Higher reverse mathematics

Noah Schweber

January 6, 2016

Noah Schweber

Higher reverse mathematics

January 6, 2016 1 / 21

2 Determinacy principles

3 Further ATR₀ variants

Some history

- Harnik (1987) introduces conservative extension of *RCA*₀ for studying reverse mathematics of stability theory
- Kohlenbach (2001) introduces RCA_0^{ω}

Some history

- Harnik (1987) introduces conservative extension of *RCA*₀ for studying reverse mathematics of stability theory
- Kohlenbach (2001) introduces RCA_0^{ω}

Since then, substantial work has been done in the system RCA_0^{ω} :

- Uniform versions of classical principles (Kohlenbach, Sakamoto/Yamazaki, Sanders)
- Topology and measure theory (Hunter, Kreuzer)
- Ultrafilters (Kreuzer, Towsner*)
- Interactions with NSA (Sanders)

Some history

- Harnik (1987) introduces conservative extension of *RCA*₀ for studying reverse mathematics of stability theory
- Kohlenbach (2001) introduces RCA_0^{ω}

Since then, substantial work has been done in the system RCA_0^{ω} :

- Uniform versions of classical principles (Kohlenbach, Sakamoto/Yamazaki, Sanders)
- Topology and measure theory (Hunter, Kreuzer)
- Ultrafilters (Kreuzer, Towsner*)
- Interactions with NSA (Sanders)

Today: interactions between higher reverse math and set theory (S., Hachtman)

Noah Schweber

Theorem (Grilliot's Trick)

The following are "effectively equivalent":

- The jump functional $x \mapsto x'$ exists.
- "Uniform Weak Konig's Lemma": There is a functional F such that, if T is an infinite binary tree, then F(T) is a path through T.

"Proof".

Let

•
$$T_n^0 = \{ \sigma \in 2^\omega : (\forall i(\sigma(i) = 0)) \lor (|\sigma| < n \land \forall i(\sigma(i) = 1)) \}$$

• $T_n^1 = \{ \sigma \in 2^\omega : (\forall i(\sigma(i) = 0)) \lor (|\sigma| < n \land \forall i(\sigma(i) = 1)) \}$

•
$$T_{\infty} = \{ \sigma \in 2^{\omega} : \forall i, j(\sigma(i) = \sigma(j)) \}.$$

Then either $F(T_{\infty})$ goes left (zero) or right (one).

Theorem (Grilliot's Trick)

The following are "effectively equivalent":

- The jump functional $x \mapsto x'$ exists.
- "Uniform Weak Konig's Lemma": There is a functional F such that, if T is an infinite binary tree, then F(T) is a path through T.

"Proof".

Let

•
$$T_n^0 = \{ \sigma \in 2^\omega : (\forall i(\sigma(i) = 0)) \lor (|\sigma| < n \land \forall i(\sigma(i) = 1)) \}$$

• $T_n^1 = \{ \sigma \in 2^\omega : (\forall i(\sigma(i) = 0)) \lor (|\sigma| < n \land \forall i(\sigma(i) = 1)) \}$

•
$$T_{\infty} = \{ \sigma \in 2^{\omega} : \forall i, j(\sigma(i) = \sigma(j)) \}$$

Then either $F(T_{\infty})$ goes left (zero) or right (one). Suppose $F(T_{\infty})$ goes left. Then, given real x and natural e, let $T_{x,e}$ consist of "all ones" branch + every all-zeroes node of length s such that $\varphi_{e}^{x}(e)[s] \uparrow$.

Theorem (Grilliot's Trick)

The following are "effectively equivalent":

- The jump functional $x \mapsto x'$ exists.
- "Uniform Weak Konig's Lemma": There is a functional F such that, if T is an infinite binary tree, then F(T) is a path through T.

"Proof".

Let

•
$$T_n^0 = \{ \sigma \in 2^\omega : (\forall i(\sigma(i) = 0)) \lor (|\sigma| < n \land \forall i(\sigma(i) = 1)) \}$$

• $T_n^1 = \{ \sigma \in 2^\omega : (\forall i(\sigma(i) = 0)) \lor (|\sigma| < n \land \forall i(\sigma(i) = 1)) \}$

•
$$T_{\infty} = \{ \sigma \in 2^{\omega} : \forall i, j(\sigma(i) = \sigma(j)) \}$$

Then either $F(T_{\infty})$ goes left (zero) or right (one). Suppose $F(T_{\infty})$ goes left. Then, given real x and natural e, let $T_{x,e}$ consist of "all ones" branch + every all-zeroes node of length s such that $\varphi_e^x(e)[s] \uparrow$. Now ask, " $F(T_{x,e})(0) =$?"

