Strong reductions for extended formulations

Gábor Braun ${ }^{1}$ Sebastian Pokutta ${ }^{1}$ Aurko Roy ${ }^{1}$

${ }^{1}$ Georgia Tech

Semidefinite \& Matrix Methods in Optimization \& Communication Singapore
Feb 2, 2016

How powerful are Linear and Semidefinite Programs?

How powerful are Linear and Semidefinite Programs?

Linear Programming (LP)

- a general algorithmic paradigm
- efficient in theory and practice
- large body of approximation algorithms

How powerful are Linear and Semidefinite Programs?

Linear Programming (LP)

- a general algorithmic paradigm
- efficient in theory and practice
- large body of approximation algorithms

Semidefinite programming (SDP):

- generalizes linear programming
- also efficient in theory
- covers much of tractable convex optimization
- better approximations for hard problems!

Approximation algorithms using LPs and SDPs

VertexCover	LP
SETCOVER	LP
FACILITYLOCATION	LP
MAXCUT	SDP
SPARSESTCut	SDP
MAXCSP	Sum-of-squares (SDP)

Unique Games Conjecture \Rightarrow SDP is optimal algorithm for MAxCSPs

The state of lowerbounds

The state of lowerbounds

- Earliest lowerbound was on the size of a symmetric LP for TravelingSalesman and Matching due to Yannakakis (1991).

The state of lowerbounds

- Earliest lowerbound was on the size of a symmetric LP for TravelingSalesman and Matching due to Yannakakis (1991).
- Many lowerbounds have focused on specific LP and SDP relaxations, like the Sherali-Adams and Lasserre/SoS hierarchies.

The state of lowerbounds

- Earliest lowerbound was on the size of a symmetric LP for TravelingSalesman and Matching due to Yannakakis (1991).
- Many lowerbounds have focused on specific LP and SDP relaxations, like the Sherali-Adams and Lasserre/SoS hierarchies.
- We know due to Chan et al. (2013) and Lee et al. (2014) that the Sherali-Adams and Lasserre hierarchies are optimal for CSPs.

The state of lowerbounds

- Earliest lowerbound was on the size of a symmetric LP for TravelingSalesman and Matching due to Yannakakis (1991).
- Many lowerbounds have focused on specific LP and SDP relaxations, like the Sherali-Adams and Lasserre/SoS hierarchies.
- We know due to Chan et al. (2013) and Lee et al. (2014) that the Sherali-Adams and Lasserre hierarchies are optimal for CSPs.
- However the picture isn't so clear for other classes of problems...

A different recipe for lowerbounds

Can we use already known hardness results?

A different recipe for lowerbounds

Can we use already known hardness results?

- Schoenebeck (2008) and Charikar et al. (2009) show lowerbounds for LP and SDP hierarchies for certain CSPs.

A different recipe for lowerbounds

Can we use already known hardness results?

- Schoenebeck (2008) and Charikar et al. (2009) show lowerbounds for LP and SDP hierarchies for certain CSPs.
- Together with Chan et al. (2013) and Lee et al. (2014) we get unconditional LP and SDP hardness statements for some CSP problems.

A different recipe for lowerbounds

Can we use already known hardness results?

- Schoenebeck (2008) and Charikar et al. (2009) show lowerbounds for LP and SDP hierarchies for certain CSPs.
- Together with Chan et al. (2013) and Lee et al. (2014) we get unconditional LP and SDP hardness statements for some CSP problems.
- Can we come up with a notion of approximation preserving reductions as in complexity theory to harness these results for other problems?

A different recipe for lowerbounds

Can we use already known hardness results?

- Schoenebeck (2008) and Charikar et al. (2009) show lowerbounds for LP and SDP hierarchies for certain CSPs.
- Together with Chan et al. (2013) and Lee et al. (2014) we get unconditional LP and SDP hardness statements for some CSP problems.
- Can we come up with a notion of approximation preserving reductions as in complexity theory to harness these results for other problems?
- Braun et al. (2015) came up with the notion of affine reductions to show for example a $\frac{3}{2}-\varepsilon$ LP inapproximability for VERTEXCOVER by reducing from MAXCUT.

A different recipe for lowerbounds

Can we use already known hardness results?

- Schoenebeck (2008) and Charikar et al. (2009) show lowerbounds for LP and SDP hierarchies for certain CSPs.
- Together with Chan et al. (2013) and Lee et al. (2014) we get unconditional LP and SDP hardness statements for some CSP problems.
- Can we come up with a notion of approximation preserving reductions as in complexity theory to harness these results for other problems?
- Braun et al. (2015) came up with the notion of affine reductions to show for example a $\frac{3}{2}-\varepsilon$ LP inapproximability for VERTEXCOVER by reducing from MaxCut.
- Bazzi et al. (2015) improved this to $2-\varepsilon$ by reducing from 1F-CSP, together with intermediate Sherali-Adams reductions to show hardness of $1 \mathrm{~F}-\mathrm{CSP}$.

Our contribution

- Generalize the reductions from Braun et al. (2015) to drop the dependency on affineness.

Our contribution

- Generalize the reductions from Braun et al. (2015) to drop the dependency on affineness.
- Generalize the reductions to fractional optimization problems such as e.g., SparsestCut.

Our contribution

- Generalize the reductions from Braun et al. (2015) to drop the dependency on affineness.
- Generalize the reductions to fractional optimization problems such as e.g., SparsestCut.
- Use this to prove new LP and SDP hardness results as well as some old ones.

Summary of Results

Problem	Factor	Source	Paradigm
MaxCut	$\frac{15}{16}+\varepsilon$	MAX-3-XOR/0	SDP
SparsestCut, $\mathrm{tw}(\text { supply })=O(1)$	$2-\varepsilon$	MaxCut	LP
SPARSESTCUT, $\mathrm{tw}(\text { supply })=O(1)$	$\frac{16}{15}-\varepsilon$	MaxCut	SDP
BalancedSeparator, $\mathrm{tw}($ demand $)=O(1)$	$\omega(1)$	UniqueGames	LP
IndependentSet	$\omega\left(n^{1-\varepsilon}\right)$	MAX-k-CSP	Lasserre $O\left(n^{\varepsilon}\right)$ rounds
Matching, 3-regular	$1+\varepsilon / n^{2}$	Matching	LP
$\begin{aligned} & 1 \mathrm{~F}-\mathrm{CSP} \\ & Q-\neq-\mathrm{CSP} \end{aligned}$	$\omega(1)$	UnIQUEGAMES	LP

Some comments

Some comments

- The best known algorithmic hardness of MAXCUT is $\frac{16}{17}+\varepsilon$ (assuming $P \neq N P$).

Some comments

- The best known algorithmic hardness of MAXCUT is $\frac{16}{17}+\varepsilon$ (assuming $P \neq N P$).
- Inapproximability of 1F-CSP proves a $2-\varepsilon$ inapproximability for VertexCover.

Some comments

- The best known algorithmic hardness of MAXCUT is $\frac{16}{17}+\varepsilon$ (assuming $P \neq N P$).
- Inapproximability of 1F-CSP proves a $2-\varepsilon$ inapproximability for VertexCover.
- Inapproximability of $Q-\neq-$ CSP proves a $Q-\varepsilon$ inapproximability for Q-regular hypergraph cover.

Some comments

- The best known algorithmic hardness of MAXCUT is $\frac{16}{17}+\varepsilon$ (assuming $P \neq N P$).
- Inapproximability of 1F-CSP proves a $2-\varepsilon$ inapproximability for VertexCover.
- Inapproximability of $Q-\neq-$ CSP proves a $Q-\varepsilon$ inapproximability for Q-regular hypergraph cover.
- Lasserre relaxations are suboptimal for INDEPENDENTSET: there is an LP of linear size with a $2 \sqrt{n}$ approximation factor.

Some comments

- The best known algorithmic hardness of MAXCUT is $\frac{16}{17}+\varepsilon$ (assuming $P \neq N P$).
- Inapproximability of 1F-CSP proves a $2-\varepsilon$ inapproximability for VertexCover.
- Inapproximability of Q - \neq-CSP proves a $Q-\varepsilon$ inapproximability for Q-regular hypergraph cover.
- Lasserre relaxations are suboptimal for INDEPENDENTSET: there is an LP of linear size with a $2 \sqrt{n}$ approximation factor.
- LPs on bounded treewidth graphs is easy: we show the existence of uniform LPs of size $O\left(n^{k}\right)$ for MATCHing, IndependentSet, VertexCover, MaxCut and UniqueGames on graphs of treewidth k.

