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Some History on Weihrauch Reducibility

I 1992 Klaus Weihrauch introduced the concept of his
reducibility for single-valued functions f :⊆ NN → NN and for
sets of such functions (in two unpublished technical reports).

I 1989-2007 he supervised 6 MSc/PhD theses on this topic,
mostly unpublished (von Stein, Mylatz, B., Hertling, Pauly).

I The reducibility was also considered for single-valued functions
f :⊆ X → Y on other topological/represented spaces.

I 2008 Guido Gherardi and Alberto Marcone noticed that this
reducibility for multi-valued functions can be used to classify
the computational content of Π2 theorems.

I 2009 Akitoshi Kawamura (and Stephen Cook) rediscovered a
polynomial-time version of Weihrauch reducibility and used it
for the study of uniform computational time complexity.

I 2012 Dorais, Dzhafarov, Hirst, Mileti, Shafer rediscovered
Weihrauch reducibility directly for the special case of Π1

2

statements (work extended by Hirschfeldt and Jockusch).
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Bibliography http://cca-net.de/publications/weibib.php

Currently there are 89 entries in this bibliography. Please help to update it!
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A Calculus of Mathematical Problems
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Mathematical Problems and Solutions

Definition

A mathematical problem is a partial multi-valued f :⊆ X ⇒ Y .

I There are a certain sets of potential inputs X and outputs Y .
I D = dom(f ) contains the valid instances of the problem.
I f (x) is the set of solutions of the problem f for instance x .

Definition

g :⊆ X ⇒ Y solves f :⊆ X ⇒ Y , if dom(f ) ⊆ dom(g) and
g(x) ⊆ f (x) for all x ∈ dom(f ). We write g v f in this situation.

Definition

For f :⊆ X ⇒ Y , g :⊆ Y ⇒ Z we define the composition
g ◦ f :⊆ X ⇒ Z by

(g ◦ f )(x) := {z ∈ Z : (∃y ∈ Y ) y ∈ f (x) and z ∈ g(y)}

and dom(g ◦ f ) := {x ∈ X : f (x) ⊆ dom(g)}.
6 / 120



Mathematical Problems and Solutions

Definition

A mathematical problem is a partial multi-valued f :⊆ X ⇒ Y .

I There are a certain sets of potential inputs X and outputs Y .
I D = dom(f ) contains the valid instances of the problem.
I f (x) is the set of solutions of the problem f for instance x .

Definition

g :⊆ X ⇒ Y solves f :⊆ X ⇒ Y , if dom(f ) ⊆ dom(g) and
g(x) ⊆ f (x) for all x ∈ dom(f ). We write g v f in this situation.

Definition

For f :⊆ X ⇒ Y , g :⊆ Y ⇒ Z we define the composition
g ◦ f :⊆ X ⇒ Z by

(g ◦ f )(x) := {z ∈ Z : (∃y ∈ Y ) y ∈ f (x) and z ∈ g(y)}

and dom(g ◦ f ) := {x ∈ X : f (x) ⊆ dom(g)}.
6 / 120



Mathematical Problems and Solutions

Definition

A mathematical problem is a partial multi-valued f :⊆ X ⇒ Y .

I There are a certain sets of potential inputs X and outputs Y .
I D = dom(f ) contains the valid instances of the problem.
I f (x) is the set of solutions of the problem f for instance x .

Definition

g :⊆ X ⇒ Y solves f :⊆ X ⇒ Y , if dom(f ) ⊆ dom(g) and
g(x) ⊆ f (x) for all x ∈ dom(f ). We write g v f in this situation.

Definition

For f :⊆ X ⇒ Y , g :⊆ Y ⇒ Z we define the composition
g ◦ f :⊆ X ⇒ Z by

(g ◦ f )(x) := {z ∈ Z : (∃y ∈ Y ) y ∈ f (x) and z ∈ g(y)}

and dom(g ◦ f ) := {x ∈ X : f (x) ⊆ dom(g)}.
6 / 120



Mathematical Problems and Solutions

Definition

A mathematical problem is a partial multi-valued f :⊆ X ⇒ Y .

I There are a certain sets of potential inputs X and outputs Y .
I D = dom(f ) contains the valid instances of the problem.
I f (x) is the set of solutions of the problem f for instance x .

Definition

g :⊆ X ⇒ Y solves f :⊆ X ⇒ Y , if dom(f ) ⊆ dom(g) and
g(x) ⊆ f (x) for all x ∈ dom(f ). We write g v f in this situation.

Definition

For f :⊆ X ⇒ Y , g :⊆ Y ⇒ Z we define the composition
g ◦ f :⊆ X ⇒ Z by

(g ◦ f )(x) := {z ∈ Z : (∃y ∈ Y ) y ∈ f (x) and z ∈ g(y)}

and dom(g ◦ f ) := {x ∈ X : f (x) ⊆ dom(g)}.
6 / 120



Examples of Mathematical Problems

I The Zero Problem ZX :⊆ C(X )⇒ X , h 7→ h−1{0}.
I The Limit Problem is the mathematical problem

lim :⊆ NN → NN, 〈p0, p1, ...〉 7→ lim
i→∞

pi

with dom(lim) := {〈p0, p1, ...〉 : (pi )i is convergent}.
I Martin-Löf Randomness is the mathematical problem

MLR : 2N ⇒ 2N with

MLR(x) := {y ∈ 2N : y is Martin-Löf random relative to x}.

I The Cohesiveness Problem is the mathematical problem
COH : (2N)N ⇒ 2N where COH(Ri ) contains all infinite
X ⊆ N such that for all i ∈ N one of the sets

X ∩ Ri or X ∩ (N \ Ri )

is finite.
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Theorems as Problems

Definition

Any theorem T of the Π2 form

(∀x ∈ X )(x ∈ D =⇒ (∃y ∈ Y ) P(x , y))

is identified with F :⊆ X ⇒ Y with dom(F ) := D and

F (x) := {y ∈ Y : P(x , y)}.

Examples: Weak Weak Kőnig’s Lemma is the mathematical
problem

WWKL :⊆ Tr⇒ 2N,T 7→ [T ]

with dom(WWKL) := {T ∈ Tr : µ([T ]) > 0}.

The Intermediate Value Theorem is the mathematical problem

IVT :⊆ C[0, 1]⇒ R, f 7→ f −1{0}

where dom(IVT) := {f ∈ C[0, 1] : f (0) · f (1) < 0}.
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Weihrauch Reducibility

Let f :⊆ X ⇒ Y and g :⊆ Z ⇒W be two mathematical problems.

K Hg

f

x f (x)

I f is Weihrauch reducible to g , f ≤W g , if there are computable
H :⊆ X ×W ⇒ Y , K :⊆ X ⇒ Z such that H(idX , gK ) v f .

I f is strongly Weihrauch reducible to g , f ≤sW g , if there are
computable H :⊆W ⇒ Y , K :⊆ X ⇒ Z such that HgK v f .

I Equivalences f ≡W g and f ≡sW g are defined as usual.

Theorem (Tavana and Weihrauch 2011)

f ≤W g ⇐⇒ there is a Turing machine that computes f and uses
g as an oracle exactly once during its infinite computation.
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Realizers and Representations

I A representation of X is a surjective map δX :⊆ NN → X .

I F :⊆ NN → NN is a realizer of f :⊆ X ⇒ Y , in symbols
F ` f , if δY F (p) ∈ f δX (p) for all p ∈ dom(f δX ).

NN -

X -

F

f

?

δYδX

NN

Y
?

I f is continuous, computable, polynomial-time computable or
Borel measurable, if it admits a corresponding realizer F .

I f ≤W g ⇐⇒ there are computable H,K :⊆ NN → NN such
that H〈id,GK 〉 ` f whenever G ` g .
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Computable Metric Spaces and Cauchy Representations

Definition

(X , d , α) is called computable metric space if

1. d : X × X → R is a metric on X ,

2. α : N→ X is a sequence with a dense range,

3. d ◦ (α× α) : N× N→ R is computable.

Definition

δX :⊆ NN → X is called Cauchy representation, if

δX (p) = x :⇐⇒ (∀k) d(αp(k), x) < 2−k .
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Realizer Version of Problems

Definition

Let (X , δX ) and (Y , δY ) be represented spaces and f :⊆ X ⇒ Y a
mathematical problem. Then we define the realizer version
f r :⊆ NN ⇒ NN of f by f r := δ−1

Y ◦ f ◦ δX .

Proposition

f ≡sW f r.

I This means that properties of ≤W and ≤sW can be studied by
considering only problems of type f :⊆ NN ⇒ NN.

I Arbitrary represented spaces X ,Y are used as types in order
to classify practical problems and theorems, which are most
naturally expressed in such types.
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Cylinders and Strong Weihrauch Reducibility

By id : NN → NN we denote the identity of Baire space NN. We
always have f ≤sW id× f , the inverse is not necessarily true.

Definition

f :⊆ X ⇒ Y is called a cylinder if id× f ≡sW f and id× f is called
the cylindrification of f .

Examples: lim,WKL are cylinders, WWKL,COH,MLR are not.

Proposition (B. and Gherardi 2011)

f ≤W g ⇐⇒ f ≤sW id× g.

Corollary (B. and Gherardi 2011)

(∀f )(f ≤W g ⇐⇒ f ≤sW g) ⇐⇒ g is a cylinder.