Noah Schweber

Kohlenbach: introduced RCA_0^{ω} , a conservative extension of RCA_0 for all finite types. Different appearance from RCA_0 .

S.: base theory RCA_0^3 for types 0, 1, 2; similar form to RCA_0 .

Base theories

Kohlenbach: introduced RCA_0^{ω} , a conservative extension of RCA_0 for all finite types. Different appearance from RCA_0 .

S.: base theory RCA_0^3 for types 0, 1, 2; similar form to RCA_0 .

Proposition (S.)

 RCA_0^{ω} is a conservative extension of RCA_0^3 .

Kohlenbach: introduced RCA_0^{ω} , a conservative extension of RCA_0 for all finite types. Different appearance from RCA_0 .

S.: base theory RCA_0^3 for types 0, 1, 2; similar form to RCA_0 .

Proposition (S.)

 RCA_0^{ω} is a conservative extension of RCA_0^3 .

- Language: arithmetic, application symbols "F(x)", and coding: $^, *$
- \bullet Ordered semiring axioms + Σ^0_1 induction
- $\Delta^0_1\text{-}comprehension$ for reals and functionals (with arbitrary parameters) in the language
- Coding operations defined as:

•
$$n^{(a_0, a_1, a_2, ...)} = (n, a_0, a_1, ...),$$

• $F * r = (F(0^{r}), F(1^{r}), F(2^{r}), ...)$

Δ_1^0 comprehension

 RCA_0^3 : ordered semiring axioms, Σ_1^0 induction, extensionality, and versions of Δ_1^0 -comprehension for reals and functionals in the language of third-order arithmetic + "coding operations"

- " $\Sigma_1^{0"}$ has usual meaning: existential quantifier over naturals, matrix has bounded quantifiers over naturals only (and equality for naturals only)
- A Δ^0_1 -definition of a *real* is a Σ^0_1 formula $\varphi(x^{\mathbb{N}}, y^{\mathbb{N}})$ such that

 $\forall x \exists ! y \varphi(x, y).$

• A Δ^0_1 -definition of a *functional* is a Σ^0_1 formula $\varphi(x^{\mathbb{R}}, y^{\mathbb{N}})$ such that

 $\forall x \exists ! y \varphi(x, y).$

Note: arbitrary type *parameters* are allowed in Σ_1^0 formulas.

Models of RCA_0^3

A model of RCA_0^3 has form

(Nat, Rea, Fun;
$$+, \times, 0, 1, ^{\frown}, *, app$$
)

 $^{\circ}$ and * are coding operations app is application — "F(x)" shorthand for "app(F, x)"

Models of RCA_0^3

A model of RCA_0^3 has form

```
(Nat, Rea, Fun; +, \times, 0, 1, ^{\land}, *, app)
```

 $^{\circ}$ and * are coding operations app is application — "F(x)" shorthand for "app(F, x)" Here: ω -models only, so a model of RCA_0^3 is specified by *Rea* and *Fun*.

Models of RCA_0^3

A model of RCA_0^3 has form

```
(Nat, Rea, Fun; +, \times, 0, 1, ^{\land}, *, app)
```

 $^{\circ}$ and * are coding operations app is application — "F(x)" shorthand for "app(F, x)" Here: ω -models only, so a model of RCA_0^3 is specified by *Rea* and *Fun*.

Example

If $X \subseteq \omega^{\omega}$ is a Turing ideal, there is a smallest model of RCA_0^3 with second-order part X:

$$(\omega, X, \{s \mapsto \Phi_e^{t \oplus s} : t \in X, \Phi_e^{t \oplus -} \text{ total on } X\})$$

Example

Other models: (ω, \mathbb{R} , continuous functions) and (ω, \mathbb{R} , Borel functions)

Noah Schweber

2 Determinacy principles

3 Further ATR₀ variants

Every clopen game on ω has (relatively) hyperarithmetic winning strategy. Fails for open games.

Every clopen game on ω has (relatively) hyperarithmetic winning strategy. Fails for open games. Nevertheless:

Theorem (Steel)

Over RCA₀, the following are equivalent:

- Open determinacy.
- Clopen determinacy.

Open and clopen determinacy are equivalent because "clopen" is Π^1_1 -complete — more complex than principles involved

Every clopen game on ω has (relatively) hyperarithmetic winning strategy. Fails for open games. Nevertheless:

Theorem (Steel)

Over RCA₀, the following are equivalent:

- Open determinacy.
- Clopen determinacy.

Open and clopen determinacy are equivalent because "clopen" is Π^1_1 -complete — more complex than principles involved

Question

Is this the only reason?