An abstract view of optimization problems

Definition (Optimization problem)

An optimization problem $\mathcal{P}=(\mathcal{S}, \mathfrak{I}$, val $)$ consists of

- a set \mathfrak{I} of instances,

An abstract view of optimization problems

Definition (Optimization problem)

An optimization problem $\mathcal{P}=(\mathcal{S}, \mathfrak{I}$, val $)$ consists of

- a set \mathfrak{I} of instances,
- a set \mathcal{S} of feasible solutions,

An abstract view of optimization problems

Definition (Optimization problem)

An optimization problem $\mathcal{P}=(\mathcal{S}, \mathfrak{I}$, val $)$ consists of

- a set \mathfrak{I} of instances,
- a set \mathcal{S} of feasible solutions,
- and a real valued objective val: $\mathfrak{I} \times \mathcal{S} \rightarrow \mathbb{R}$.

An abstract view of optimization problems

Definition (Optimization problem)

An optimization problem $\mathcal{P}=(\mathcal{S}, \mathfrak{I}$, val $)$ consists of

- a set \mathfrak{I} of instances,
- a set \mathcal{S} of feasible solutions,
- and a real valued objective val: $\mathfrak{I} \times \mathcal{S} \rightarrow \mathbb{R}$.
- $\operatorname{val}_{\mathcal{I}}(s)$: quality of a solution $s \in \mathcal{S}$ w.r.t instance $\mathcal{I} \in \mathfrak{I}$
$-\operatorname{OPT}(\mathcal{I}):=\min _{s \in \mathcal{S}} \operatorname{val}_{\mathcal{I}}(s)$

Example: VertexCover

Example

Given a graph G, the minimization problem VERTEXCOVER consists of

Example: VertexCover

Example

Given a graph G, the minimization problem VertexCover consists of Instances all induced subgraphs H of G;

Example: VertexCover

Example

Given a graph G, the minimization problem VertexCover consists of Instances all induced subgraphs H of G; Feasible solutions all vertex covers X of G;

Example: VertexCover

Example

Given a graph G, the minimization problem VertexCover consists of Instances all induced subgraphs H of G; Feasible solutions all vertex covers X of G; Measure $\operatorname{val}_{H}(X):=|X \cap V(H)|$.

(C, S)-approximations of optimization problems

How to measure the quality of approximations to a problem $\mathcal{P}=(\mathcal{S}, \mathfrak{I}$, val $)$?

(C, S)-approximations of optimization problems

How to measure the quality of approximations to a problem
$\mathcal{P}=(\mathcal{S}, \mathfrak{I}$, val $)$?

- $C: \mathfrak{I} \rightarrow \mathbb{R}$, called the completeness guarantee
$-S: \mathfrak{I} \rightarrow \mathbb{R}$, called the soundness guarantee
- OPT $(\mathcal{I}) \geq S(\mathcal{I}) \Rightarrow$ optimum over the LP or SDP relaxation is bounded below by $C(\mathcal{I})$.
$-\mathfrak{I}^{\mathcal{S}}:=\{\mathcal{I} \mid \mathcal{I} \in \mathfrak{I}, \operatorname{OPT}(\mathcal{I}) \geq S(\mathcal{I})\}$ is the set of sound instances.
- Approximation ratio: C / S

(C, S)-approximate LP formulation

A linear program $A x \leq b$ with $x \in \mathbb{R}^{r}$ s.t.
Feasible solutions vectors $x^{s} \in \mathbb{R}^{r}$ for every $s \in \mathcal{S}$ satisfying

$$
A x^{s} \leq b
$$

(C, S)-approximate LP formulation

A linear program $A x \leq b$ with $x \in \mathbb{R}^{r}$ s.t.
Feasible solutions vectors $x^{s} \in \mathbb{R}^{r}$ for every $s \in \mathcal{S}$ satisfying

$$
A x^{s} \leq b
$$

Instances as affine functions $w_{\mathcal{I}}: \mathbb{R}^{r} \rightarrow \mathbb{R}$ for all $\mathcal{I} \in \mathfrak{I}^{S}$ s.t.

$$
w_{\mathcal{I}}\left(x^{s}\right)=\operatorname{val}_{\mathcal{I}}(s)
$$

(C, S)-approximate LP formulation

A linear program $A x \leq b$ with $x \in \mathbb{R}^{r}$ s.t.
Feasible solutions vectors $x^{s} \in \mathbb{R}^{r}$ for every $s \in \mathcal{S}$ satisfying

$$
A x^{s} \leq b
$$

Instances as affine functions $w_{\mathcal{I}}: \mathbb{R}^{r} \rightarrow \mathbb{R}$ for all $\mathcal{I} \in \mathfrak{I}^{S}$ s.t.

$$
w_{\mathcal{I}}\left(x^{s}\right)=\operatorname{val}_{\mathcal{I}}(s)
$$

Achieving (C, S) guarantee

$$
\mathcal{I} \in \mathfrak{I}^{S} \Rightarrow \min \left\{w_{\mathcal{I}}(x) \mid A x \leq b\right\} \geq C(\mathcal{I})
$$

(C, S)-approximate LP formulation

A linear program $A x \leq b$ with $x \in \mathbb{R}^{r}$ s.t.
Feasible solutions vectors $x^{s} \in \mathbb{R}^{r}$ for every $s \in \mathcal{S}$ satisfying

$$
A x^{s} \leq b
$$

Instances as affine functions $w_{\mathcal{I}}: \mathbb{R}^{r} \rightarrow \mathbb{R}$ for all $\mathcal{I} \in \mathfrak{I}^{S}$ s.t.

$$
w_{\mathcal{I}}\left(x^{s}\right)=\operatorname{val}_{\mathcal{I}}(s),
$$

Achieving (C, S) guarantee

$$
\mathcal{I} \in \mathfrak{I}^{\mathcal{S}} \Rightarrow \min \left\{w_{\mathcal{I}}(x) \mid A x \leq b\right\} \geq C(\mathcal{I})
$$

- Size of the formulation: number of inequalities in $A x \leq b$
- LP formulation complexity, $\mathrm{fc}_{\mathrm{LP}}(\mathcal{P}, C, S)$: min size of all formulations.

(C, S)-approximate SDP formulation

Semidefinite program $\left\{X \in \mathbb{S}_{+}^{r} \mid \mathcal{A}(X)=b\right\}$ and:
Feasible solutions as vectors $X^{s} \in \mathbb{S}_{+}^{r}$ for all $s \in \mathcal{S}$ satisfying

$$
\mathcal{A}\left(X^{s}\right)=b,
$$

(C, S)-approximate SDP formulation

Semidefinite program $\left\{X \in \mathbb{S}_{+}^{r} \mid \mathcal{A}(X)=b\right\}$ and:
Feasible solutions as vectors $X^{s} \in \mathbb{S}_{+}^{r}$ for all $s \in \mathcal{S}$ satisfying

$$
\mathcal{A}\left(X^{s}\right)=b,
$$

Instances as nonnegative affine functions $w_{\mathcal{I}}: \mathbb{S}^{r} \rightarrow \mathbb{R}$ for all $\mathcal{I} \in \mathcal{I}$ satisfying

$$
w_{\mathcal{I}}\left(X^{s}\right)=\operatorname{val}_{\mathcal{I}}(s),
$$

(C, S)-approximate SDP formulation

Semidefinite program $\left\{X \in \mathbb{S}_{+}^{r} \mid \mathcal{A}(X)=b\right\}$ and:
Feasible solutions as vectors $X^{s} \in \mathbb{S}_{+}^{r}$ for all $s \in \mathcal{S}$ satisfying

$$
\mathcal{A}\left(X^{s}\right)=b,
$$

Instances as nonnegative affine functions $w_{\mathcal{I}}: \mathbb{S}^{r} \rightarrow \mathbb{R}$ for all $\mathcal{I} \in \mathcal{I}$ satisfying

$$
w_{\mathcal{I}}\left(X^{s}\right)=\operatorname{val}_{\mathcal{I}}(s),
$$

Achieving (C, S)-approximation guarantee :

$$
\mathcal{I} \in \mathfrak{I}^{\mathcal{S}} \Rightarrow \min \left\{w_{\mathcal{I}}(X) \mid \mathcal{A}(X)=b\right\} \geq C(\mathcal{I})
$$

(C, S)-approximate SDP formulation

Semidefinite program $\left\{X \in \mathbb{S}_{+}^{r} \mid \mathcal{A}(X)=b\right\}$ and:
Feasible solutions as vectors $X^{s} \in \mathbb{S}_{+}^{r}$ for all $s \in \mathcal{S}$ satisfying

$$
\mathcal{A}\left(X^{s}\right)=b
$$

Instances as nonnegative affine functions $w_{\mathcal{I}}: \mathbb{S}^{r} \rightarrow \mathbb{R}$ for all $\mathcal{I} \in \mathfrak{I}$ satisfying

$$
w_{\mathcal{I}}\left(X^{s}\right)=\operatorname{val}_{\mathcal{I}}(s)
$$

Achieving (C, S)-approximation guarantee :

$$
\mathcal{I} \in \mathfrak{I}^{S} \Rightarrow \min \left\{w_{\mathcal{I}}(X) \mid \mathcal{A}(X)=b\right\} \geq C(\mathcal{I})
$$

- Size of the formulation: r
- SDP formulation complexity, $\mathrm{fc}_{\mathrm{SDP}}(\mathcal{P}, \mathcal{C}, \mathcal{S})$: min size of all formulations.