Remark: The relation between strong and ordinary Weihrauch
reducibility has formal similarities to the relation between one-one
and many-one reducibility.
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Algebraic Operations in the Weihrauch Lattice

Definition

Let f , g be two mathematical problems. We consider:

I f × g : both problems are available in parallel (Product)

I f t g : both problems are available, but for each instance one
has to choose which one is used (Coproduct)

I f u g : given an instance of f and g , only one of the solutions
will be provided (Sum)

I f ∗ g : f and g can be used consecutively (Comp. Product)

I g → f : this is the simplest problem h such that f can be
reduced to g ∗ h (Implication)

I f ∗: f can be used any given finite number of times in parallel
(Star)

I f̂ : f can be used countably many times in parallel
(Parallelization)

I f ′: f can be used on the limit of the input (Jump)
14 / 120



Definitions of Algebraic Operations

Definition

For f :⊆ X ⇒ Y and g :⊆W ⇒ Z we define:

I f × g :⊆ X ×W ⇒ Y × Z , (x ,w) 7→ f (x)× g(w) (Product)

I f t g :⊆ X tW ⇒ Y t Z , z 7→
{

f (z) if z ∈ X
g(z) if z ∈W

(Coproduct)

I f u g :⊆ X ×W ⇒ Y t Z , (x ,w) 7→ f (x) t g(w) (Sum)

I f ∗ :⊆ X ∗ ⇒ Y ∗, f ∗ =
⊔∞

i=0 f i (Star)

I f̂ :⊆ XN ⇒ Y N, f̂ = X∞i=0 f (Parallelization)

Here

I Y × Z denotes the usual Caresian product,
I Y t Z := ({0} × Y ) ∪ ({1} × Z ) denotes the disjoint union,
I X ∗ := {f : N→ X : dom(f ) = n for some n ∈ N} denotes the

set of words over X , where n = {0, ..., n − 1},
I XN := {f : N→ X} denotes the set of sequences over X .
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The Algebraic Structure of the Weihrauch Lattice

Proposition (B., Gherardi 2011, Pauly 2010)

Weihrauch reducibility induces a distributive lattice with the
coproduct t as supremum and u as infimum. Parallelization ̂ and
star operation ∗ are closure operators in the Weihrauch lattice.

I With t,×,∗ one obtains a Kleene algebra (B., Pauly).

I The Weihrauch lattice is neither a Brouwer nor a Heyting
algebra (Higuchi und Pauly 2012).

Open Problem

Does the strong Weihrauch reducibility induce a lattice structure?

I It is known that u is an infimum for ≤sW and hence one
obtains a lower semi-lattice (B., Gherardi).

I One can show that t fails as supremum for ≤sW.
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Constants of the Weihrauch Lattice

I 0 := the equivalence class of the nowhere defined problems is
the bottom element of the Weihrauch lattice, and a neutral
element with respect to t. It acts like a zero with respect to
× and ∗.

I 1 := the equivalence class of the identity id : NN → NN is a
neutral element with respect to × and ∗.

I 0∗≡W 1.

I ∞ := the equivalence class of all problems without realizer is
the top element of the Weihrauch lattice and a neutral
element with respect to u.

I ∞ exists if and only if the Axiom of Choice does not hold for
Baire space NN.

I We usually assume that the Axiom of Choice holds, but we
can always add an artificial element ∞ on top of the
Weihrauch lattice.
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Compositional Product and Implication

The Weihrauch lattice is not complete and infinite suprema and
infima do not always exist. There are some known existent ones.

Theorem (B. and Pauly 2013)

For two mathematical problems f , g the following exist:

I f ∗ g := max{f0 ◦ g0 : f0≤W f and g0≤W g} and

I g → f := min{h : f ≤W g ∗ h}.
The maximum and minimum is understood with respect to ≤W.

Proof. (Sketch) For every f :⊆ NN ⇒ NN we consider the
transpose f t :⊆ NN ⇒ NN defined by

f t〈p, q〉 := ηp ◦ f (q),

where η is a standard representation of all continuous functions
F :⊆ NN → NN. For arbitrary f , g we obtain

f ∗ g ≡W f rt ◦ g rt.

The case of g → f can be treated similarly. �
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Relations Between Algebraic Operations

f pointed :⇐⇒ 1≤W f ⇐⇒ (∃x ∈ dom(f )) x computable.

Proposition

For pointed f , g we obtain

f u g ≤W f t g ≤W f × g ≤W f ∗ g ,

where pointedness is needed only for f t g ≤W f × g.

Proof. f u g ≤W f t g ≤W f × g is clear. The last reduction
follows since

f × g = (f × id) ◦ (id× g)≤W f ∗ g .

�

Proposition

For pointed f we obtain f ∗≤W f̂ .
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Algebraic Closure Properties

I f is called idempotent if f × f ≡W f ,
for pointed f this holds if and only if f ∗≡W f .

I Examples: lim,WKL,WWKL,MLR are idempotent IVT is
not.

I f is called parallelizable if f̂ ≡W f .
I Examples: lim,WKL,MLR are parallelizable, WWKL, IVT are

not.
I f is called closed under composition if f ∗ f ≡W f .
I Examples: WKL,WWKL,MLR are closed under composition,

lim, IVT are not.

closed under composition

idempotent

parallelizable

lim,WKL,MLR WKL,WWKL,MLR

lim,WKL,WWKL,MLR
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Closure Operators and Reducibilities

Remark

There is a vague analogy between versions of Weihrauch
reducibilities induced by closure operators and computability
theoretic reducibilities:

Closure operation Reducibility
f ≤sW g one-one reducibility

f ≤W g many-one reducibility

f ≤W g∗ weak truth-table reducibility

f ≤W ĝ Turing reducibility

f ≤gW g ”

Question

Can this analogy be made more precise?
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Embedding of the Medvedev Lattice

Proposition (B. and Gherardi 2011)

A≤M B ⇐⇒ cA≤W cB ⇐⇒ id|B ≤W id|A for A,B ⊆ NN.

I cA : NN ⇒ NN, p 7→ A is the constant multi-valued function.
I By id|A :⊆ NN → NN denotes the identity restricted to A.
I We note that id|A≤W 1≤W cA.
I p≤T q ⇐⇒ {p}≤M{q}, hence also the Turing semi-lattice

embeds into the Weihrauch lattice.

Proposition (B. and Gherardi 2011)

I cA⊕B ≡W cA × cB ≡W(cA t cB)∗≡W ̂cA t cB ,

I cA⊗B ≡W cA u cB ,

I id|A⊕B ≡W id|A × id|B ,

I id|A⊗B ≡W id|A t id|B .

Here A⊕ B = 〈A× B〉, A⊗ B = 0A ∪ 1B for A,B ⊆ NN. 22 / 120
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Weihrauch Reducibility and Medvedev Reducibility

Lemma (B., Hendtlass and Kreuzer 2015)

f ≤W g
=⇒ (∀ computable p ∈ dom(f ))(∃ computable q ∈ dom(g))

f (p)≤M g(q)

for f , g :⊆ NN ⇒ NN.

I Hence, Weihrauch reducibility can be seen as a parameterized
version of Medvedev reducibiltiy.

I Computability theoretic problems such as MLR, where the
input is just an oracle, can and have also been studied in the
Medvedev lattice (for computable inputs).

I As long as the proofs relativize, one obtains corresponding
results in the Weihrauch lattice.

I Other problems such as WKL,WWKL depend on inputs in a
relevant way and can be compared to problems such as MLR
in the Weihrauch lattice.
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Zoo of Reducibilities

Weihrauch complexity Reverse mathematics
(computable) (over RCA0)

refines

f ≤sW g f ≤W g

f ≤c gf ≤sc g f ≤ω g

f ≤gW g

uniform
resource sensitive

non-uniform
closed under composition

Diagram based on: Hirschfeldt and Jockusch, On Notions of Computability
Theoretic Reduction Between Π1

2 Principles, preprint 2015.
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Logical Interpretation

Weihrauch complexity Reverse mathematics
(computable) (over RCA0)

refines

uniform
resource sensitive

non-uniform
closed under composition

Question

Can the slogan “Weihrauch complexity is a kind of a model of
reverse mathematics with some form of (intuitionistic) linear logic”
be converted into a theorem?
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Choice
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Co-c.e. Closed Sets in Computable Metric Spaces

I Let (X , d , α) be a computable metric space and A ⊆ X closed.

I By B〈n,k〉 := B(α(n), k) we denote the ball with center α(n)

and rational radius k . Here 〈a, b, c〉 := a−b
c+1 .

Then the following are equivalent to each other:

I A is co-c.e. closed,

I X \ A =
⋃∞

i=0 Bni for a computable sequence (ni )i of natural
and numbers,

I A = f −1{0} for a computable function f : X → R.
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Representing Closed Subsets by Negative Information

I We define a representation ψ− : NN → A−(X ) of the set
A−(X ) of all closed subsets of X by

ψ−(p) := X \
∞⋃
i=0

Bp(i).

I The computable points in the represented space A−(X ) are
exactly the co-c.e. closed subsets A ⊆ X .

I There is also a natural representation of the set C(X ) of
continuous functions f : X → R.

Proposition

P : C(X )→ A−(X ), f 7→ f −1{0} is a computable isomorphism in
the sense that P and P−1 are computable.
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Choice

Definition

CX :⊆ A−(X )⇒ X ,A 7→ A is called the choice problem of a
computable metric space X .

This is the problem that corresponds to the statement:

I Every non-empty closed set A ⊆ X has a point x ∈ A.

Corollary

CX ≡sW ZX for every computable metric space X .

The choice problem is equivalent to the zero problem of finding a
solution x ∈ X of the equation

f (x) = 0

for a continuous function f : X → R. Formally, we consider the
zero problem as ZX :⊆ C(X )⇒ X , f 7→ f −1{0}.
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Mind-Changes and Choice

Proposition

C0≡W 0, C1≡W 1, C2≡W LLPO, CN≡sW limN.

