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Some history

Harnik (1987) introduces conservative extension of RCA0 for studying
reverse mathematics of stability theory

Kohlenbach (2001) introduces RCAω0

Since then, substantial work has been done in the system RCAω0 :

Uniform versions of classical principles (Kohlenbach,
Sakamoto/Yamazaki, Sanders)

Topology and measure theory (Hunter, Kreuzer)

Ultrafilters (Kreuzer, Towsner∗)

Interactions with NSA (Sanders)

Today: interactions between higher reverse math and set theory (S.,
Hachtman)
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Higher reverse math: an informal example

Theorem (Grilliot’s Trick)

The following are “effectively equivalent”:

The jump functional x 7→ x ′ exists.

“Uniform Weak Konig’s Lemma”: There is a functional F such that,
if T is an infinite binary tree, then F (T ) is a path through T .

“Proof”.

Let

T 0
n = {σ ∈ 2ω : (∀i(σ(i) = 0)) ∨ (|σ| < n ∧ ∀i(σ(i) = 1))}

T 1
n = {σ ∈ 2ω : (∀i(σ(i) = 0)) ∨ (|σ| < n ∧ ∀i(σ(i) = 1))}

T∞ = {σ ∈ 2ω : ∀i , j(σ(i) = σ(j))}.
Then either F (T∞) goes left (zero) or right (one).

Suppose F (T∞) goes
left. Then, given real x and natural e, let Tx ,e consist of “all ones” branch
+ every all-zeroes node of length s such that ϕx

e (e)[s] ↑. Now ask,
“F (Tx ,e)(0) =?”
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Base theories

Kohlenbach: introduced RCAω0 , a conservative extension of RCA0 for all
finite types. Different appearance from RCA0.
S.: base theory RCA3

0 for types 0, 1, 2; similar form to RCA0.

Proposition (S.)

RCAω0 is a conservative extension of RCA3
0.

Language: arithmetic, application symbols ”F (x)”, and coding: a, ∗
Ordered semiring axioms + Σ0

1 induction

∆0
1-comprehension for reals and functionals (with arbitrary

parameters) in the language

Coding operations defined as:

na(a0, a1, a2, ...) = (n, a0, a1, ...),
F ∗ r = (F (0ar),F (1ar),F (2ar), ...)
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∆0
1 comprehension

RCA3
0: ordered semiring axioms, Σ0

1 induction, extensionality, and versions
of ∆0

1-comprehension for reals and functionals in the language of
third-order arithmetic + ”coding operations”

“Σ0
1” has usual meaning: existential quantifier over naturals, matrix

has bounded quantifiers over naturals only (and equality for naturals
only)

A ∆0
1-definition of a real is a Σ0

1 formula ϕ(xN, yN) such that

∀x∃!yϕ(x , y).

A ∆0
1-definition of a functional is a Σ0

1 formula ϕ(xR, yN) such that

∀x∃!yϕ(x , y).

Note: arbitrary type parameters are allowed in Σ0
1 formulas.
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Models of RCA3
0

A model of RCA3
0 has form

(Nat,Rea,Fun; +,×, 0, 1,a , ∗, app)

a and ∗ are coding operations
app is application — “F (x)” shorthand for ”app(F , x)”

Here: ω-models only, so a model of RCA3
0 is specified by Rea and Fun.

Example

If X ⊆ ωω is a Turing ideal, there is a smallest model of RCA3
0 with

second-order part X :

(ω,X , {s 7→ Φt⊕s
e : t ∈ X ,Φt⊕−

e total on X})

Example

Other models: (ω,R, continuous functions) and (ω,R, Borel functions)
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Reverse math of determinacy

Every clopen game on ω has (relatively) hyperarithmetic winning strategy.
Fails for open games.

Nevertheless:

Theorem (Steel)

Over RCA0, the following are equivalent:

Open determinacy.

Clopen determinacy.

Open and clopen determinacy are equivalent because “clopen” is
Π1
1-complete — more complex than principles involved

Question

Is this the only reason?
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Determinacy on reals

Since ω-sequences of reals can be coded by reals, “T ⊆ (ωω)<ω is
well-founded” is Π1

1.

Definition

Open determinacy for reals (ΣR
1 -Det): “Any open game of length ω

on R is determined.” (Game tree ⊆ R<ω, I wins iff play leaves tree.)

Clopen determinacy for reals (∆R
1 -Det): “Any clopen game of length

ω on R is determined.” (Game tree wellfounded ⊆ R<ω, first to leave
tree loses.)