Example of an LP formulation

Example

Recall the following LP for the VERTEXCOVER problem:

$$
\begin{aligned}
& \min \sum_{i} x_{i} \quad \text { s.t. } \\
& x_{i}+x_{j} \geq 1 \quad \forall\{i, j\} \in E(G) \\
& 1 \geq x_{i} \geq 0
\end{aligned}
$$

Example of an LP formulation

Example

Recall the following LP for the VertexCover problem:

$$
\begin{aligned}
& \min \sum_{i} x_{i} \quad \text { s.t. } \\
& x_{i}+x_{j} \geq 1 \quad \forall\{i, j\} \in E(G) \\
& 1 \geq x_{i} \geq 0
\end{aligned}
$$

- Every vertex cover X of $G \rightarrow \mathbb{1}_{X}$ of the LP
- Every instance H (induced subgraph of G) corresponds to the affine function $\left\langle\mathbb{1}_{H},.\right\rangle$
$-C / S=\frac{1}{2}$ for this LP

Slack matrix

Definition

The (C, S)-approximate slack matrix of an optimization problem \mathcal{P} is the $\mathfrak{I}^{S} \times \mathcal{S}$ matrix $M_{\mathcal{P}, C, S}(\mathcal{I}, s):=\operatorname{val}_{\mathcal{I}}(s)-C(\mathcal{I})$.

Slack matrix

Definition

The (C, S)-approximate slack matrix of an optimization problem \mathcal{P} is the $\mathfrak{I}^{\mathcal{S}} \times \mathcal{S}$ matrix $M_{\mathcal{P}, C, S}(\mathcal{I}, s):=\operatorname{val}_{\mathcal{I}}(s)-C(\mathcal{I})$.

For a sound instance $\mathcal{I} \in \mathfrak{I}^{\mathcal{S}}$, the entry corresponding to solution s measures the "slack" from $C(\mathcal{I})$.

Slack matrix

Definition

The (C, S)-approximate slack matrix of an optimization problem \mathcal{P} is the $\mathfrak{I}^{\mathcal{S}} \times \mathcal{S}$ matrix $M_{\mathcal{P}, C, S}(\mathcal{I}, s):=\operatorname{val}_{\mathcal{I}}(s)-C(\mathcal{I})$.

For a sound instance $\mathcal{I} \in \mathfrak{I}^{S}$, the entry corresponding to solution s measures the "slack" from $C(\mathcal{I})$.

- Nonnegative factorization of size $r: M_{\mathcal{P}, C, S}=\sum_{i=1}^{r} M_{i}, M_{i} \geq 0$ and rk $M_{i}=1$
- PSD factorization of size $r: M_{\mathcal{P}, C, S}(\mathcal{I}, s)=\operatorname{Tr}\left[A_{\mathcal{I}} B_{s}\right], A_{\mathcal{I}}, B_{s} \in \mathbb{S}_{+}^{r}$

Slack matrix

Definition

The (C, S)-approximate slack matrix of an optimization problem \mathcal{P} is the $\mathfrak{I}^{\mathcal{S}} \times \mathcal{S}$ matrix $M_{\mathcal{P}, C, S}(\mathcal{I}, s):=\operatorname{val}_{\mathcal{I}}(s)-C(\mathcal{I})$.

For a sound instance $\mathcal{I} \in \mathfrak{I}^{S}$, the entry corresponding to solution s measures the "slack" from $C(\mathcal{I})$.

- Nonnegative factorization of size $r: M_{\mathcal{P}, C, S}=\sum_{i=1}^{r} M_{i}, M_{i} \geq 0$ and rk $M_{i}=1$
- PSD factorization of size $r: M_{\mathcal{P}, C, S}(\mathcal{I}, s)=\operatorname{Tr}\left[A_{\mathcal{I}} B_{s}\right], A_{\mathcal{I}}, B_{s} \in \mathbb{S}_{+}^{r}$
- Nonnegative rank, rk ${ }_{+} M_{\mathcal{P}, C, S}$: min size of nonnegative factorization of $M_{\mathcal{P}, C, S}$
- PSD rank, $\mathrm{rk}_{\mathrm{psd}} M_{\mathcal{P}, C, s}:$ min size of psd factorization of $M_{\mathcal{P}, C, S}$

Why should we care?

Because of the following well known theorem due to Yannakakis (1988):

Theorem

Let $\mathcal{P}=(\mathcal{S}, \mathfrak{I}$, val) be an optimization problem with completeness guarantee C and soundness guarantee S. Then

$$
\begin{array}{r}
\mathrm{fc}_{\mathrm{LP}}(\mathcal{P}, C, S)=\mathrm{rk}_{+} M_{\mathcal{P}, C, S} \\
\mathrm{fc}_{\mathrm{SDP}}(\mathcal{P}, C, S)=\mathrm{rk}_{\mathrm{psd}} M_{\mathcal{P}, C, S}
\end{array}
$$

Why should we care?

Because of the following well known theorem due to Yannakakis (1988):

Theorem

Let $\mathcal{P}=(\mathcal{S}, \mathfrak{I}$, val) be an optimization problem with completeness guarantee C and soundness guarantee S. Then

$$
\begin{array}{r}
\mathrm{fc}_{\mathrm{LP}}(\mathcal{P}, C, S)=\mathrm{rk}_{+} M_{\mathcal{P}, C, S} \\
\mathrm{fc}_{\mathrm{SDP}}(\mathcal{P}, C, S)=\mathrm{rk}_{\mathrm{psd}} M_{\mathcal{P}, C, S}
\end{array}
$$

Common strategy to bound the formulation complexity is to bound the corresponding ranks by

- Rectangle covering arguments
- Common information
- (Quantum) Communication complexity

Reductions v1.0

Definition (Braun et al. (2015))

A reduction from $\left(\mathcal{P}_{1}, C_{1}, S_{1}\right)$ to ($\mathcal{P}_{2}, C_{2}, S_{2}$) consists of two maps * from $\mathfrak{I}_{1}^{S_{1}} \rightarrow \mathfrak{I}_{2}^{S_{2}}$ and $*: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$ such that

$$
\begin{array}{r}
\operatorname{val}_{\mathcal{I}_{1}}\left(s_{1}\right)=\operatorname{val}_{\mathcal{I}_{1}^{*}}\left(s_{1}^{*}\right)+\mu\left(\mathcal{I}_{1}\right), \\
C_{1}\left(\mathcal{I}_{1}\right) \leq C_{2}\left(\mathcal{I}_{1}^{*}\right)+\mu\left(\mathcal{I}_{1}\right)
\end{array}
$$

Reductions v1.0

Definition (Braun et al. (2015))

A reduction from $\left(\mathcal{P}_{1}, C_{1}, S_{1}\right)$ to ($\mathcal{P}_{2}, C_{2}, S_{2}$) consists of two maps $*$ from $\mathfrak{I}_{1}^{S_{1}} \rightarrow \mathfrak{I}_{2}^{S_{2}}$ and $*: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$ such that

$$
\begin{array}{r}
\operatorname{val}_{\mathcal{I}_{1}}\left(s_{1}\right)=\operatorname{val}_{\mathcal{I}_{1}^{*}}\left(s_{1}^{*}\right)+\mu\left(\mathcal{I}_{1}\right), \\
\quad C_{1}\left(\mathcal{I}_{1}\right) \leq C_{2}\left(\mathcal{I}_{1}^{*}\right)+\mu\left(\mathcal{I}_{1}\right)
\end{array}
$$

- Note the affine relationship between the objective values of the two problems.