Proposition (B. and Gherardi 2011)

Let f ≤W g. If g is computable with n mind changes, then so is f .

Proposition (B., de Brecht and Pauly 2012)

f ≤W CN ⇐⇒ f is computable with finitely many mind changes.

Corollary

Cn<W Cn+1 <W CN for all n ∈ N.
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Choice on Cantor Space and Weak Kőnig’s Lemma

Theorem (B. and Gherardi 2011)

WKL≡sW C2N ≡sW Ĉ2.

Proof. The equivalence WKL≡sW C2N follows since the map

[ ] : Tr→ A−(2N),T 7→ [T ]

which maps a binary tree to the set of its infinite paths is
computable and has a computable right inverse. The equivalence
proof for C2N ≡sW Ĉ2 exploits the fact that for finding an infinite
path it is sufficient to make countably many binary decisions
(regarding the question which subtree is infinite) and vice versa. �

Proposition (B., Gherardi and Marcone 2012)

C∗2≡W KN<W CN.

Here KN denotes compact choice on N, where besides the negative
information on the set A ⊆ N also an upper bound is provided.
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Theorem (B. and Gherardi 2011)

WKL≡sW C2N ≡sW Ĉ2.
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Positive Choice

I The positive choice problem PCX :⊆ A−(X )⇒ X ,A 7→ A of
a computable metric space X with a Borel measure µ is the
restriction of CX to dom(PCX ) := {A ⊆ X : µ(A) > 0}.

I We use the usual uniform measure on 2N and the Lebesgue
measure on [0, 1].

Proposition (B., Gherardi and Hölzl 2015)

PC2N ≡sW WWKL.

Proposition (B. and Pauly 2010)

WWKL<W WKL.

I We have idNN 6≤sW WWKL. Hence WWKL is not a cylinder.

I We have C2≤W WWKL. Hence ŴWKL≡W WKL.
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32 / 120



Positive Choice

I The positive choice problem PCX :⊆ A−(X )⇒ X ,A 7→ A of
a computable metric space X with a Borel measure µ is the
restriction of CX to dom(PCX ) := {A ⊆ X : µ(A) > 0}.

I We use the usual uniform measure on 2N and the Lebesgue
measure on [0, 1].

Proposition (B., Gherardi and Hölzl 2015)

PC2N ≡sW WWKL.

Proposition (B. and Pauly 2010)

WWKL<W WKL.

I We have idNN 6≤sW WWKL. Hence WWKL is not a cylinder.

I We have C2≤W WWKL. Hence ŴWKL≡W WKL.
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Basic Complexity Classes

LLPO≡sW C2

limN≡sW CN

KN≡sW C∗2

WWKL≡sW PC2N

WKL≡sW C2N ≡sW Ĉ2

lim≡sW ĈN

CR≡W CN × C2N

CNN
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Turing Machines with Advice

input advice

Turing Machine

correct output

Condition: (∀x ∈ dom(f )) {r ∈ R : r does not fail with x} 6= ∅

or

computes f :⊆ X ⇒ Y

y ∈ f (x) failure!

x ∈ X r ∈ R
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Las Vegas Turing Machines

input advice

Las Vegas

Turing Machine

correct output

Condition: (∀x ∈ dom(f )) µ{r ∈ R : r does not fail with x} > 0

or

computes f :⊆ X ⇒ Y

y ∈ f (x) failure!

x ∈ X r ∈ R
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Calibrating Computability with Choice

Theorem (B., de Brecht and Pauly 2012)

For R ⊆ NN and f :⊆ X ⇒ Y the following are equivalent:

I f ≤W CR ,

I f is computable on a Turing machine with advice from R.

Corollary

I f ≤ C{0} ⇐⇒ f is computable,

I f ≤W CN ⇐⇒ f comp. with finitely many mind changes,

I f ≤W C2N ⇐⇒ f is non-deterministically computable,

I f ≤W PC2N ⇐⇒ f is Las Vegas computable,

I f ≤W ĈN ⇐⇒ f is limit computable,

I f ≤W CNN ⇐⇒ f is effectively Borel measurable.

In the last case f is single-valued on computable Polish spaces. 36 / 120
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Computational Classes

Non-deterministic computation

Las Vegas computation

finite mind change computation

WKL≡sW C2N

WWKL≡sW PC2N

CN

lim≡sW ĈN
limit computation

CNN
effective Borel measurability
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Independent Choice Theorem

Theorem (B., de Brecht and Pauly 2012)

CR ∗ CS ≤W CR×S for all R, S ⊆ NN.

Proof. Run a Turing machine that simulates upon advice (r , s)
two consecutive machines with advice r and s, respectively. �

Proposition

If s : R → S is a computable surjection, then CS ≤W CR .

Corollary

CR is closed under composition for R ∈ {N, 2N,N× 2N,NN}.

Corollary (Gherardi and Marcone 2009, B. and Gherardi 2011)

WKL is closed under composition.
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Independent Choice Theorem

Theorem (B., Gherardi and Hölzl 2015)

PCR ∗ PCS ≤W PCR×S for R, S ⊆ NN with σ–finite Borel measures
and their product measure.

Proof. (Sketch) The proof proceeds along the lines of the case for
closed choice plus an additional invocation of Fubini’s Theorem. �

Corollary

PCR is closed under composition for R ∈ {N, 2N,N× 2N,NN}.

Corollary

WWKL is closed under composition.

Corollary

Las Vegas computable functions are closed under composition.
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Choice for Computable Polish Spaces

Theorem (B., de Brecht and Pauly 2012)

Let X be a computable Polish space. Then

I CX ≤sW CNN ,

I CX ≤sW C2N if X is computably compact,

I C2N ≤sW CX if X is perfect,

I CX ≤sW CN×2N if X is a computable Kσ–space,

I CX ≡sW CNN with respect to some oracle, if X is not Kσ.

Corollary

For all n ≥ 1:

I C[0,1]n ≡sW C2N

I CRn ≡sW CN×2N ≡sW CN × C2N ≡sW CN ∗ C2N

I CC[0,1]≡sW C`2 ≡sW CNN
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Choice for Computable Polish Spaces

C3

CN≡sW CZ≡sW CQ

...

C2N ≡sW C[0,1]n ≡sW C[0,1]N

CN×2N ≡sW CRn ≡sW C2N × CN

C2

C1

CNN ≡sW C`p ≡sW CC[0,1]

finite

countable discrete

perfect compact

perfect locally compact

perfect non locally compact
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Choice Elimination for Choice on Cantor Space

The following result is reminiscent of certain conservation results.

Theorem (B., de Brecht and Pauly 2012)

f ≤W C2N ∗ g =⇒ f ≤W g

for single-valued f :⊆ X → Y on computable metric spaces X ,Y .

Proof. (Idea.) A non-deterministic computation that yields a
unique result cannot really exploit the advice r ∈ 2N. The compact
set of successful advices can be systematically searched in order to
find a successful advice. �

Corollary

f ≤W C2N =⇒ f computable (for f as above).

Corollary

CN 6≤W C2N .

limN≡sW CN is single-valued and non-computable.
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Choice Elimination for Choice on Natural Numbers

I f is called a fractal if there is a F :⊆ NN ⇒ NN with F ≡W f
and F |U ≡W f for every open U ⊆ NN with U ∩ dom(F ) 6= ∅.

I f is called a total fractal if there is a total F as above.
I strong (total) fractals are defined analogously with ≡sW.

Theorem (Le Roux and Pauly 2015)

f ≤W CN ∗ g =⇒ f ≤W g for total fractals f .

Proof. (Idea.) Replace f by a total fractal an apply the Baire
Category Theorem to the sets An of inputs to F for which CN
yields the number n as a possible result. Then NN =

⋃∞
n=0 An and

one of the sets An is somewhere dense. The fractality condition
yields the desired reduction. �

Corollary (B. and Gherardi 2011)

IVT 6≤W CN and hence IVT |W CN.

It is clear that also PC2N 6≤W CN.
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Basic Complexity Classes

LLPO≡sW C2

limN≡sW CN

KN≡sW C∗2

WWKL≡sW PC2N

WKL≡sW C2N ≡sW Ĉ2

lim≡sW ĈN

CR≡W CN × C2N

CNN
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Join Irreducibility

For gn :⊆ X ⇒ Y we define⊔∞
n=0 gn :⊆ N× X ⇒ Y , (n, x) 7→ gn(x).

Definition

f is called join irreducible, if one of the following equivalent
conditions hold:

I f ≡W
⊔∞

n=0 gn =⇒ (∃n) f ≡W gn,

I f ≤W
⊔∞

n=0 gn =⇒ (∃n) f ≤W gn.

Equivalence follows since the Weihrauch lattice is distributive.

Proposition (B., de Brecht and Pauly 2012)

Every fractal f is join irreducible.

Corollary

CN t C2N <W CN × C2N .

CN × C2N ≡W CR is a fractal.
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Minima versus Maxima and Boundedness versus Induction

We consider:

I min : NN → N, p 7→ min{p(n) : n ∈ N},
I max :⊆ NN → N, p 7→ max{p(n) : n ∈ N}.

Finding a minimum is simpler because the first element in the
sequence is already an upper bound on the result and hence the
search space is finite.

Proposition

max≡sW CN and min≡sW KN≡sW C∗2.