Theorem (S.)

Over RCA3
0, ∆R

1 -Det is strictly weaker than ΣR
1 -Det.

Uses nontrivial countably closed higher-type forcings — counterpart of
complexity of “clopenness” at second-order

Shortly afterwards: Hachtman, via analysis of Goedel’s L (see later)
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The game

Let α be an ordinal.

Cα is clopen game “walk down α”: Players I and II (independently)
build decreasing sequences in α; first who cannot play, loses.

Oα is open game “play Cα until I wins”: Players I and II play ω-many
games of Cα (in sequence). II wins iff she wins every game.

We let T ⊆ (c+)<ω be game tree for Oc+ .

Actually, right game is slight variation on this.
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The separating model

Start with ground model V |= ZFC

Force: generic copy G of T as tree on reals (countably closed)

Model M: Closure of G (+ ground functionals) under “(< c+)-many
jumps” (a la Steel forcing)

Properties:

RCA3
0, “G is undetermined” are easy

Clopen games of rank < c+ determined via ranking argument
Countable closure: no clopen games of rank ≥ c+ in M
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Subsequent analysis

Shortly afterwards, Sherwood Hachtman drew a connection with his work
on the constructible universe L:

Definition (Hachtman)

θ is the least ordinal such that Lθ satisfies: “P(ω) exists and for every
height-ω tree T with no path, there is ρ : T → ON such that
x ) y =⇒ ρ(x) < ρ(y).”

Theorem (Hachtman)

(ω, ωω ∩ Lθ, ω
ωω ∩ Lθ) separates clopen and open determinacy for reals.

That is, Hachtman found a set-theoretic canonical model of the
separation. This θ is also connected to Σ0

4 determinacy on naturals, and
reflection principles.

Question

Are there other canonical models? (Hyperanaytic functionals?)

Noah Schweber Higher reverse mathematics January 6, 2016 14 / 21



1 Background on higher reverse mathematics

2 Determinacy principles

3 Further ATR0 variants

4 Choice principles

Noah Schweber Higher reverse mathematics January 6, 2016 15 / 21



Transfinite recursion principles, I/II: Choiceless versions

Definition

TR: Σ1
1 recursion along a well-ordering with domain ⊆ R.

RR: Σ1
1 recursion along a well-founded tree with domain ⊆ R.

Definition

WO: The reals are well-orderable. (Role: Kleene-Brouwer ordering of
tree)

SF : Real-indexed families of nonempty sets of reals have choice
functionals. (Role: quasistrategy→ strategy)

Proposition (S.)

Over RCA3
0, we have:

RR + SF is equivalent to clopen determinacy for reals.

TR + WO + SF implies clopen determinacy for reals.
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Σ2
1-Separation

Definition

Σ2
1-Sep is the statement: “Given ϕ,ψ ∈ Σ2

1, if at most one holds for each
real r , then have separating functional.”

Proposition (S.)

Over RCA3
0 + SF , Σ2

1-Sep implies clopen determinacy for reals.

Proof sketch.

Suppose G is a clopen game. For each node σ ∈ G , at most one of the
following hold:

There is a witness to σ being a win for player I.

There is a witness to σ being a win for player II.

Applying Σ2
1-Sep yields a winning quasistrategy. . . after analysis.

What is the relationship between Σ2
1-Sep and open determinacy for reals?
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Comparing choice principles, I/II

Two natural choice principles:

SF = “Every family Sr (r ∈ R) of nonempty sets of reals has a choice
function”

WO = “The reals are well-orderable”

Proposition

SF does not imply WO over RCA3
0.

Proofs.

In ZF + ADR, projective functionals give separating model

Over ZF , Truss 1978 provided a forcing argument

Over RCA3
0, set of continuous functionals is model of SF + ¬WO

What about other direction? Note that choice functions are definable from
a well-ordering . . .
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Comparing choice principles, II/II

Two natural choice principles:

SF = “Every family Sr (r ∈ R) of nonempty sets of reals has a choice
function”

WO = “The reals are well-orderable”

Theorem (S.)

Over RCA3
0, WO does not imply SF .

Proof sketch.

Force with countable partial injections R→ ω1; call generic induced
ordering “≺G .”

Take functionals which are definable from ≺G via truth tables of
“countable depth”

Let Sr = {s : r ≺G s}. This family has no choice function.
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Thanks!
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