Reductions with "distortion"

Definition

A reduction from \mathcal{P}_{1} to \mathcal{P}_{2} consists of

- Two maps from $*: \mathfrak{I}_{1} \rightarrow \mathfrak{I}_{2}$ and $*: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$
- Two nonnegative $\mathfrak{I}_{1} \times \mathcal{S}_{1}$ matrices M_{1} and M_{2}
such that

$$
\operatorname{val}_{\mathcal{I}_{1}}\left(s_{1}\right)-C_{1}\left(\mathcal{I}_{1}\right)=\left(\operatorname{val}_{\mathcal{I}_{1}^{*}}\left(s_{1}^{*}\right)-C_{2}\left(\mathcal{I}_{1}^{*}\right)\right) M_{1}\left(\mathcal{I}_{1}, s_{1}\right)+M_{2}\left(\mathcal{I}_{1}, s_{1}\right)
$$

and OPT $\left(\mathcal{I}_{1}^{*}\right) \geq S_{2}\left(\mathcal{I}_{1}^{*}\right)$ whenever OPT $\left(\mathcal{I}_{1}\right) \geq S_{1}\left(\mathcal{I}_{1}\right)$.

Reductions with "distortion"

Definition

A reduction from \mathcal{P}_{1} to \mathcal{P}_{2} consists of

- Two maps from $*: \mathfrak{I}_{1} \rightarrow \mathfrak{I}_{2}$ and $*: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$
- Two nonnegative $\mathfrak{I}_{1} \times \mathcal{S}_{1}$ matrices M_{1} and M_{2}
such that
$\operatorname{val}_{\mathcal{I}_{1}}\left(s_{1}\right)-C_{1}\left(\mathcal{I}_{1}\right)=\left(\operatorname{val}_{\mathcal{I}_{1}^{*}}\left(s_{1}^{*}\right)-C_{2}\left(\mathcal{I}_{1}^{*}\right)\right) M_{1}\left(\mathcal{I}_{1}, s_{1}\right)+M_{2}\left(\mathcal{I}_{1}, s_{1}\right)$
and OPT $\left(\mathcal{I}_{1}^{*}\right) \geq S_{2}\left(\mathcal{I}_{1}^{*}\right)$ whenever OPT $\left(\mathcal{I}_{1}\right) \geq S_{1}\left(\mathcal{I}_{1}\right)$.
The matrices M_{1} and M_{2}
- encode additional "computation" in the reduction
- can be an arbitrary function of the solutions and instances

The price of distortion

Since there are no free lunches...

Theorem

Let $\left(\mathcal{P}_{1}, C_{1}, S_{1}\right)$ and $\left(\mathcal{P}_{2}, C_{2}, S_{2}\right)$ be two problems with a reduction from \mathcal{P}_{1} to \mathcal{P}_{2}. Then

$$
\begin{aligned}
\mathrm{fc}_{\mathrm{LP}}\left(\mathcal{P}_{1}\right) & \leq \mathrm{rk}_{+}\left(M_{2}\right)+\mathrm{rk}_{+}\left(M_{1}\right)+\mathrm{rk}_{+}\left(M_{1}\right) \cdot \mathrm{fc}_{\mathrm{LP}}\left(\mathcal{P}_{2}\right)+O(1) \\
\mathrm{fc}_{\mathrm{SDP}}\left(\mathcal{P}_{1}\right) & \leq \mathrm{rk}_{\mathrm{psd}}\left(M_{2}\right)+\mathrm{rk}_{\mathrm{psd}}\left(M_{1}\right)+\mathrm{rk}_{\mathrm{psd}}\left(M_{1}\right) \cdot \mathrm{fc}_{\mathrm{SDP}}\left(\mathcal{P}_{2}\right)+O(1),
\end{aligned}
$$

where M_{1} and M_{2} are the matrices in the reduction.

The price of distortion

Since there are no free lunches...

Theorem

Let $\left(\mathcal{P}_{1}, C_{1}, S_{1}\right)$ and $\left(\mathcal{P}_{2}, C_{2}, S_{2}\right)$ be two problems with a reduction from \mathcal{P}_{1} to \mathcal{P}_{2}. Then

$$
\begin{aligned}
\mathrm{fc}_{\mathrm{LP}}\left(\mathcal{P}_{1}\right) & \leq \mathrm{rk}_{+}\left(M_{2}\right)+\mathrm{rk}_{+}\left(M_{1}\right)+\mathrm{rk}_{+}\left(M_{1}\right) \cdot \mathrm{fc}_{\mathrm{LP}}\left(\mathcal{P}_{2}\right)+O(1) \\
\mathrm{fc}_{\mathrm{SDP}}\left(\mathcal{P}_{1}\right) & \leq \mathrm{rk}_{\mathrm{psd}}\left(M_{2}\right)+\mathrm{rk}_{\mathrm{psd}}\left(M_{1}\right)+\mathrm{rk}_{\mathrm{psd}}\left(M_{1}\right) \cdot \mathrm{fc}_{\mathrm{SDP}}\left(\mathcal{P}_{2}\right)+O(1),
\end{aligned}
$$

where M_{1} and M_{2} are the matrices in the reduction.

- Clearly the matrices M_{1} and M_{2} should have low complexity to obtain useful reductions.

Proof Sketch

Reformulate the reduction relationship in terms of matrices:

$$
M_{\mathcal{P}_{1}, C_{1}, S_{1}}=\left(F_{\mathcal{J}} M_{\mathcal{P}_{2}, C_{2}, S_{2}} F_{\mathcal{S}}\right) \circ M_{1}+M_{2}
$$

Proof Sketch

Reformulate the reduction relationship in terms of matrices:

$$
M_{\mathcal{P}_{1}, C_{1}, S_{1}}=\left(F_{\mathcal{J}} M_{\mathcal{P}_{2}, C_{2}, S_{2}} F_{\mathcal{S}}\right) \circ M_{1}+M_{2}
$$

- $F_{\mathfrak{J}}$ is a $\mathfrak{I}_{1} \times \mathfrak{I}_{2}$ matrix, encoding $*: \mathfrak{I}_{1} \rightarrow \mathfrak{I}_{2}$
- $F_{\mathcal{S}}$ is a $\mathcal{S}_{2} \times \mathcal{S}_{1}$ matrix, encoding $*: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$

Proof Sketch

Reformulate the reduction relationship in terms of matrices:

$$
M_{\mathcal{P}_{1}, C_{1}, S_{1}}=\left(F_{\mathcal{J}} M_{\mathcal{P}_{2}, C_{2}, S_{2}} F_{\mathcal{S}}\right) \circ M_{1}+M_{2}
$$

- $F_{\mathfrak{J}}$ is a $\mathfrak{I}_{1} \times \mathfrak{I}_{2}$ matrix, encoding $*: \mathfrak{I}_{1} \rightarrow \mathfrak{I}_{2}$
- $F_{\mathcal{S}}$ is a $\mathcal{S}_{2} \times \mathcal{S}_{1}$ matrix, encoding $*: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$

Further simplify the matrix relationship:

$$
M_{\mathcal{P}_{1}, C_{1}, S_{1}}=\left(F_{\mathfrak{J}}{\widetilde{\mathcal{P}_{2}}, C_{2}, S_{2}}^{F_{\mathcal{S}}}\right) \circ M_{1}+\operatorname{diag}\left(F_{\mathfrak{J}} a\right) \cdot M_{1}+M_{2}
$$

where $M_{\mathcal{P}_{2}, C_{2}, S_{2}}=\widetilde{M}_{\mathcal{P}_{2}, C_{2}, S_{2}}+a \mathbb{1}$ (incurs the $O(1)$ factors) and use the identities

$$
\begin{aligned}
& -\mathrm{rk}_{+}(A \circ B) \leq\left(\mathrm{rk}_{+} A\right) \cdot\left(\mathrm{rk}_{+} B\right) \\
& -\mathrm{rk}_{+}(A B C) \leq \mathrm{rk}_{+} B \\
& -\mathrm{rk}_{+}(A+B) \leq \mathrm{rk}_{+} A+\mathrm{rk}_{+} B
\end{aligned}
$$

Fractional optimization problems

- An optimization problem where the objective $\mathrm{val}_{\mathcal{I}}$ is of the form $\mathrm{val}_{\mathcal{I}}^{n} / \mathrm{val}_{\mathcal{I}}^{d}$.
- Efficient LP based algorithms are used to find an optimal value of a linear combination of $\mathrm{val}_{\mathcal{I}}^{n}$ and $\mathrm{val}_{\mathcal{I}}^{d}$.