This suggests the following correspondence:

I BΣ0
1 (= boundedness for Σ0

1 formulas) corresponds to KN,

I IΣ0
1 (= induction for Σ0

1 formulas) corresponds to CN.
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Basic Complexity Classes and Reverse Mathematics

limN≡sW CN

KN≡sW C∗2

WWKL≡sW PC2N

WKL≡sW C2N ≡sW Ĉ2

CR≡sW CN × C2N

lim≡sW ĈN

CNN

C1 RCA0

BΣ0
1

IΣ0
1

ACA0

ATR0

WKL0

WKL0 + IΣ0
1

WWKL0
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The Classification of Theorems

c© 2012 K.H. Hofmann
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Choice on Natural Numbers

Theorem (B. and Gherardi 2012)

The following problems and theorems are Weihrauch equivalent:

I The choice problem CN on natural numbers.

I The Baire Category Theorem BCT1.

I The Banach Inverse Mapping Theorem IMT.

I The Open Mapping Theorem.

I The Closed Graph Theorem.

I The Uniform Boundedness Theorem.

All for infinite dimensional computable normed spaces (in case of BCT1

even for all perfect computable metric spaces).

All members of the equivalence class share the following features:

I All members map computable inputs to (some) computable outputs.
I All members are not uniformly computable.
I All members are computable with finitely many mind changes.
I All members have parallelizations that are equivalent to the limit

map and they are closed under composition.
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The Baire Category Theorem

Theorem (Baire Category Theorem)

Every complete metric space X cannot be written as a countable
union X =

⋃∞
i=0 Ai of nowhere dense closed sets Ai ⊆ X .

For perfect computable complete metric space X we define:

I BCT0 :⊆ A−(X )N ⇒ X , (Ai )i∈N 7→ X \
⋃∞

i=0 Ai with
dom(BCT0) = {(Ai )i∈N : A◦i = ∅}.

I BCT1 :⊆ A−(X )N ⇒ N, (Ai )i∈N 7→ {n ∈ N : A◦n 6= ∅} with
dom(BCT1) = {(Ai )i∈N : X =

⋃∞
i=0 Ai}.

The strong Weihrauch equivalence class does not depend on the
underlying space, but on the logical form.

Theorem (B. and Gherardi 2011)

BCT1≡sW CN and BCT0≡W id.
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The Baire Category Theorem

Proof.

Proof idea for BCT1≡W CN.
“BCT1≤W CN” Given (Ai ), the set

{〈k , n〉 : ∅ 6= Bk ⊆ An}

is co-c.e. in all parameters. Hence one can find a number 〈k , n〉 in
this set using CN. In this case n ∈ BCT1(Ai ).
“CN≤W BCT1” Given a sequence (ni )i∈N that enumerates a set of
natural numbers, we compute the sequence (Ai ) of closed subsets
Ai ⊆ X with

Ai :=

{
∅ if (∃i) n = ni

X otherwise

This sequence is computable in (ni ) and each n ∈ BCT1(ni ) has
the property that n does not appear in (ni ).
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Banach’s Inverse Mapping Theorem

Theorem (Banach’s Inverse Mapping Theorem)

Every bijective bounded linear operator T : X → Y on Banach
spaces X ,Y has a bounded inverse T−1 : Y → X .

For computable Banach spaces X ,Y we define
I IMT :⊆ C(X ,Y )→ C(Y ,X ),T 7→ T−1 with

dom(IMT) = {T : T linear}.
The strong Weihrauch equivalence depends on the underlying
spaces.

Theorem (B. and Gherardi 2011)

IMT≡sW CN for infinite dimensional computable Banach spaces.

Corollary (B. 2009)

Every bijective computable linear operator T : X → Y on
computable Banach spaces X ,Y has a computable inverse T−1.
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Choice on Cantor Space

Theorem

The following problems and theorems are Weihrauch equivalent:

I The choice problem C2N on Cantor space 2N.

I Weak Kőnig’s Lemma WKL.

I The Heine-Borel Theorem HB1.

I The Separation Problem for Σ0
1 sets. (Gherardi and Marcone 2009)

I The Hahn-Banach Theorem HBT. (Gherardi and Marcone 2009)

I The Brouwer-Fixed Point Theorem BFTn for dimension n ≥ 2.
(B., Le Roux, J.S. Miller and Pauly 2012)

All members of the equivalence class share the following features:

I All members map computable inputs to (some) low outputs.

I All members are neither uniformly nor non-uniformly computable.

I All members are non-deterministically computable.

I All members are closed under composition and parallelization.
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The Heine-Borel Theorem

Theorem (Heine-Borel)

Every countable open cover (Ui )i of the unit interval [0, 1] has a
finite subcover.

Two different logical formalizations:

I HB0 :⊆ O([0, 1])N ⇒ N, (Ui )i 7→ {n ∈ N : [0, 1] ⊆
⋃n

i=0 Ui},
dom(HB0) := {(Ui )i : [0, 1] ⊆

⋃∞
i=0 Ui}.

I HB1 :⊆ O([0, 1])N ⇒ [0, 1], (Ui )i 7→ [0, 1] \
⋃∞

i=0 Ui ,
dom(HB1) := {(Ui )i : (∀n) [0, 1] 6⊆

⋃n
i=0 Ui}.

The set O(X ) of open subsets of X is represented as A−(X ),
using complements.

Proposition

HB0≡W id is computable HB1≡W WKL≡W C2N .
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The Brouwer Fixed Point Theorem

Theorem (Brouwer Fixed Point Theorem)

Every continuous map f : [0, 1]n → [0, 1]n has a fixed point
x ∈ [0, 1]n, i.e., f (x) = x.

I BFTn : C([0, 1]n, [0, 1]n)⇒ [0, 1]n, f 7→ {x : f (x) = x}.
I Connected Choice CCX :⊆ A−(X )⇒ X ,A 7→ A is the

restriction of closed choice CX to connected sets.

Theorem (B., Le Roux and Pauly 2012)

BFTn≡sW CC[0,1]n for all n ∈ N.
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Connected Choice versus Closed Choice

Proposition (B., Le Roux and Pauly 2012)

The map

A 7→ (A× [0, 1]× {0}) ∪ (A× A× [0, 1]) ∪ ([0, 1]× A× {1})

is computable and maps any non-empty closed A ⊆ [0, 1] to a
connected non-empty closed A ⊆ [0, 1]3.

Theorem (B., Le Roux, J.S. Miller and Pauly 2012)

CC[0,1]n ≡sW C[0,1]≡sW C2N for all n ≥ 2.

The proof for n ≥ 3 follows from the Proposition, but the case
n = 2 needs a more involved and completely different construction
due to J.S. Miller.
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The Brouwer Fixed Point Theorem

Corollary (B., Le Roux, J.S. Miller, Pauly 2012)

BFTn≡sW C2N for all n ≥ 2.

Corollary (Baigger 1985, Orevkov 1963)

There exists a computable function f : [0, 1]n → [0, 1]n that has no
computable fixed point x ∈ [0, 1]n for every n ≥ 2.

However, there is always a low fixed point.

Corollary

There exists a non-empty connected co-c.e. closed subset
A ⊆ [0, 1]n without computable point for every n ≥ 2.
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The Intermediate Value Theorem

Theorem (B. and Gherardi 2011)

IVT≡sW CC[0,1].

Corollary

ÎVT≡sW WKL.

Corollary (Pour-El and Richards 1989)

There are computable fn : [0, 1]→ R with fn(0) · fn(1) < 0 and
without computable xn ∈ [0, 1] such that fn(xn) = 0 for all n ∈ N.

Corollary (B. and Gherardi 2011)

IVT |W BCT1.

“The Baire Category Theorem proves that the Baire Category
Theorem does not compute the Intermediate Value Theorem.”
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Choice on Euclidean Space

Frostman’s Lemma is a result from geometric measure theory that
guarantees the existence of certain measures that are supported on a
given closed set.

Theorem (Fouché and Pauly 2015)

The following problems and theorems are Weihrauch equivalent:

I The choice problem CR on Euclidean space R.

I Frostman’s Lemma.

All members of the equivalence class share the following features:

I All members map computable inputs to (some) low outputs.

I All members are neither uniformly nor non-uniformly computable.

I All members are non-deterministically computable with finite mind
changes.

I All members are closed under composition and not parallelizable.

Problem

Suggest other natural theorems equivalent to CR!
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Unique Choice

I Unique Choice UCX :⊆ A−(X )⇒ X is the restriction of
closed choice CX to

dom(UCX ) := {A ⊆ X : |A| = 1}.

Proposition (B., Gherardi and Marcone 2012)

UCN≡sW CN.

Corollary (B., de Brecht and Pauly 2012)

UC2N ≡sW id and UCR≡sW CN.

Follows with the help of elimination of C2N for single-valued
functions.
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All or Unique Choice and Robust Division

I All-or-Unique Choice AUCX :⊆ A−(X )⇒ X ,A 7→ A is the
restriction of closed choice CX to

dom(AUCX ) := {A ⊆ X : A = X or |A| = 1}.
I AUCN≡sW CN.
I Robust Division is the mathematical problem

RDIV : [0, 1]×[0, 1]⇒ [0, 1], (x , y) 7→
{
{ x

max(x ,y)} if y 6= 0

[0, 1] if y = 0

I Robust division RDIV can be used to solve linear equations in
compact domains: ax = b.

I Likewise RDIV∗ can be used to solve linear equations in
compact domain of arbitrary finite dimension.

Proposition

RDIV≡sW AUC[0,1].
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Nash Equilibria

I A bi-matrix game is a pair A,B ∈ Rm×n of m × n–matrices.
I A vector s = (s1, ..., sm) ∈ Rm with si ≥ 0 for all i = 1, ...,m

and
∑m

j=1 sj = 1 is called a mixed strategy.
I By Sm we denote the set of mixed strategies of dimension m.
I A Nash equilibrium is a pair (x , y) ∈ Sn × Sm such that

(∀w ∈ Sn) xTAy ≥ wTAy and (∀z ∈ Sm) xTBy ≥ xTBz .