Determinacy on reals

Since ω -sequences of reals can be coded by reals, " $T \subseteq (\omega^{\omega})^{<\omega}$ is well-founded" is Π_1^1 .

Definition

- Open determinacy for reals (Σ₁^ℝ-Det): "Any open game of length ω on ℝ is determined." (Game tree ⊆ ℝ^{<ω}, I wins iff play leaves tree.)
- Clopen determinacy for reals (Δ^ℝ₁-Det): "Any clopen game of length ω on ℝ is determined." (Game tree *wellfounded* ⊆ ℝ^{<ω}, first to leave tree loses.)

Determinacy on reals

Since ω -sequences of reals can be coded by reals, " $T \subseteq (\omega^{\omega})^{<\omega}$ is well-founded" is Π_1^1 .

Definition

- Open determinacy for reals (Σ^R₁-Det): "Any open game of length ω on ℝ is determined." (Game tree ⊆ ℝ^{<ω}, I wins iff play leaves tree.)
- Clopen determinacy for reals (Δ^ℝ₁-Det): "Any clopen game of length ω on ℝ is determined." (Game tree *wellfounded* ⊆ ℝ^{<ω}, first to leave tree loses.)

Theorem (S.)

Over RCA_0^3 , $\Delta_1^{\mathbb{R}}$ -Det is strictly weaker than $\Sigma_1^{\mathbb{R}}$ -Det.

Uses nontrivial countably closed higher-type forcings — counterpart of complexity of "clopenness" at second-order

Shortly afterwards: Hachtman, via analysis of Goedel's *L* (see later)

Noah Schweber

11 / 21

Let α be an ordinal.

- C_α is clopen game "walk down α": Players I and II (independently) build decreasing sequences in α; first who cannot play, loses.
- O_α is open game "play C_α until I wins": Players I and II play ω-many games of C_α (in sequence). II wins iff she wins every game.

We let $\mathbb{T} \subseteq (\mathfrak{c}^+)^{<\omega}$ be game tree for $\mathcal{O}_{\mathfrak{c}^+}$.

Actually, right game is slight variation on this.

• Start with ground model $V \models ZFC$

- Start with ground model $V \models ZFC$
- Force: generic copy \mathcal{G} of \mathbb{T} as tree on reals (countably closed)

- Start with ground model $V \models ZFC$
- Force: generic copy ${\mathcal G}$ of ${\mathbb T}$ as tree on reals (countably closed)
- Model M: Closure of G (+ ground functionals) under "(< c⁺)-many jumps" (a la Steel forcing)

- Start with ground model $V \models ZFC$
- \bullet Force: generic copy ${\mathcal G}$ of ${\mathbb T}$ as tree on reals (countably closed)
- Model M: Closure of G (+ ground functionals) under "(< c⁺)-many jumps" (a la Steel forcing)
- Properties:

- Start with ground model $V \models ZFC$
- Force: generic copy $\mathcal G$ of $\mathbb T$ as tree on reals (countably closed)
- Model M: Closure of G (+ ground functionals) under "(< c⁺)-many jumps" (a la Steel forcing)
- Properties:
 - RCA_0^3 , "G is undetermined" are easy

- Start with ground model $V \models ZFC$
- Force: generic copy $\mathcal G$ of $\mathbb T$ as tree on reals (countably closed)
- Model M: Closure of G (+ ground functionals) under "(< c⁺)-many jumps" (a la Steel forcing)
- Properties:
 - RCA_0^3 , "G is undetermined" are easy
 - $\bullet\,$ Clopen games of rank $<\mathfrak{c}^+$ determined via ranking argument

- Start with ground model $V \models ZFC$
- Force: generic copy $\mathcal G$ of $\mathbb T$ as tree on reals (countably closed)
- Model M: Closure of G (+ ground functionals) under "(< c⁺)-many jumps" (a la Steel forcing)
- Properties:
 - RCA_0^3 , "G is undetermined" are easy
 - $\bullet\,$ Clopen games of rank $<\mathfrak{c}^+$ determined via ranking argument
 - Countable closure: no clopen games of rank $\geq \mathfrak{c}^+$ in M

Subsequent analysis

Shortly afterwards, Sherwood Hachtman drew a connection with his work on the constructible universe L:

Definition (Hachtman)

 θ is the least ordinal such that L_{θ} satisfies: " $\mathcal{P}(\omega)$ exists and for every height- ω tree T with no path, there is $\rho : T \to ON$ such that $x \supseteq y \implies \rho(x) < \rho(y)$."

Theorem (Hachtman)

 $(\omega, \omega^{\omega} \cap L_{\theta}, \omega^{\omega^{\omega}} \cap L_{\theta})$ separates clopen and open determinacy for reals.