Fractional optimization problems

- An optimization problem where the objective $\mathrm{val}_{\mathcal{I}}$ is of the form $\operatorname{val}_{\mathcal{I}}^{n} / \operatorname{val}_{\mathcal{I}}^{d}$.
- Efficient LP based algorithms are used to find an optimal value of a linear combination of $\mathrm{val}_{\mathcal{I}}^{n}$ and $\mathrm{val}_{\mathcal{I}}^{d}$.

Example

The SparsestCut problem of
$-c: E\left(K_{n}\right) \rightarrow \mathbb{R}_{\geq 0}$, called the capacity function

- $d: E\left(K_{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ called the demand function

The objective function for a cut s is to minimize $\frac{\sum_{i \in s, j \notin s} c(i, j)}{\sum_{i \in s, j \notin s} d(i, j)}$.

LP formulation for a fractional problem

A linear program $A x \leq b$ with $x \in \mathbb{R}^{r}$ s.t.:
Feasible solutions as vectors $x^{s} \in \mathbb{R}^{r}$ for every $s \in \mathcal{S}$ satisfying

$$
A x^{s} \leq b \quad \text { for all } s \in \mathcal{S}
$$

LP formulation for a fractional problem

A linear program $A x \leq b$ with $x \in \mathbb{R}^{r}$ s.t.:
Feasible solutions as vectors $x^{s} \in \mathbb{R}^{r}$ for every $s \in \mathcal{S}$ satisfying

$$
A x^{s} \leq b \quad \text { for all } s \in \mathcal{S},
$$

Instances as a pair of affine functions $w_{\mathcal{I}}^{n}, w_{\mathcal{I}}^{d}: \mathbb{R}^{r} \rightarrow \mathbb{R}$ for all $\mathcal{I} \in \mathfrak{I}^{S}$ satisfying

$$
\begin{aligned}
& w_{I}^{n}\left(x^{s}\right)=\operatorname{val}_{I}^{n}(s) \\
& w_{I}^{d}\left(x^{s}\right)=\operatorname{val}_{I}^{d}(s)
\end{aligned}
$$

LP formulation for a fractional problem

A linear program $A x \leq b$ with $x \in \mathbb{R}^{r}$ s.t.:
Feasible solutions as vectors $x^{s} \in \mathbb{R}^{r}$ for every $s \in \mathcal{S}$ satisfying

$$
A x^{s} \leq b \quad \text { for all } s \in \mathcal{S},
$$

Instances as a pair of affine functions $w_{\mathcal{I}}^{n}, w_{\mathcal{I}}^{d}: \mathbb{R}^{r} \rightarrow \mathbb{R}$ for all $\mathcal{I} \in \mathfrak{I}^{S}$ satisfying

$$
\begin{aligned}
& w_{I}^{n}\left(x^{s}\right)=\operatorname{val}_{I}^{n}(s) \\
& w_{I}^{d}\left(x^{s}\right)=\operatorname{val}_{I}^{d}(s)
\end{aligned}
$$

Achieving (C, S) approximation guarantee If $\mathcal{I} \in \mathfrak{I}^{S}$

$$
A x \leq b \Rightarrow\left\{\begin{array}{l}
w_{\mathcal{I}}^{d}(x) \geq 0 \\
w_{\mathcal{I}}^{n}(x) \geq C(\mathcal{I}) w_{\mathcal{I}}^{d}(x)
\end{array}\right.
$$

Example of an LP formulation for a fractional problem

Example

A common LP relaxation for the SPARSESTCUT problem with capacity function c and demand function d is the following

$$
\begin{aligned}
& \min \sum_{i, j} c(i, j) x_{i j} \\
& \sum_{i, j} d(i, j) x_{i j} \geq \alpha \sum_{i, j} d(i, j) \\
& 1 \geq x_{i j} \geq 0
\end{aligned}
$$

Example of an LP formulation for a fractional problem

Example

A common LP relaxation for the SPARSESTCUT problem with capacity function c and demand function d is the following

$$
\begin{aligned}
& \min \sum_{i, j} c(i, j) x_{i j} \\
& \sum_{i, j} d(i, j) x_{i j} \geq \alpha \sum_{i, j} d(i, j) \\
& 1 \geq x_{i j} \geq 0
\end{aligned}
$$

- This is the LP used by Gupta et al. (2013); the value of α is found by binary search.

Slack matrix for fractional optimization problems

Definition

The (C, S)-approximate slack matrix for a fractional optimization problem \mathcal{P} is the $2 \mathfrak{I}^{S} \times \mathcal{S}$ matrix of the form

$$
M_{\mathcal{P}, C, S}=\left[\begin{array}{l}
M_{\mathcal{P}, C, S}^{(d)} \\
M_{\mathcal{P}, C, S}^{(h)}
\end{array}\right]
$$

where $M_{\mathcal{P}, C, S}^{(d)}, M_{\mathcal{P}, C, S}^{(n)}$ are nonnegative $\mathfrak{I}^{\mathcal{S}} \times \mathcal{S}$ matrices with entries

$$
\begin{aligned}
& M_{\mathcal{P}, C, S}^{(d)}(\mathcal{I}, s):=\operatorname{val}_{\mathcal{I}}^{d}(s) \\
& M_{\mathcal{P}, C, S}^{(n)}(\mathcal{I}, s):=\operatorname{val}_{\mathcal{I}}^{n}(s)-C(\mathcal{I}) \operatorname{val}_{\mathcal{I}}^{d}(s) .
\end{aligned}
$$

Reductions between fractional problems

Definition

A reduction from \mathcal{P}_{1} to \mathcal{P}_{2} consists of

- Two maps $*: \mathfrak{I}_{1} \rightarrow \mathfrak{I}_{2}$ and $*: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$
- Four nonnegative $\mathfrak{I}_{1} \times \mathcal{S}_{1}$ matrices $M_{1}^{(n)}, M_{1}^{(d)}, M_{2}^{(n)}, M_{2}^{(d)}$ such that

$$
\begin{aligned}
M_{\mathcal{P}_{1}, C_{1}, \mathcal{S}_{1}}^{(n)}\left(\mathcal{I}_{1}, S_{1}\right) & =M_{\mathcal{P}_{2}, C_{2}, S_{2}}^{(n)}\left(\mathcal{I}_{1}^{*}, S_{1}^{*}\right) M_{1}^{(n)}\left(\mathcal{I}_{1}, s_{1}\right)+M_{2}^{(n)}\left(\mathcal{I}_{1}, s_{1}\right), \\
\operatorname{val}_{\mathcal{I}_{1}}^{d}\left(s_{1}\right) & =\operatorname{val}_{\mathcal{I}_{1}^{*}}^{d}\left(s_{1}^{*}\right) M_{1}^{(d)}\left(\mathcal{I}_{1}, S_{1}\right)+M_{2}^{(d)}\left(\mathcal{I}_{2}, S_{2}\right), \\
\operatorname{OPT}\left(\mathcal{I}_{1}\right) \geq S_{1}\left(\mathcal{I}_{1}\right) & \Rightarrow \operatorname{OPT}\left(\mathcal{I}_{1}^{*}\right) \geq S_{2}\left(\mathcal{I}_{1}^{*}\right)
\end{aligned}
$$

Reductions between fractional problems

Definition

A reduction from \mathcal{P}_{1} to \mathcal{P}_{2} consists of

- Two maps $*: \mathfrak{I}_{1} \rightarrow \mathfrak{I}_{2}$ and $*: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$
- Four nonnegative $\mathfrak{I}_{1} \times \mathcal{S}_{1}$ matrices $M_{1}^{(n)}, M_{1}^{(d)}, M_{2}^{(n)}, M_{2}^{(d)}$ such that

$$
\begin{aligned}
M_{\mathcal{P}_{1}, C_{1}, S_{1}}^{(n)}\left(\mathcal{I}_{1}, S_{1}\right) & =M_{\mathcal{P}_{2}, C_{2}, S_{2}}^{(n)}\left(\mathcal{I}_{1}^{*}, S_{1}^{*}\right) M_{1}^{(n)}\left(\mathcal{I}_{1}, s_{1}\right)+M_{2}^{(n)}\left(\mathcal{I}_{1}, s_{1}\right), \\
\operatorname{val}_{\mathcal{I}_{1}}^{d}\left(s_{1}\right) & =\operatorname{val}_{\mathcal{I}_{1}^{*}}^{d}\left(s_{1}^{*}\right) M_{1}^{(d)}\left(\mathcal{I}_{1}, S_{1}\right)+M_{2}^{(d)}\left(\mathcal{I}_{2}, S_{2}\right), \\
\operatorname{OPT}\left(\mathcal{I}_{1}\right) \geq S_{1}\left(\mathcal{I}_{1}\right) & \Rightarrow \operatorname{OPT}\left(\mathcal{I}_{1}^{*}\right) \geq S_{2}\left(\mathcal{I}_{1}^{*}\right)
\end{aligned}
$$

- As before, the matrices $M_{1}^{(n)}, M_{1}^{(d)}, M_{2}^{(n)}, M_{2}^{(d)}$ encode additional "computation" in the reduction.

Price of distortion - Part II

Theorem

Let $\mathcal{P}_{1}, C_{1}, S_{1}$) and $\mathcal{P}_{2}, C_{2}, S_{2}$) be two fractional problems with a reduction from \mathcal{P}_{1} to \mathcal{P}_{2}. Then

$$
\mathrm{fc}_{\mathrm{LP}}\left(\mathcal{P}_{1}\right) \leq \mathrm{rk}_{\mathrm{LP}}\left[\begin{array}{l}
M_{2}^{(n)} \\
M_{2}^{(d)}
\end{array}\right]+\mathrm{rk}_{\mathrm{LP}}\left[\begin{array}{l}
M_{1}^{(n)} \\
M_{1}^{(d)}
\end{array}\right]+\mathrm{rk}_{+}\left[\begin{array}{l}
M_{1}^{(n)} \\
M_{1}^{(d)}
\end{array}\right] \cdot \mathrm{fc}_{\mathrm{LP}}\left(\mathcal{P}_{2}\right)
$$

$$
\mathrm{fc}_{\mathrm{SDP}}\left(\mathcal{P}_{1}\right) \leq \mathrm{rk}_{\mathrm{SDP}}\left[\begin{array}{l}
M_{2}^{(n)} \\
M_{2}^{(d)}
\end{array}\right]+\mathrm{rk}_{\mathrm{SDP}}\left[\begin{array}{l}
M_{1}^{(n)} \\
M_{1}^{(d)}
\end{array}\right]+\mathrm{rk}_{\mathrm{psd}}\left[\begin{array}{l}
M_{1}^{(n)} \\
M_{1}^{(d)}
\end{array}\right] \cdot \mathrm{fc}_{\mathrm{SDP}}\left(\mathcal{P}_{2}\right)
$$

where $M_{1}^{(n)}, M_{2}^{(d)}, M_{2}^{(n)}, M_{2}^{(d)}$ are the matrices in the reduction.

From Sherali-Adams to general LP reductions

Definition
 A one-free bit CSP (1F-CSP) is a CSP where every clause has exactly two satisfying assignments over its free variables.

From Sherali-Adams to general LP reductions

Definition

A one-free bit CSP (1F-CSP) is a CSP where every clause has exactly two satisfying assignments over its free variables.

Theorem

With small numbers $\eta, \varepsilon, \delta>0$ positive integers t, q, Δ we have for any $0<\zeta<1$ and n large enough
$\mathrm{fc}_{\mathrm{LP}}\left(\mathrm{Un}^{2} \mathrm{IQUEGAMES}{ }_{\Delta}(n, q), 1-\zeta, \delta\right)-n \Delta^{t} q^{t+1} \leq$

$$
\mathrm{fc}_{\mathrm{LP}}(1 \mathrm{~F}-\mathrm{CSP},(1-\varepsilon)(1-\zeta t), \eta)
$$

Definition (UNIQUEGAMES $\Delta(n, q)$)

Let n, q and Δ be positive integer parameters. The maximization problem UNIQUEGAMES $\Delta(n, q)$ consists of
instances All edge-weighted Δ-regular bipartite graphs (G, w) with partite sets $\{0\} \times[n]$ and $\{1\} \times[n]$ with every edge $\{i, j\}$ labeled with a permutation $\pi_{i, j}:[q] \rightarrow[q]$ such that $\pi_{i, j}=\pi_{j, i}^{-1}$.
feasible solutions All functions $s:\{0,1\} \times[n] \rightarrow[q]$ called labelings of the vertices.
measure The weighted fraction of correctly labeled edges, i.e., edges $\{i, j\}$ with $s(i)=\pi_{i, j}(s(j))$:

$$
\operatorname{val}_{(G, w)}(s):=\frac{\sum_{\substack{\{i, j\} \in E(G) \\ s(i)=\pi_{i, j}(s(j))}} w(i, j)}{\sum_{\{i, j\} \in E(G)} w(i, j)}
$$

Reducing UniqueGames to 1 F-CSP

Reducing UniqueGames to 1F-CSP

- The variables of the 1F-CSP problem are $\langle v, z\rangle$ for $v \in V(G)$ and $z \in\{-1,1\}^{q}$.

Reducing UniqueGames to 1 F-CSP

- The variables of the 1F-CSP problem are $\langle v, z\rangle$ for $v \in V(G)$ and $z \in\{-1,1\}^{q}$.
- Let $v \in V(G)$ and u_{1}, \ldots, u_{t} adjacent to v.

Reducing UniqueGames to 1F-CSP

- The variables of the 1F-CSP problem are $\langle v, z\rangle$ for $v \in V(G)$ and $z \in\{-1,1\}^{9}$.
- Let $v \in V(G)$ and u_{1}, \ldots, u_{t} adjacent to v.
- There is a clause $C\left(v, u_{1}, \ldots, u_{t}, x, S\right)$ for any $x \in\{-1,1\}^{q}$ and $S \subseteq[q]$ of size $q(1-\varepsilon)$ that is an "approximate local test" of a correct labeling.

Reducing UniqueGames to 1F-CSP

- The variables of the 1F-CSP problem are $\langle v, z\rangle$ for $v \in V(G)$ and $z \in\{-1,1\}^{9}$.
- Let $v \in V(G)$ and u_{1}, \ldots, u_{t} adjacent to v.
- There is a clause $C\left(v, u_{1}, \ldots, u_{t}, x, S\right)$ for any $x \in\{-1,1\}^{q}$ and $S \subseteq[q]$ of size $q(1-\varepsilon)$ that is an "approximate local test" of a correct labeling.
- Feasible solutions are translated via the long code of the labeling s, i.e. $s^{*}(\langle v, z\rangle):=z_{s(v)}$.

Reducing UNIQUEGAMES to 1F-CSP

- The variables of the 1F-CSP problem are $\langle v, z\rangle$ for $v \in V(G)$ and $z \in\{-1,1\}^{q}$.
- Let $v \in V(G)$ and u_{1}, \ldots, u_{t} adjacent to v.
- There is a clause $C\left(v, u_{1}, \ldots, u_{t}, x, S\right)$ for any $x \in\{-1,1\}^{q}$ and $S \subseteq[q]$ of size $q(1-\varepsilon)$ that is an "approximate local test" of a correct labeling.
- Feasible solutions are translated via the long code of the labeling s, i.e. $s^{*}(\langle v, z\rangle):=z_{s(v)}$.
- Define the matrix

$$
\begin{array}{r}
M_{v, u_{1}, \ldots, u_{t}}((G, w, \pi), s):=\mathbb{E}_{\mathbf{x}, \mathbf{S}}\left[C\left(v, u_{1}, \ldots, u_{t}, \mathbf{x}, \mathbf{S}\right)\left[s^{*}\right]\right]- \\
(1-\varepsilon)\left(\sum_{i \in[t]} \chi\left[s(v)=\pi_{v, u_{i}}\left(s\left(u_{i}\right)\right)\right]-t+1\right)
\end{array}
$$

Reducing UniqueGames to 1 F-CSP

- It turns out that the matrix M_{2} in the reduction is

$$
M_{2}((G, w, \pi), s)=\frac{1}{t(1-\varepsilon)} \mathbb{E}\left[M_{\mathbf{v}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{t}}}((G, w, \pi), s)\right]
$$

Reducing UniqueGames to 1 F-CSP

- It turns out that the matrix M_{2} in the reduction is $M_{2}((G, w, \pi), s)=\frac{1}{t(1-\varepsilon)} \mathbb{E}\left[M_{\mathbf{v}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{t}}}((G, w, \pi), s)\right]$
- We show that it has nonnegative rank at most $n \Delta^{t} q^{t+1}$ by "unrolling" the expectation.

Reducing UniqueGames to 1F-CSP

- It turns out that the matrix M_{2} in the reduction is $M_{2}((G, w, \pi), s)=\frac{1}{t(1-\varepsilon)} \mathbb{E}\left[M_{\mathbf{v}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{t}}}((G, w, \pi), s)\right]$
- We show that it has nonnegative rank at most $n \Delta^{t} q^{t+1}$ by "unrolling" the expectation.
- Note that we do not have to argue about Sherali-Adams solutions as in Bazzi et al. (2015); this is a simple LP reduction in our framework.

Reducing UniqueGames to 1F-CSP

- It turns out that the matrix M_{2} in the reduction is $M_{2}((G, w, \pi), s)=\frac{1}{t(1-\varepsilon)} \mathbb{E}\left[M_{\mathbf{v}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{t}}}((G, w, \pi), s)\right]$
- We show that it has nonnegative rank at most $n \Delta^{t} q^{t+1}$ by "unrolling" the expectation.
- Note that we do not have to argue about Sherali-Adams solutions as in Bazzi et al. (2015); this is a simple LP reduction in our framework.
- The base LP hardness of UniqueGames is due to Charikar et al. (2009) and Chan et al. (2013).

Reducing UniQueGames to $Q-\neq$-CSP

Definition

A not equal CSP (Q - $\neq-\mathrm{CSP}$ for short) is a CSP with value set \mathbb{Z}_{Q}, the additive group of integers modulo Q, where every clause has the form $\bigwedge_{i=1}^{k} x_{i} \neq a_{i}$ for some constants a_{i}.

Reducing UniqueGames to Q - \neq-CSP

Definition

A not equal CSP (Q - \neq-CSP for short) is a CSP with value set \mathbb{Z}_{Q}, the additive group of integers modulo Q, where every clause has the form $\bigwedge_{i=1}^{k} x_{i} \neq a_{i}$ for some constants a_{i}.

Theorem

With small numbers $\eta, \varepsilon, \delta>0$ positive integers t, q, Δ, we have for any $0<\zeta<1$ and n large enough

$$
\begin{array}{r}
\mathrm{fc}_{\mathrm{LP}}\left(\mathrm{UNIQUEGAMES}_{\Delta}(n, q), 1-\zeta, \delta\right)-n \Delta^{t} q^{t+1} \leq \\
\mathrm{fc}_{\mathrm{LP}}(Q-\neq-\mathrm{CSP},(1-\varepsilon)(1-1 / q)(1-\zeta t), \eta)
\end{array}
$$

Reducing UniqueGames to Q - \neq-CSP

Definition

A not equal CSP (Q - \neq-CSP for short) is a CSP with value set \mathbb{Z}_{Q}, the additive group of integers modulo Q, where every clause has the form $\bigwedge_{i=1}^{k} x_{i} \neq a_{i}$ for some constants a_{i}.

Theorem

With small numbers $\eta, \varepsilon, \delta>0$ positive integers t, q, Δ, we have for any $0<\zeta<1$ and n large enough

$$
\begin{array}{r}
\mathrm{fc}_{\mathrm{LP}}\left(\operatorname{UNIQUEGAMES}_{\Delta}(n, q), 1-\zeta, \delta\right)-n \Delta^{t} q^{t+1} \leq \\
\quad \mathrm{fc}_{\mathrm{LP}}(Q-\neq-\mathrm{CSP},(1-\varepsilon)(1-1 / q)(1-\zeta t), \eta)
\end{array}
$$

- Proof idea is similar to 1 F -CSP.

Matching over 3-regular graphs has no small LP

Theorem

For any n and $0 \leq \varepsilon<1$, there exists a 3 -regular graph $D_{2 n}$ with $2 n(2 n-1)$ vertices, so that any LP approximating $\operatorname{MATCHING}\left(D_{2 n}\right)$ within $1-\varepsilon /\left|V\left(D_{2 n}\right)\right|$ has $2^{\Omega\left(\sqrt{\left|V\left(D_{2 n}\right)\right| \mid}\right) \text { inequalities. }}$

Matching over 3-regular graphs has no small LP

Theorem

For any n and $0 \leq \varepsilon<1$, there exists a 3-regular graph $D_{2 n}$ with $2 n(2 n-1)$ vertices, so that any LP approximating MATCHING $\left(D_{2 n}\right)$ within $1-\varepsilon /\left|V\left(D_{2 n}\right)\right|$ has $2^{\Omega\left(\sqrt{\left|V\left(D_{2 n}\right)\right|}\right)}$ inequalities.

Proof Idea.

- Reduce from MATCHING $\left(K_{2 n}\right)$ by replacing every vertex by (2n-1)-cycles
- Connect corresponding vertices to each other
- Lift perfect matchings in the "obvious" way

3-regular matchings continued

Figure : The graph $D_{2 n}$ for $n=2$ in the reduction to 3-regular Matching.

- The base hard problem is the perfect matching problem Matching $\left(K_{2 n}\right)$, Rothvoß (2014).

SDP hardness of MAXCUT

Theorem

For any $\delta, \varepsilon>0$ there are infinitely many n such that there is a graph G with n vertices and

$$
\begin{equation*}
\mathrm{fc}_{\mathrm{SDP}}\left(\operatorname{MAXCuT}(G), \frac{4}{5}-\varepsilon, \frac{3}{4}+\delta\right)=n^{\Omega(\log n / \log \log n)} . \tag{1}
\end{equation*}
$$

SDP hardness of MAxCUT

Theorem

For any $\delta, \varepsilon>0$ there are infinitely many n such that there is a graph G with n vertices and

$$
\begin{equation*}
\mathrm{fC}_{\mathrm{SDP}}\left(\operatorname{MAXCUT}(G), \frac{4}{5}-\varepsilon, \frac{3}{4}+\delta\right)=n^{\Omega(\log n / \log \log n)} \tag{1}
\end{equation*}
$$

Proof Idea.

- Reduce from MAX-3-XOR/0, every predicate is of the form $x_{i 1}+x_{i 2}+x_{i 3}(\bmod 2)=0$
- Use the existing reduction by Trevisan et al. (2000).
- Hardness is due to Lee et al. (2014) combined with Schoenebeck (2008)'s Lasserre inapproximability result.

SDP hardness of MAXCUT continued

Figure : The gadget H_{C} for the clause $C=\left(x_{i}+x_{j}+x_{k}=0\right)$ in the reduction from MAX-3-XOR/0 to MAXCUT. Solid vertices are shared by gadgets, the empty ones are local to the gadget.

Hardness of SparsestCut

Theorem

For any $\varepsilon \in(0,1)$ there are $\eta_{L P}>0$ and $\eta_{S D P}>0$ such that for every large enough n the following hold
$\mathrm{fC}_{\text {LP }}\left(\operatorname{SPARSESTCUT}, \eta_{L P}(1+\varepsilon), \eta_{L P}(2-\varepsilon)\right) \geq n^{\Omega\left(\frac{\log n}{\log \log n}\right)}$,
$\mathrm{fc}_{\text {SDP }}\left(\right.$ SPARSESTCUT, $\left.\eta_{S D P}\left(1+\frac{4 \varepsilon}{5}\right), \eta_{S D P}\left(\frac{16}{15}-\varepsilon\right)\right) \geq n^{\Omega\left(\frac{\log n}{\log \log n}\right)}$.
even if the supply graph has treewidth 2.

Hardness of SparsestCut

Theorem

For any $\varepsilon \in(0,1)$ there are $\eta_{L P}>0$ and $\eta_{S D P}>0$ such that for every large enough n the following hold

$$
\mathrm{fC}_{\mathrm{LP}}\left(\operatorname{SPARSESTCUT}, \eta_{L P}(1+\varepsilon), \eta_{L P}(2-\varepsilon)\right) \geq n^{\Omega\left(\frac{\log n}{\log \log n}\right)}
$$

$\mathrm{fc}_{\text {SDP }}\left(\right.$ SPARSESTCUT, $\left.\eta_{S D P}\left(1+\frac{4 \varepsilon}{5}\right), \eta_{S D P}\left(\frac{16}{15}-\varepsilon\right)\right) \geq n^{\Omega\left(\frac{\log n}{\log \log n}\right)}$. even if the supply graph has treewidth 2.

Proof Idea.

- Use the reduction from MAXCUT due to Gupta et al. (2013) using the fractional reduction framework.

Hardness of SparsestCut

Theorem

For any $\varepsilon \in(0,1)$ there are $\eta_{L P}>0$ and $\eta_{S D P}>0$ such that for every large enough n the following hold

$$
\mathrm{fC}_{\mathrm{LP}}\left(\operatorname{SPARSESTCUT}, \eta_{L P}(1+\varepsilon), \eta_{L P}(2-\varepsilon)\right) \geq n^{\Omega\left(\frac{\log n}{\log \log n}\right)}
$$

$\mathrm{fc}_{\text {SDP }}\left(\right.$ SPARSESTCUT, $\left.\eta_{S D P}\left(1+\frac{4 \varepsilon}{5}\right), \eta_{S D P}\left(\frac{16}{15}-\varepsilon\right)\right) \geq n^{\Omega\left(\frac{\log n}{\log \log n}\right)}$. even if the supply graph has treewidth 2.

Proof Idea.

- Use the reduction from MAXCUT due to Gupta et al. (2013) using the fractional reduction framework.
- Base LP hardness of MAxCut is due to Chan et al. (2013).

Lasserre is suboptimal for INDEPENDENTSET

Theorem

For any small enough $\gamma>0$ there are infinitely many n, such that there is a graph G with n vertices with the largest independent set of G having size $\alpha(G)=O\left(n^{\gamma}\right)$ but there is a $\Omega\left(n^{\gamma}\right)$-round Lasserre solution of size $\Theta(n)$, i.e., the integrality gap is $n^{1-\gamma}$. However $\mathrm{fc}_{\mathrm{LP}}(\operatorname{INDEPENDENTSET}(G), 2 \sqrt{n}) \leq 3 n+1$.

Lasserre is suboptimal for INDEPENDENTSET

Theorem

For any small enough $\gamma>0$ there are infinitely many n, such that there is a graph G with n vertices with the largest independent set of G having size $\alpha(G)=O\left(n^{\gamma}\right)$ but there is a $\Omega\left(n^{\gamma}\right)$-round Lasserre solution of size $\Theta(n)$, i.e., the integrality gap is $n^{1-\gamma}$. However $\mathrm{fc}_{\mathrm{LP}}(\operatorname{INDEPENDENTSET}(G), 2 \sqrt{n}) \leq 3 n+1$.

Proof Idea.

- Use the reduction mechanism within a Lasserre/SoS framework by reducing MAX- $k-C S P$ to INDEPENDENTSET.

Lasserre is suboptimal for INDEPENDENTSET

Theorem

For any small enough $\gamma>0$ there are infinitely many n, such that there is a graph G with n vertices with the largest independent set of G having size $\alpha(G)=O\left(n^{\gamma}\right)$ but there is a $\Omega\left(n^{\gamma}\right)$-round Lasserre solution of size $\Theta(n)$, i.e., the integrality gap is $n^{1-\gamma}$. However $\mathrm{fC}_{\mathrm{LP}}(\operatorname{INDEPENDENTSET}(G), 2 \sqrt{n}) \leq 3 n+1$.

Proof Idea.

- Use the reduction mechanism within a Lasserre/SoS framework by reducing MAX- k-CSP to INDEPENDENTSET.
- The reduction is a simple conflict graph over the partial assignments.

Lasserre is suboptimal for INDEPENDENTSET

Theorem

For any small enough $\gamma>0$ there are infinitely many n, such that there is a graph G with n vertices with the largest independent set of G having size $\alpha(G)=O\left(n^{\gamma}\right)$ but there is a $\Omega\left(n^{\gamma}\right)$-round Lasserre solution of size $\Theta(n)$, i.e., the integrality gap is $n^{1-\gamma}$. However ff ${ }_{\text {LP }}(\operatorname{INDEPENDENTSET}(G), 2 \sqrt{n}) \leq 3 n+1$.

Proof Idea.

- Use the reduction mechanism within a Lasserre/SoS framework by reducing MAX- k-CSP to IndEPENDENTSET.
- The reduction is a simple conflict graph over the partial assignments.
- The SoS/Lasserre integrality gap for MAX-k-CSP is due to Bhaskara et al. (2012).

BALANCEDSEPARATOR cannot be approximated to any constant factor by a LP

Definition

The BalancedSeparator is similar to the SparsestCut cut problem. There are two functions $c: E\left(K_{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ (capacity) and $d: E\left(K_{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ (demand). Goal is to minimize the capacity of all cuts that are "balanced", i.e. cut atleast $\frac{1}{4}$ of total demand.

BALANCEDSEPARATOR cannot be approximated to any constant factor by a LP

Definition

The BalancedSeparator is similar to the SparsestCut cut problem. There are two functions $c: E\left(K_{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ (capacity) and $d: E\left(K_{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ (demand). Goal is to minimize the capacity of all cuts that are "balanced", i.e. cut atleast $\frac{1}{4}$ of total demand.

Theorem

For any constant $c_{1} \geq 1$ there is another constant $c_{2} \geq 1$ such that for all n there is a demand function d: $E\left(K_{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ satisfying $\mathrm{tw}\left([n]_{d}\right) \leq c_{2}$ so that BALANCEDSEPARATOR (n, d) is LP-hard with an inapproximability factor of c_{1}.

BALANCEDSEPARATOR cannot be approximated to any constant factor by a LP

Definition

The BalancedSeparator is similar to the SparsestCut cut problem. There are two functions $c: E\left(K_{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ (capacity) and $d: E\left(K_{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ (demand). Goal is to minimize the capacity of all cuts that are "balanced", i.e. cut atleast $\frac{1}{4}$ of total demand.

Theorem

For any constant $c_{1} \geq 1$ there is another constant $c_{2} \geq 1$ such that for all n there is a demand function d: $E\left(K_{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ satisfying $\operatorname{tw}\left([n]_{d}\right) \leq c_{2}$ so that $\operatorname{BALANCEDSEPARATOR}(n, d)$ is LP-hard with an inapproximability factor of c_{1}.

- Reduce from UniqueGames using the long code test of Khot and Vishnoi (2015).

Bounded treewidth graphs are LP-easy

Recall the definition of treewidth:

Definition

A tree decomposition of a graph G is a tree T together with a vertex set of G called bag $B_{t} \subseteq V(G)$ for every node t of T, satisfying the following conditions:

$$
-V(G)=\bigcup_{t \in V(T)} B_{t}
$$

- For every adjacent vertices u, v of G there is a bag B_{t} containing both u and v
- For all nodes t_{1}, t_{2}, t of T with t lying between t_{1} and t_{2} (i.e., t is on the unique path connecting t_{1} and t_{2}) we have $B_{t_{1}} \cap B_{t_{2}} \subseteq B_{t}$
The width of the tree decomposition is $\max _{t \in V(T)}\left|B_{t}\right|-1$. The treewidth $\mathrm{tw}(G)$ of G is the minimum width of its tree decompositions.

Small uniform LPs for bounded treewidth problems

- For a class of problems we call admissible, there is an LP of size $O\left(n^{k}\right)$ if the underlying graph has treewidth k.

Small uniform LPs for bounded treewidth problems

- For a class of problems we call admissible, there is an LP of size $O\left(n^{k}\right)$ if the underlying graph has treewidth k.
- Admissible problems are those that allow local partial solutions to be patched together in a global way in a precise manner.

Small uniform LPs for bounded treewidth problems

- For a class of problems we call admissible, there is an LP of size $O\left(n^{k}\right)$ if the underlying graph has treewidth k.
- Admissible problems are those that allow local partial solutions to be patched together in a global way in a precise manner.
- The LP is similar to the Sherali-Adams hierarchy, and is equivalent if the problem is a CSP.

Small uniform LPs for bounded treewidth problems

- For a class of problems we call admissible, there is an LP of size $O\left(n^{k}\right)$ if the underlying graph has treewidth k.
- Admissible problems are those that allow local partial solutions to be patched together in a global way in a precise manner.
- The LP is similar to the Sherali-Adams hierarchy, and is equivalent if the problem is a CSP.
- Matching, VertexCover, IndependentSet and CSPs such as MAXCUT and UniqueGames are admissible problems.

Open Questions

- Can one use this non-affine reduction framework to show LP/SDP hardness results for more problems?

Open Questions

- Can one use this non-affine reduction framework to show LP/SDP hardness results for more problems?
- Is this the right generalization of approximation preserving reductions, or can this be generalized further?

Open Questions

- Can one use this non-affine reduction framework to show LP/SDP hardness results for more problems?
- Is this the right generalization of approximation preserving reductions, or can this be generalized further?

Thank you for listening!