Theorem (Nash 1951)

Every bi-matrix game admits a Nash equilibrium.

I NASHn,m : Rm×n × Rm×n ⇒ Rn × Rm, where
(A,B) 7→ {(x , y) : (x , y) is a Nash equilibrium for (A,B)}.

I NASH :=
⊔

n,m∈N NASHn,m.

Theorem (Pauly 2010)

NASH≡W RDIV∗≡W AUC∗[0,1].
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A Las Vegas Algorithm for Robust Division

Proposition

Robust division RDIV is Las Vegas computable.

1. Given x , y ∈ [0, 1] and a random advice r ∈ [0, 1], we aim to
compute the fraction z = x

max(x ,y) .
2. We guess that r is a correct solution, i.e., r = z if y > 0, and

we produce approximations of r (rational intervals (a, b) 3 r).
3. Simultaneously, we try to find out whether y > 0, which we

will eventually recognize, if this is correct.
4. If we find that y > 0, then we can compute the true result

z = x
max(x ,y) and produce approximations of it.

5. If at some stage we find that the best approximation (a, b) of
r that was already produced as output is incompatible with z ,
i.e., if z 6∈ (a, b), then we indicate a failure.

Corollary

NASH≡W RDIV∗≤W WWKL.
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A Probabilistic Algorithm for Zero Finding

1. A continuous function f : [0, 1]→ R with f (0) · f (1) < 0 is
given as input.

2. Guess a binary sequence or, equivalently, a bit b ∈ {0, 1} and
a point x ∈ [0, 1].

3. Interpret the guess b = 1 such that the zero set f −1{0}
contains no open intervals and use the trisection method to
compute a zero z ∈ [0, 1] with f (z) = 0 in this case
(disregarding x).

4. Interpret the guess b = 0 such that the zero set f −1{0} does
contain an open interval and check whether f (x) = 0 in this
case. Stop after finite time if this test fails and output x
otherwise.

Warning: This is not a Las Vegas algorithm! But it yields:

Theorem

IVT≤W WWKL′.
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There is no Las Vegas Algorithm for Zero Finding

Theorem

IVT 6≤W WWKL.

Proof. (Idea) The proof is based on a finite extension
construction: under the assumption that there is an algorithm for
the reduction, one can create an instance (a function f ) by finite
extension that forces the reduction to translate this function into a
tree that has measure zero. �

Corollary

IVT |W WWKL.

The inverse result WWKL 6≤W IVT is easy to see: IVT maps
computable inputs to computable outputs, WWKL does not.
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Idempotency of Restricted Choice Principles

Proposition (B., Gherardi and Hölzl 2015)

C2 × AUC[0,1] 6≤W CC[0,1].

Corollary (B., Le Roux and Pauly 2012)

CC[0,1]≡W IVT is not idempotent.

Also AUC[0,1] is not idempotent. Since C2 × AUC[0,1]≤W AUC∗[0,1]:

Corollary

AUC∗[0,1] 6≤W CC[0,1].

Corollary

NASH |W IVT.

Follows since IVT 6≤W CN but NASH 6≤W CN.
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Nash Equilibria and the Intermediate Value Theorem

IVT≡sW CC[0,1]

RDIV≡sW AUC[0,1]

LLPO≡sW C2

BCT1≡sW CN

NASH≡sW AUC∗[0,1]

KN≡sW C∗2

WWKL≡sW PC2N

WKL≡sW C2N

CR≡sW CN × C2N

lim≡sW ĈN

ACCN
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All or Co-Unique Choice and Diagonal Non-Computability

I All-or-Co-Unique Choice ACCX :⊆ A−(X )⇒ X ,A 7→ A is the
restriction of closed choice CX to

dom(ACCX ) := {A ⊆ X : A = X or |X \ A| = 1}.
I ACCX ≡sW id for perfect computable metric spaces.
I ACC2 = C2 and ACCn≡sW LLPOn for n ≥ 2.

Proposition (Weihrauch 1992)

ACCn+1 <W ACCn for all n ≥ 2.

I Diagonally non-computable functions for X ⊆ N:
DNCX : NN ⇒ XN, p 7→ {q ∈ XN : (∀n) ϕp

n(n) 6= q(n)}.

Theorem (Higuchi, Kihara 2014 and B., Hendtlass, Kreuzer 2015)

DNCn≡sW ÂCCn for all n ≥ 2 and DNCN≡sW ÂCCN.

Corollary (Jockusch 1989)

DNCN<W DNCn+1 <W DNCn for all n ≥ 2.
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PA, Diagonal Non-Computability and WKL

I PA : D ⇒ D, a 7→ {b : b� a} is the problem of Peano
arithmetic.

Corollary

PA<W DNCn for all n ≥ 2.

I WKLn :⊆ Trn ⇒ nN,T 7→ [T ] denotes Weak Kőnig’s Lemma
for big n–ary trees.

I A tree T ⊆ n∗ = {0, 1, ..., n − 1}∗ is called big, if it satisfies
the following condition: if w is a node of T which is on an
infinite path, then all but at most one successor nodes are on
an infinite path of T too.

Theorem (B., Hendtlass and Kreuzer 2015)

WKLn≡sW DNCn for all n ≥ 2.
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PA, Diagonal Non-Computability and WKL

lim≡sW ĈN

DNC2≡sW WKL≡sW ÂCC2

DNC3≡sW WKL3≡sW ÂCC3

DNCn+1≡sW WKLn+1≡sW ÂCCn+1

DNCN≡sW ÂCCNPA

CN

ACC2≡sW LLPO

ACC3≡sW LLPO3

ACCn+1≡sW LLPOn+1

ACCNNON
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Dense Realization and All or Co-Unique Choice

I f :⊆ X ⇒ Y is called densely realized, if f r(p) is dense in
dom(δY ) for every p ∈ dom(f δX ).

I f is densely realized if Y is densely represented, i.e., δ−1
Y (y) is

dense in dom(δY ) for every y ∈ Y .
I The set D of Turing degrees with its standard representation
δD : NN → D, p 7→ [p] is densely realized.

I In particular, every Π2 statement that claims the existence of
a Turing degree translates into a densely realized problem.

I PA : D ⇒ D, a 7→ {b : b� a} is densely realized.
I NON : D ⇒ D, a 7→ {b : b 6≤T a} is densely realized.

Proposition (B., Hendtlass and Kreuzer 2015)

If f is densely realized, then ACCN 6≤W f .

I ACCN is the weakest choice principles studied so far.
I All typical theorems from analysis are above ACCN.
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Basic Complexity Classes and Reverse Mathematics

limN≡sW CN

KN≡sW C∗2

WWKL≡sW PC2N

WKL≡sW C2N ≡sW Ĉ2

CR≡sW CN × C2N

lim≡sW ĈN

CNN

C1 RCA0

BΣ0
1

IΣ0
1

ACA0

ATR0

WKL0

WKL0 + IΣ0
1

WWKL0
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Limits and LPO

I limX :⊆ XN → X , (xn)n 7→ limn→∞ xn denotes the limit
operation of a Hausdorff space X .

I lim :⊆ NN → N, 〈p0, p1, p2, ...〉 → limn→∞ pn denotes the limit
operation of Baire space NN with encoded input.

Proposition (B. 2005)

lim≡sW limX for all perfect computable metric spaces X .

I LPO : NN → N, p 7→
{

1 if (∀n) p(n) = 0
0 otherwise

denotes the limited principle of omniscience.

I C2≡sW LLPO≤W RDIV≤W LPO≤W CN.

Proposition (B. and Gherardi 2011)

L̂PO≡sW ĈN≡sW lim.
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Parallelized Choice on Natural Numbers

Theorem

The following problems and theorems are Weihrauch equivalent:

I The parallelization ĈN of the choice problem on natural numbers.

I The limit problem lim :⊆ NN → NN, 〈p0, p1, p2, ...〉 7→ limn→∞ pn.

I The differentiability problem d :⊆ C[0, 1]→ C[0, 1], f 7→ f ′

(von Stein 1989).

I The Monotone Convergence Theorem MCT.

I The Fréchet-Riesz Theorem for Hilbert spaces.
(follows from B. and Yoshikawa 2006)

I The Radon-Nikodym Theorem. (Hoyrup, Rojas, Weihrauch 2012)

All members of the equivalence class share the following features:

I All members map computable inputs to (some) lim. comp. outputs.

I All members are neither uniformly nor non-uniformly computable,
but limit computable.

I All members are closed under parallelization, but not under
composition. 75 / 120
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A Dichotomy for Linear Operators

Theorem (B. 1999)

Let X ,Y be computable Banach spaces and T :⊆ X → Y a
densely defined linear operator with a c.e. closed graph. Then:

I T ≤W id ⇐⇒ T computable ⇐⇒ T bounded.
I lim≤W T ⇐⇒ T unbounded.

Corollary (von Stein 1992)

d≡W lim, where d :⊆ C[0, 1]→ C[0, 1], f 7→ f ′

Corollary (First Main Theorem of Pour-El and Richards 1989)

An unbounded T :⊆ X → Y as above admits a computable
x ∈ dom(T ) such that T (x) is not computable.

Corollary (Myhill 1971)

There exists a computable and continuously differentiable
f : [0, 1]→ R such that f ′ is not computable.
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Jumps

I For every representation δ :⊆ NN → X we define the jump
δ′ :⊆ NN → X by δ′ := δ ◦ lim.

I X ′ = (X , δ′) denotes the corresponding represented space.
I For f :⊆ X ⇒ Y we define its jump by

f ′ :⊆ X ′ ⇒ Y , x 7→ f (x).
I For instance id′≡sW lim, id′′≡sW lim ◦ lim, etc.