That is, Hachtman found a set-theoretic *canonical model* of the separation. This θ is also connected to Σ_4^0 determinacy on naturals, and reflection principles.

Question

Are there other canonical models? (Hyperanaytic functionals?)

2 Determinacy principles

Transfinite recursion principles, I/II: Choiceless versions

Definition

- TR: Σ_1^1 recursion along a well-ordering with domain $\subseteq \mathbb{R}$.
- RR: Σ_1^1 recursion along a well-founded tree with domain $\subseteq \mathbb{R}$.

Definition

- WO: The reals are well-orderable. (Role: Kleene-Brouwer ordering of tree)
- *SF*: Real-indexed families of nonempty sets of reals have choice functionals. (Role: quasistrategy→ strategy)

Proposition (S.)

Over RCA_0^3 , we have:

- *RR* + *SF* is equivalent to clopen determinacy for reals.
- TR + WO + SF implies clopen determinacy for reals.

Σ_1^2 -Separation

Definition

 Σ_1^2 -Sep is the statement: "Given $\varphi, \psi \in \Sigma_1^2$, if at most one holds for each real *r*, then have separating functional."

Proposition (S.)

Over $RCA_0^3 + SF$, Σ_1^2 -Sep implies clopen determinacy for reals.

Σ_1^2 -Separation

Definition

 Σ_1^2 -Sep is the statement: "Given $\varphi, \psi \in \Sigma_1^2$, if at most one holds for each real *r*, then have separating functional."

Proposition (S.)

Over $RCA_0^3 + SF$, Σ_1^2 -Sep implies clopen determinacy for reals.

Proof sketch.

Suppose G is a clopen game. For each node $\sigma \in G$, at most one of the following hold:

- There is a witness to σ being a win for player I.
- There is a witness to σ being a win for player II.

Applying Σ_1^2 -Sep yields a winning quasistrategy

Σ_1^2 -Separation

Definition

 Σ_1^2 -Sep is the statement: "Given $\varphi, \psi \in \Sigma_1^2$, if at most one holds for each real r, then have separating functional."

Proposition (S.)

Over $RCA_0^3 + SF$, Σ_1^2 -Sep implies clopen determinacy for reals.

Proof sketch.

Suppose G is a clopen game. For each node $\sigma \in G$, at most one of the following hold:

- There is a witness to σ being a win for player I.
- There is a witness to σ being a win for player II.

Applying Σ_1^2 -Sep yields a winning quasistrategy. . . after analysis.

What is the relationship between Σ_1^2 -Sep and open determinacy for reals?

2 Determinacy principles

Image: A matrix of the second seco

3

Two natural choice principles:

- SF = "Every family S_r (r ∈ ℝ) of nonempty sets of reals has a choice function"
- WO = "The reals are well-orderable"

Two natural choice principles:

- SF = "Every family S_r (r ∈ ℝ) of nonempty sets of reals has a choice function"
- WO = "The reals are well-orderable"

Proposition

SF does not imply WO over RCA_0^3 .

Proofs.

- In $ZF + AD_{\mathbb{R}}$, projective functionals give separating model
- Over ZF, Truss 1978 provided a forcing argument
- Over RCA_0^3 , set of continuous functionals is model of $SF + \neg WO$

Two natural choice principles:

- SF = "Every family S_r (r ∈ ℝ) of nonempty sets of reals has a choice function"
- WO = "The reals are well-orderable"

Proposition

SF does not imply WO over RCA_0^3 .

Proofs.

- $\bullet~$ In ${\it ZF}+{\it AD}_{\mathbb R},$ projective functionals give separating model
- Over ZF, Truss 1978 provided a forcing argument
- Over RCA_0^3 , set of continuous functionals is model of $SF + \neg WO$

What about other direction? Note that choice functions are *definable* from a well-ordering . . .

Noah Schweber

Two natural choice principles:

- SF = "Every family S_r (r ∈ ℝ) of nonempty sets of reals has a choice function"
- WO = "The reals are well-orderable"

Theorem (S.)

Over RCA_0^3 , WO does not imply SF.

Two natural choice principles:

- SF = "Every family S_r (r ∈ ℝ) of nonempty sets of reals has a choice function"
- WO = "The reals are well-orderable"

Theorem (S.)

Over RCA_0^3 , WO does not imply SF.

Proof sketch.

- Force with countable partial injections ℝ → ω₁; call generic induced ordering "≺_G."
- Take functionals which are definable from ≺_G via truth tables of "countable depth"
- Let $S_r = \{s : r \prec_G s\}$. This family has no choice function.

Thanks!

э.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト