem about finite-level chain-Ramsey partial orderings (with least element) in the real world (ZFC), we can restrict our attention to (biembeddability classes of) proto-Ramsey partial orderings.

The distinction between proto-Ramsey and weakly proto-Ramsey is significant when it comes to reverse mathematics.

A (weakly) proto-Ramsey partial ordering:

Note that on level 2, the \circ nodes and the \bullet nodes have different predecessors, so cannot have any common successor. This introduces branching.

From the structure of \mathbb{P} we obtain a collection of bipartite graphs as follows:

Consider each pair of adjacent levels (for examples, levels 2 and 3 above) as a bipartite graph with edges between comparable points:

Take each connected component (for example, the right-hand one) and identify points on the top level that have the same predecessors:

The collection of bipartite graphs (with distinguished top and bottom parts) obtained is $\mathcal{G}(\mathbb{P})$.

If \mathbb{P} is finite-level, then all elements of $\mathcal{G}(\mathbb{P})$ are finite. Furthermore, if \mathbb{P} is proto-Ramsey and all elements of $\mathcal{G}(\mathbb{P})$ are finite, then \mathbb{P} is biembeddable with a finite-level proto-Ramsey partial ordering.

Theorem (G): Let \mathbb{P} be a proto-Ramsey partial ordering. Then \mathbb{P} is chain-Ramsey if and only of $\mathcal{G}(\mathbb{P})$ has the following two properties:

Joint embedding property: For any two elements G and H, there is an element K in which both G and H can be embedded.

Edge-Ramsey (as a collection of structures): For any element G and number m, there is an element H such that if the edges of H are colored in m colors, then H contains a monochromatic copy of G.

Corollary (G): Let \mathbb{P} be a weakly proto-Ramsey partial ordering. Then \mathbb{P} is chain-Ramsey if and only if \mathbb{P} is biembeddable with a proto-Ramsey partial ordering, and $\mathcal{G}(\mathbb{P})$ has the above two properties. The reverse mathematics (CG):

Essentially (modulo choosing the right way to phrase things), for a fixed finite number $n \ge 3$ of colors, the theorem for the finite-level case is equivalent to ACA_0 over RCA_0 , and the corollary for the finite-level case is provable in ATR_0 .

Question: For trees, the essential part of the corollary is actually provable in RCA_0 . How much strength do we actually need for the general finite-level case?

Question: What about the reverse mathematics of the infinite-level case? Example: Let \mathbb{P} be the partial ordering whose elements are finite sequences of natural numbers, with the following ordering:

$$\langle i_0, i_1, \dots, i_m \rangle \leq \langle j_0, j_1, \dots, j_n \rangle$$
 if and only if
(1.) $m < n$,
(2.) $i_k = j_k$ for $0 \leq k < m$, and
(3.) $i_m \leq j_m$.

Picture \mathbb{P} by beginning with the complete ω branching tree $\omega^{<\omega}$ and putting in extra connections between adjacent levels by connecting $\sigma^{\frown}m$ to all immediate successors of $\sigma^{\frown}n$ whenever m < n.

 $\mathcal{G}(\mathbb{P})$ contains two graphs, a single edge, and the edge-Ramsey infinite bipartite graph described at the beginning of the talk.

Theorem (CG): " \mathbb{P} is 2-Ramsey" is equivalent over RCA_0 to ACA_0 .

Question: Are there different examples of partial orderings whose *n*-Ramsey properties are unexpectedly strong?

References:

Chubb, J., J. Hirst and T. McNicholl, Reverse mathematics, computability, and partitions of trees. *Journal of Symbolic Logic*, Volume 74, Issue 1 (2009), 201-215.

Corduan, J., M. Groszek and J. Mileti, Reverse mathematics and Ramsey's property for trees. *Journal of Symbolic Logic*, Volume 75, Issue 3 (2010), 945-954.

Corduan, J. and M. Groszek, Reverse mathematics and Ramsey properties of partial orderings. *Notre Dame Journal of Formal Logic*, to appear.

Groszek, M., Ramsey properties of countably infinite partial orderings, *Electronic Journal of Combinatorics*, Volume 20, Issue 1 (2013).