Proposition (B., Gherardi and Marcone 2011)

f ≤sW g =⇒ f ′≤sW g ′ and f ≤sW f ′.

I f <W f ′ does not hold in general: f ≡sW f ′ for a constant f .
I f <W g is compatible with: f ′≡W g ′, f ′<W g ′ and g ′<W f ′.

Proposition (B., Gherardi and Marcone 2011)

I f ′≡W f ′ × lim≡W f ∗ lim, if f is a cylinder.

I f is a cylinder =⇒ f ′ is a cylinder.
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Jumps and the Algebraic Structure

Proposition (B., Gherardi and Marcone 2011)

I (f ◦ g)′ = f ◦ g ′

I (f × g)′≡sW f ′ × g ′

I f̂ ′≡sW f̂ ′

I (f u g)′≡sW f ′ u g ′

I (f t g)′≤sW f ′ t g ′

I f ∗′≤sW f ′∗

Proposition (B., Gherardi and Marcone 2011)

I f strongly idempotent =⇒ f ′ strongly idempotent,

I f idempotent cylinder =⇒ f ′ idempotent cylinder,

I f ′ is a strong fractal and hence join irreducible for every f .

In particular, not every f with lim≤W f is a jump. 78 / 120
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The Weihrauch Lattice refines the Borel Hierarchy

I f (0) := f and f (n+1) := (f (n))′ for all n ∈ N.

Theorem (B. 2005)

f ≤W id(n) ⇐⇒ f is effectively Σ0
n+1–measurable for all n ∈ N.

reducibility hierarchy

many-one arithmetical

Weihrauch effective Borel
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The Weihrauch Lattice refines the Borel Hierarchy
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The Cluster Point Problem

I CLX :⊆ XN ⇒ X , (xn)n 7→ {x : x is a cluster point of (xn)n} is
called the cluster point problem of a topological space X .

Theorem (B., Gherardi and Marcone 2011)

CLX ≡sW C′X for every computable metric space X .

Proof. (Idea) This can be proved by showing that the jump of ψ−
is equivalent to the cluster point representation of A−(X ). One
direction follows since

XN → A−(X ), (xn)n 7→ {x : x is a cluster point of (xn)n}
is limit computable. The other direction is more involved. �

Example

I C′2≡sW CL2 is the infinite pigeonhole principle,

I C′2N ≡sW CL2N is the Bolzano-Weierstraß Theorem of 2N,

I C′NN ≡sW CNN is a fixed point of the jump.
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The Jump of Choice on Cantor Space

I BWTX :⊆ XN ⇒ X , (xn)n 7→ {x : x is a cluster point of (xn)n} is
CLX rest. to dom(BWTX ) := {(xn)n : {xn : n ∈ N} is compact}.

Theorem

The following problems and theorems are strongly Weihrauch equivalent:

I The jump C′
2N of choice on Cantor space 2N.

I The jump of Weak Kőnig’s Lemma WKL′.

I Kőnig’s Lemma KL. (B. and Rakotoniaina 2015)

I The Bolzano-Weierstraß Theorem BWTR on R.
(B., Gherardi, Marcone 2011)

All members of the equivalence class share the following features:

I All members map computable inputs to (some) outputs that are low
relative to the halting problem.

I All members are neither uniformly nor non-uniformly limit
computable.

I All members are closed parallelization, but not under composition.
82 / 120



The Jump of Choice on Cantor Space

I BWTX :⊆ XN ⇒ X , (xn)n 7→ {x : x is a cluster point of (xn)n} is
CLX rest. to dom(BWTX ) := {(xn)n : {xn : n ∈ N} is compact}.

Theorem

The following problems and theorems are strongly Weihrauch equivalent:

I The jump C′
2N of choice on Cantor space 2N.

I The jump of Weak Kőnig’s Lemma WKL′.
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The Bolzano-Weierstraß Theorem

Proposition (B., Gherardi, Marcone 2011)

I WKL′≡sW BWTX for perfect computable metric spaces X .

I K′N≡sW BWTN.

Proposition (B. and Rakotoniaina 2015)

K
(n)
N ≤sW C

(n)
N ≤sW K

(n+1)
N for all n ∈ N.

Proof. (Idea) This follows from
KN≤sW CN≡sW limN≤sW BWTN≡sW K′N. �

I BΣ0
1 ← IΣ0

1 ← BΣ0
2 ← IΣ0

2... corresponds to
I KN≤sW CN≤sW K′N≤sW C′N≤sW ....

Corollary (B., Gherardi and Hölzl 2015)

C
(n)
2 is Σ0

n+2–measurable but not Σ0
n+1–measurable for all n ∈ N.
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Higher Complexity Classes

C′′N

K′′N

WKL′′ ≡sW C′′
2N

C′′R

lim′′

C′N

K′N

WKL′ ≡sW C′
2N

C′R

lim′

CN

KN

WKL≡sW C
2N

CR

lim

.

.

.

CNN

LLPO≡sW C2

LLPO′ ≡sW C′2

LLPO′′ ≡sW C′′2

LPO

LPO′

LPO′′

Σ0
2

Σ0
3

Σ0
4

ATR0

BΣ0
1

IΣ0
1

BΣ0
2

IΣ0
2

BΣ0
3

IΣ0
3
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The Cluster Point Problem in the Role of Induction

I We recall that DNCn+1 <W DNCn for all n ≥ 2.

I R. Friedberg proved that non-uniformly the corresponding
Turing degrees coincide.

I Dorais, Hirst and Shafer (2015) refined this construction and
analyzed it in reverse mathematics.

Proposition (B., Hendtlass, Kreuzer 2015)

DNC2≤W DNCn ∗ C′N for all n ≥ 2.

I The proof is a uniform version of the construction of Dorais,
Hirst and Shafer (2015).

Question

How can (DNCn+1 → DNCn) be characterized?

The result above only implies (DNCn+1 → DNCn)≤W C′N.
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Cardinality Based Separation Techniques

I We define the cardinality #f as the supremum of all
cardinalities |M| of sets M ⊆ dom(f ) such that the sets f (x)
with x ∈ M are pairwise disjoint.

Proposition (B., Gherardi and Hölzl 2015)

f ≤sW g =⇒ #f ≤ #g.

Proposition

If f :⊆ X ⇒ N is a strong fractal and range(g) compact, then
f ≤W g =⇒ f ≤sW g.

Corollary (B., Gherardi and Marcone 2012)

I BWTn<W BWTn+1 <W BWTN<W BWTR for all n ∈ N,

I limn<W limn+1 <W limN<W limR for all n ∈ N.
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Cohesiveness and the Bolzano-Weierstraß Theorem

I WBWTX :⊆ XN ⇒ X ′, (xn)n 7→ BWTX is called the Weak
Bolzano Weierstraß Theorem of X .

I COH : (2N)N ⇒ 2N where COH(Ri ) contains all infinite
X ⊆ N such that for all i ∈ N one of the sets X ∩ Ri or
X ∩ (N \ Ri ) is finite is called the Cohesiveness Problem.

Theorem (Kreuzer 2011)

COH≡W WBWTR.

Theorem (B., Hendtlass and Kreuzer 2015)

WBWTX ≡W(lim→ BWTX ) for all computable metric spaces X .

Recall: (lim→ BWTX ) = min{h : BWTX ≤W lim ∗h}.

Corollary

COH≡W(lim→ KL)≡W(lim→WKL′).
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Cohesiveness

Theorem (B., Hendtlass and Kreuzer 2015)

WKL′≡W lim ∗COH.

The proof uses a uniform double limit technique.

Proposition (B., Hendtlass and Kreuzer 2015)

COH≡W ŴBWT2.

Corollary

COH≤W lim.

I COH and WBWTX for |X | ≥ 2 are densely realized!

Corollary

ACCN 6≤W COH.
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COH≡W ŴBWT2.

Corollary

COH≤W lim.

I COH and WBWTX for |X | ≥ 2 are densely realized!

Corollary

ACCN 6≤W COH.

88 / 120



Cohesiveness

Theorem (B., Hendtlass and Kreuzer 2015)

WKL′≡W lim ∗COH.

The proof uses a uniform double limit technique.

Proposition (B., Hendtlass and Kreuzer 2015)

COH≡W ŴBWT2.
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COH≡W ŴBWT2.

Corollary

COH≤W lim.

I COH and WBWTX for |X | ≥ 2 are densely realized!

Corollary

ACCN 6≤W COH.

88 / 120



Cohesiveness

Theorem (B., Hendtlass and Kreuzer 2015)

WKL′≡W lim ∗COH.

The proof uses a uniform double limit technique.

Proposition (B., Hendtlass and Kreuzer 2015)

COH≡W ŴBWT2.
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On the Combinatorial “Core” of Problems

Problem Characterization Core

lim lim≡sW L̂PO LPO

WKL WKL≡sW Ĉ2 C2≡sW LLPO

KL KL≡sW Ĉ′2 C′2≡sW IPP

COH COH≡sW ŴBWT2 WBWT2

DNCn DNCn≡sW ÂCCn ACCn≡sW LLPOn

NASH NASH≡sW AUC∗[0,1] AUC[0,1]≡sW RDIV

KN KN≡sW C∗2 C2≡sW LLPO
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Ramsey’s Theorem
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Ramsey’s Theorem

Theorem (Ramsey 1930)

Every coloring c : [N]n → k admits an infinite homogeneous set
M ⊆ N.

I Here [M]n denotes the set of n–element subsets of M ⊆ N.

I We identify k with {0, 1, ..., k − 1} for all k ∈ N.

I A set M ⊆ N is called homogeneous for the coloring c , if
there is some i ∈ k such that c(A) = i for all A ∈ [M]n.

I By Cn,k we denote the set of colorings c : [N]n → k.

I By RTn
k : Cn,k ⇒ 2N we denote the corresponding

multi-valued function, where RTn
k(c) contains exactly all

infinite homogeneous sets M ⊆ N for c .

I We also consider the case k = N, which corresponds to an
unspecified but finite number of colors.
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Lower Bounds on Ramsey

Proposition (B. and Rakotoniaina 2015)

C
(n)
2 ≤W RTn

2 for all n ≥ 1.

Proof.(Idea.) We note that C
(n)
2 ≡sW BWT2 ◦ lim

[n−1]

2N
. Let

p ∈ dom(BWT2 ◦ lim
[n−1]

2N
) and q := lim

[n−1]

2N
(p). Then

q(i0) = lim
i1→∞

lim
i2→∞

... lim
in−1→∞

p〈in−1, ..., i0〉

for all i0 ∈ N. We compute the coloring c : [N]n → 2 with

c{i0 < i1 < .... < in−1} := p〈in−1, in−2, ..., i1, i0〉.

For M ∈ RTn
2 we obtain c(M) ∈ BWT2(q). �

Corollary

WKL(n)≤W R̂Tn
k for all n ≥ 1, k ≥ 2.
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Products and Parallellization of Ramsey

Theorem (B. and Rakotoniaina 2015)

RTn
N × RTn+1

k ≤sW RTn+1
k+1 for all n, k ≥ 1.

Proof. (Idea.) Given a coloring c1 : [N]n → N with finite range
and a coloring c2 : [N]n+1 → k we construct a coloring
c+ : [N]n+1 → k + 1 as follows:

c+(A) :=

{
c2(A) if A is homogeneous for c1

k otherwise

for all A ∈ [N]n+1. Then RTn+1
2 (c+) ⊆ RTn

N(c1) ∩ RTn+1
k (c2) and

hence the desired reduction follows. �

Corollary

(RTn
k)∗≤W RTn+1

2 for all n, k ≥ 1.
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Parallelization of Ramsey

Theorem (B. and Rakotoniaina 2015)

R̂Tn
k ≤sW RTn+2

2 for all n, k ≥ 1.

Proof. (Idea.) Given a sequence (ci )i of colorings ci : [N]n → k,
we compute a sequence (dm)m of colorings dm ∈ Cn,km that
capture the products (RTn

k)m and a sequence (d+
m )m of colorings

d+
m : [N]n+1 → 2 by

d+
m (A) :=

{
0 if A is homogeneous for dm

1 otherwise

for all A ∈ [N]n+1. Now, in a final step we compute a coloring
c : [N]n+2 → 2 with

c({m} ∪ A) := d+
m (A)

for all A ∈ [N]n+1 and m < min(A). Given an infinite
homogeneous set M ∈ RTn+2

2 (c) we determine a sequence (Mi )i
as follows: for each fixed i ∈ N we first search for a number m > i
in M and then we let Mi := {x ∈ M : x > m}. �94 / 120



Lower Bounds and Stability

Corollary

For all n ≥ 2 we obtain:

I limN≡W SRT1
N

I lim≤W SRT3
2

I WKL′≤W RT3
2 (Hirschfeldt and Jockusch 2015)

I WKL(n)≤W SRTn+2
2

I A coloring c : [N]n → k is called stable, if limi→∞ c(A ∪ {i})
exists for all A ∈ [N]n−1.

I SRTn
k is the restriction of RTn

k to stable colorings.
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Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

RTn
k ≤W SRTn

k ∗ COH for all n, k ≥ 1.

Theorem

SRTn+1
k ≤W RTn

k ∗ lim for all n, k ≥ 1.

Proof. (Idea.) In fact, we even proved SRTn+1
k ≡W(CRTn

k)′. �

Corollary

RTn+1
k ≤W RTn

k ∗WKL′ for all n, k ≥ 1.

Proof. (Idea.) We use WKL′≡W lim ∗COH. �

Corollary

R̂Tn
k ≡W WKL(n) for all n ≥ 1, k ≥ 2.

Corollary

RTn
k is effectively Σ0

n+2–, but not Σ0
n+1–measurable for n, k ≥ 2.
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Ramsey’s Theorem and Cohesiveness

lim′′

WKL′′

lim′

WKL′≡sW KL

COH

C′
2≡sW BWT2

BWT′
2

lim CN≡sW limN CF

(CRT1
2)′

RT2
2

SRT2
2

SRT2
2 t COH

SRT2
2 × COH

SRT2
2 ∗ COH

RT1
2 = D1

2

(RT1
2)′ = D2

2

(RT1
2)′ × lim

Σ0
4

Σ0
3

Σ0
2
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The Squashing Theorem

Definition

f :⊆ NN ⇒ NN is called finitely tolerant if there is a computable
T :⊆ NN → NN such that for all p, q ∈ dom(f ), r ∈ NN, k ∈ N:
((∀n ≥ k)(p(n) = q(n)) and r ∈ f (q)) =⇒ T 〈r , k〉 ∈ f (p).

I f finitely tolerant =⇒ f fractal.
I lim,BWTn,BWTN,BWT2N ,RTn

k ,RTn
N are finitely tolerant.

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

Let f , g :⊆ NN ⇒ NN and let f be finitely tolerant and total. Then
g × f ≤W f =⇒ ĝ ≤W f .

Note. BWTN is not total.

Corollary

Under the same assumptions on f it holds that
f idempotent =⇒ f parallelizable.
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Color Separation

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

RTn
k <sW RTn

k+1 for all n, k ≥ 1.

Theorem (B. & Rakotoniaina, Hirschfeldt & Jockusch, Patey 2015)

RTn
k <W RTn

k+1 for all n, k ≥ 1.

Proof.

I RTn
2 × RTn+1

k ≤W RTn+1
k+1 by the Product Theorem.

I RTn
2 × RTn+1

k ≤W RTn+1
k implies R̂Tn

2 ≤W RTn+1
k by the

Squashing Theorem which leads to a contradiction:

lim(n−1)≤W WKL(n)≡W R̂Tn
2 ≤W RTn+1

k

I RTn
2 × RTn+1

k 6≤W RTn+1
k for all n, k ≥ 1 follows.

I RTn+1
k <W RTn+1

k+1 for all n, k ≥ 1 follows. �
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Ramsey’s Theorem in the Weihrauch Lattice

lim(4)

WKL(4) ≡sW Ĉ
(4)
2 RT4

N ...
RT4

4 RT4
3 RT4

2 C
(4)
2

lim(3)

WKL(3) ≡sW Ĉ
(3)
2 RT3

N ...
RT3

4 RT3
3 RT3

2 C
(3)
2

lim′′

WKL′′ ≡sW Ĉ′′2 RT2
N ...

RT2
4 RT2

3 RT2
2 C′′2

lim′

WKL′ ≡sW Ĉ′2 RT1
N ...

RT1
4 RT1

3 RT1
2 C′2

lim≡sW ĈN

WKL≡sWĈ2

CN

KN≡sWC∗2 ...
C4 C3 C2

Σ0
6

Σ0
5

Σ0
4

Σ0
3

Σ0
2
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Boundedness, Induction and Choice

SRT2
N

RT2
N

RT1
N

RT2
2

SRT2
2

SRT1
N

RT3
2

C′′
N K′′

N C′
N K′

N CN KN

Corollary (Jump of compact choice)

K′N≡W RT1
N, K′N 6≤W SRT2

2, K′N≤W SRT2
2 ∗ SRT2

2 and

K
(n)
N ≤W SRTn

N for n ≥ 2.

I Case n = 2 can be seen as a uniform version of the fact that
SRT2

<∞ proves BΣ0
3 over RCA0 (Cholak, Jockusch, Slaman).

I RT1
<∞ is equivalent to BΣ0

2 over RCA0 (Hirst)
I SRT2

2 proves RT1
<∞ over RCA0 (Cholak, Jockusch, Slaman)

in contrast to the statement above!
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Lowness

L = J−1 ◦ lim
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The Uniform Low Basis Theorem

I J : NN → NN, p 7→ p′ denotes the Turing jump.
I J≡sW lim and J−1 :⊆ NN → NN is computable.
I L := J−1 ◦ lim is the low map.
I q ∈ NN is low :⇐⇒ q′≤T ∅′ ⇐⇒ (∃p comp.) L(p) = q.

Definition (B., de Brecht and Pauly 2011)

f is low :⇐⇒ f ≤sW L.

I L is not a cylinder, hence ≤sW cannot be replaced by ≤W.
I L is also not idempotent.

Theorem (B., de Brecht and Pauly 2011)

CR≤sW L, that is CR is low.

This is a uniform version of the Low Basis Theorem.

Corollary

WKL≡sW C2N and BCT1≡sW CN are low.
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The Low Basis Theorem

I LBT :⊆ Tr⇒ 2N,T 7→ {p ∈ [T ] : p′≤T T ′} denotes the Low
Basis Theorem with dom(LBT) as the set of all infinite binary
trees.

Theorem (B., Hendtlass and Kreuzer 2015)

WKL<W LBT<W L and LBT |W CR.

Proof. (Idea) It is clear that WKL≤W LBT≤W L and LBT 6≤W CR
follows from the Hyperimmune Free Basis Theorem. CR 6≤W LBT
follows from the following proposition. �

Proposition

LPO 6≤W LBT.

The proof exploits the fact that LBT restricted to computable
inputs is parallelizable.
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Lowness in the Weihrauch Lattice

ACCN

COH

LBT

LPO

LLPO≡sW C2

BCT1≡sW CN

KN≡sW C∗2

WKL≡sW C2N

CR≡W CN × C2N

L := J−1 ◦ lim

J≡sW lim≡sW ĈN

CNN
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A Characterization and Application of Lowness

I f ∗s g := sup{f0 ◦ g0 : f0≤sW f and g0≤sW g}.
I lim ∗s g always exists as a maximum (and is realized by J ◦ g r).

I L2 := J−1 ◦ J−1 ◦ lim ◦ lim characterizes low2 similarly as L
characterizes lowness.

I f low2 :⇐⇒ f ≤sW L2.

Theorem (B., Gherardi, Marcone 2012)

I f low ⇐⇒ f ≤sW L ⇐⇒ lim ∗s f ≤W lim.

I f low2 ⇐⇒ f ≤sW L2 ⇐⇒ lim′ ∗s f ≤W lim′.

Theorem (B., Hendtlass and Kreuzer 2015)

COH and WBWTR are low2 but not low.

The proof uses WKL′≡W lim ∗COH and the fact that WKL is low.
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Genericity

I p ∈ NN is 1–generic :⇐⇒ p is a point of continuity of J.
I limJ := J−1 ◦ lim ◦JN = L ◦ JN is the limit operator with

respect to the jump topology (also called Π–topology).
I p ∈ NN is called limit computable in the jump :⇐⇒ there is

a computable sequence (pn)n such that limn→∞ J(pn) = J(p).

Proposition (B., de Brecht and Pauly 2011)

I p ∈ NN 1–generic and limit computable =⇒ p limit
computable in the jump.

I f ∈ NN diagonally non-computable and p ∈ NN limit
computable in the jump =⇒ f 6≤T p.

Theorem (B., de Brecht and Pauly 2011)

DNCN 6≤W limJ and CN≡sW limN<W limJ <W L.

Surprisingly, limJ≡sW L with respect to some oracle.
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Genericity

I 1-GEN : 2N ⇒ 2N, p 7→ {q : q is 1–generic in p}.

Proposition (B., Hendtlass and Kreuzer 2015)

f ≤W limJ if f has a limit computable realizer with only 1–generic
points in its range.

Theorem (B., Hendtlass and Kreuzer 2015)

BCT0 <W 1-WGEN<W 1-GEN<W BCT′0≡sW Π0
1G<W limJ.

I 1-WGEN denotes the problem of weakly 1–generics (defined
similarly as above).

I Π0
1G denotes the so called Π0

1–genericity problem studied in
reverse mathematics (interpreted in the straightforward sense).

I BCT′0 is densely realized and parallelizable.

Corollary

ACCN 6≤W BCT′0.
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Genericity in the Weihrauch Lattice

COH

J−1

HYP

BCT′0≡sW Π0
1G

limJ

1-GEN

1-WGEN

BCT0

DNCN

NON

ACCN

LPO

LLPO≡sW C2

BCT1≡sW CN

KN≡sW C∗2

WKL≡sW C2N

CR≡W CN × C2N

L≡sW(J−1)′

J≡sW lim≡sW ĈN

CNN
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Martin-Löf Randomness

I MLR : 2N ⇒ 2N, the problem of Martin-Löf randomness is
defined by
MLR(p) := {q ∈ 2N : q is Martin-Löf random relative to p}.

I q is called Martin-Löf random relative to p, if for every
sequence (Ui )i of open sets Ui ⊆ 2N that is computable
relative to p with µ(Ui ) < 2−i , we obtain p 6∈

⋂∞
i=0 Ui .

I MLR is densely realized, hence C2 6≤W MLR.

I MLR is parallelizable and hence idempotent.

Proposition (B., Gherardi and Hölzl 2015)

MLR ∗MLR≤W MLR.

Follows from van Lambalgen’s Theorem.
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I q is called Martin-Löf random relative to p, if for every
sequence (Ui )i of open sets Ui ⊆ 2N that is computable
relative to p with µ(Ui ) < 2−i , we obtain p 6∈

⋂∞
i=0 Ui .

I MLR is densely realized, hence C2 6≤W MLR.

I MLR is parallelizable and hence idempotent.

Proposition (B., Gherardi and Hölzl 2015)

MLR ∗MLR≤W MLR.

Follows from van Lambalgen’s Theorem.

112 / 120
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Characterization of Martin-Löf Randomness

Theorem (B. and Pauly 2013)

MLR≡W(CN →WWKL).

Proof. (Sketch.) (CN →WWKL)≤W MLR: It suffices to prove
WWKL≤W CN ∗MLR. By Kučera’s Lemma, every Martin-Löf
random real p is a path in every infinite binary tree T of positive
measure up to some finite prefix. Using CN we can cut away longer
and longer prefixes of p until we find a path in T .

MLR≤W(CN →WWKL): Given some h with WWKL≤W CN ∗ h
we need to prove that MLR≤W h. Given some universal
Martin-Löf test (Ui )i , the complement A0 := 2N \ U0 is a closed
set of positive measure and given the corresponding tree T with
A = [T ] the function h will deliver some sequence q that can be
converted into a Martin-Löf random real by a finite mind change
computation. This computation can be converted into a regular
computation that yields a Martin-Löf random real. �
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Martin-Löf test (Ui )i , the complement A0 := 2N \ U0 is a closed
set of positive measure and given the corresponding tree T with
A = [T ] the function h will deliver some sequence q that can be
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Quantitative Versions of WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By ε-WWKL :⊆ Tr⇒ 2N we denote the restriction of WKL to
dom(ε-WWKL) := {T : µ([T ]) > ε} for ε ∈ R.

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016 and
B., Gherardi and Hölzl 2015)

ε-WWKL≤W δ-WWKL ⇐⇒ ε ≥ δ for all ε, δ ∈ [0, 1].

Proof. (Idea) “=⇒” Assume ε < δ. Then there are positive
integers a, b with ε < a

b ≤ δ. We consider
I Ca,b which is Cb restricted to sets A ⊆ {0, ..., b − 1} with
|A| ≥ a.

Then Ca,b ≤W ε-WWKL and Ca,b 6≤W δ-WWKL. Hence
ε-WWKL 6≤W δ-WWKL �

Proposition (B., Hendtlass and Kreuzer 2015)

ε-WWKL is not parallelizable for ε ∈ [0, 1).
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Quantitative Versions of WWKL

I (1−∗)-WWKL :⊆ TrN ⇒ 2N, (Ti )i 7→
∞⊔
i=0

(1−2−i )-WWKL(Ti )

Theorem (B., Hendtlass and Kreuzer 2015)

(1− ∗)-WWKL is parallelizable.

Proposition (B., Hendtlass and Kreuzer 2015)

ACCN≤W(1− ∗)-WWKL.

Corollary

DNCN≤W(1− ∗)-WWKL.

Proposition (B., Hendtlass and Kreuzer 2015)

DNCN |W MLR.
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Martin-Löf Randomness

Theorem (B., Gherardi and Hölzl 2015)

MLR<W(1− ∗)-WWKL.

Proof. (Sketch) We use a universal Martin-Löf test, which is a
computable sequence (Ui )i of c.e. open sets Ui ⊆ 2N such that
µ(Ui ) < 2−n and

⋂∞
i=0 Ui is exactly the set of all sequences which

are not Martin-Löf random. Hence, Ai := 2N \ Ui is a co-c.e.
closed set with µ(Ai ) > 1− 2−n and each Ai only contains
Martin-Löf random sequences. Hence, we can compute a
corresponding sequence (Ti )i of infinite binary trees with
[Ti ] = Ai . Upon input of this sequence (1− ∗)-WWKL yields a
Martin-Löf random sequence. The entire argument can be
relativized, i.e., it also works in presence of some oracle p ∈ 2N.
This yields the reduction MLR≤W(1− ∗)-WWKL. In order to see
that the reduction is strict, one has to take into account that MLR
is densely realized. �
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From MLR to WWKL in the Weihrauch Lattice

lim≡sW ĈN

DNC2≡sW WKL

DNC3≡sW WKL3

DNCn+1≡sW WKLn+1

DNCN
PA

CN

ACC2≡sW LLPO

ACC3≡sW LLPO3

ACCn+1≡sW LLPOn+1

ACCN

NON

WWKL

1
2 -WWKL

n−1
n -WWKL

(1− ∗)-WWKL

MLR≡W(CN →WWKL)

117 / 120



Uniform Theorem of Kurtz

Theorem of Kurtz. Every 2–random computes a 1–generic.

Theorem (B., Hendtlass and Kreutzer 2015)

1-GEN<W(1− ∗)-WWKL′.

Proof. (Idea) We apply the “fireworks technique” of Rumyantsev
and Shen to get a uniform reduction. �

Theorem (B., Hendtlass and Kreutzer 2015)

BCT′0 6≤W WWKL(n) for all n ∈ N.

Proof. (Idea) There exists a co-c.e. comeager set A ⊆ 2N such
that no point of A is low for Ω. WWKL(n) has a realizer that maps
computable inputs to outputs that are low for Ω for n ≥ 1. �

Corollary

BCT′0 6≤W 1-GEN.
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Summary on Weihrauch Complexity

I Weihrauch complexity is a uniform and resource sensitive
computable version of reverse mathematics.

I It measures the amount of resources needed to compute
certain realizers of theorems.

I Positive and negative results are directly constructed without
any need for further models.

I Results have immediate interpretations in computable analysis.
I Many results from reverse mathematics are fully uniform with

only one usage of the resource.
I Sometimes proofs can be transferred, sometimes completely

new methods have to be developed.
I The Weihrauch lattice can be seen as a refinement of the

Borel hierarchy for functions and hence methods of descriptive
set theory and topology can be applied directly.

I Many complexity classes have direct computational
interpretations.
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