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How powerful are Linear and Semidefinite Programs?

Linear Programming (LP)

– a general algorithmic paradigm
– efficient in theory and practice
– large body of approximation algorithms

Semidefinite programming (SDP):

– generalizes linear programming
– also efficient in theory
– covers much of tractable convex optimization
– better approximations for hard problems!
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Approximation algorithms using LPs and SDPs

VERTEXCOVER LP
SETCOVER LP
FACILITYLOCATION LP
MAXCUT SDP
SPARSESTCUT SDP
MAXCSP Sum-of-squares (SDP)
...

Unique Games Conjecture⇒ SDP is optimal algorithm for MAXCSPs
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The state of lowerbounds

– Earliest lowerbound was on the size of a symmetric LP for
TRAVELINGSALESMAN and MATCHING due to Yannakakis (1991).

– Many lowerbounds have focused on specific LP and SDP
relaxations, like the Sherali-Adams and Lasserre/SoS hierarchies.

– We know due to Chan et al. (2013) and Lee et al. (2014) that the
Sherali-Adams and Lasserre hierarchies are optimal for CSPs.

– However the picture isn’t so clear for other classes of problems...
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A different recipe for lowerbounds

Can we use already known hardness results?

– Schoenebeck (2008) and Charikar et al. (2009) show
lowerbounds for LP and SDP hierarchies for certain CSPs.

– Together with Chan et al. (2013) and Lee et al. (2014) we get
unconditional LP and SDP hardness statements for some CSP
problems.

– Can we come up with a notion of approximation preserving
reductions as in complexity theory to harness these results for
other problems?

– Braun et al. (2015) came up with the notion of affine reductions to
show for example a 3

2 − ε LP inapproximability for VERTEXCOVER

by reducing from MAXCUT.
– Bazzi et al. (2015) improved this to 2− ε by reducing from

1F-CSP, together with intermediate Sherali-Adams reductions to
show hardness of 1F-CSP.
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Our contribution

– Generalize the reductions from Braun et al. (2015) to drop the
dependency on affineness.

– Generalize the reductions to fractional optimization problems such
as e.g., SPARSESTCUT.

– Use this to prove new LP and SDP hardness results as well as
some old ones.
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Summary of Results

Problem Factor Source Paradigm

MAXCUT 15
16 + ε MAX-3-XOR/0 SDP

SPARSESTCUT,
tw(supply) = O(1)

2− ε MAXCUT LP

SPARSESTCUT,
tw(supply) = O(1)

16
15 − ε MAXCUT SDP

BALANCEDSEPARATOR,
tw(demand) = O(1)

ω(1) UNIQUEGAMES LP

INDEPENDENTSET ω(n1−ε) MAX-k -CSP
Lasserre

O(nε) rounds

MATCHING, 3-regular 1 + ε/n2 MATCHING LP

1F-CSP
ω(1) UNIQUEGAMES LP

Q- 6=-CSP
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Some comments

– The best known algorithmic hardness of MAXCUT is 16
17 + ε

(assuming P 6= NP).
– Inapproximability of 1F-CSP proves a 2− ε inapproximability for

VERTEXCOVER.
– Inapproximability of Q- 6=-CSP proves a Q− ε inapproximability for

Q-regular hypergraph cover.
– Lasserre relaxations are suboptimal for INDEPENDENTSET: there

is an LP of linear size with a 2
√

n approximation factor.
– LPs on bounded treewidth graphs is easy: we show the existence

of uniform LPs of size O(nk ) for MATCHING, INDEPENDENTSET,
VERTEXCOVER, MAXCUT and UNIQUEGAMES on graphs of
treewidth k .
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An abstract view of optimization problems

Definition (Optimization problem)
An optimization problem P = (S, I, val) consists of

– a set I of instances,

– a set S of feasible solutions,
– and a real valued objective val : I× S → R.

– valI(s): quality of a solution s ∈ S w.r.t instance I ∈ I

– OPT (I) := min
s∈S

valI(s)
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Example: VERTEXCOVER

Example
Given a graph G, the minimization problem VERTEXCOVER consists of

Instances all induced subgraphs H of G;
Feasible solutions all vertex covers X of G;

Measure valH(X ) := |X ∩ V (H)|.
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(C,S)-approximations of optimization problems

How to measure the quality of approximations to a problem
P = (S, I, val)?

– C : I→ R, called the completeness guarantee
– S : I→ R, called the soundness guarantee
– OPT (I) ≥ S(I)⇒ optimum over the LP or SDP relaxation is

bounded below by C(I).
– IS := {I | I ∈ I,OPT (I) ≥ S(I)} is the set of sound instances.
– Approximation ratio: C/S
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(C,S)-approximate LP formulation

A linear program Ax ≤ b with x ∈ Rr s.t.

Feasible solutions vectors xs ∈ Rr for every s ∈ S satisfying

Axs ≤ b,

Instances as affine functions wI : Rr → R for all I ∈ IS s.t.

wI(xs) = valI(s),

Achieving (C,S) guarantee

I ∈ IS ⇒ min {wI(x) | Ax ≤ b} ≥ C(I)

– Size of the formulation: number of inequalities in Ax ≤ b
– LP formulation complexity, fcLP(P,C,S): min size of all

formulations.
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(C,S)-approximate SDP formulation

Semidefinite program
{

X ∈ Sr
+

∣∣A(X ) = b
}

and:
Feasible solutions as vectors X s ∈ Sr

+ for all s ∈ S satisfying

A(X s) = b,

Instances as nonnegative affine functions wI : Sr → R for all I ∈ I
satisfying

wI(X s) = valI(s),

Achieving (C,S)-approximation guarantee :

I ∈ IS ⇒ min {wI(X ) | A(X ) = b} ≥ C(I)

– Size of the formulation: r
– SDP formulation complexity, fcSDP(P, C,S): min size of all

formulations.
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– SDP formulation complexity, fcSDP(P, C,S): min size of all

formulations.
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Example of an LP formulation

Example
Recall the following LP for the VERTEXCOVER problem:

min
∑

i

xi s.t.

xi + xj ≥ 1 ∀{i , j} ∈ E(G)

1 ≥ xi ≥ 0

– Every vertex cover X of G→ 1X of the LP
– Every instance H (induced subgraph of G) corresponds to the

affine function 〈1H , .〉
– C/S = 1

2 for this LP

Gábor Braun, Sebastian Pokutta, Aurko Roy ( Georgia Tech )Strong reductions for extended formulations
Semidefinite & Matrix Methods in Optimization & Communication Singapore Feb 2, 2016 14

/ 41



Example of an LP formulation

Example
Recall the following LP for the VERTEXCOVER problem:

min
∑

i

xi s.t.

xi + xj ≥ 1 ∀{i , j} ∈ E(G)

1 ≥ xi ≥ 0

– Every vertex cover X of G→ 1X of the LP
– Every instance H (induced subgraph of G) corresponds to the

affine function 〈1H , .〉
– C/S = 1

2 for this LP

Gábor Braun, Sebastian Pokutta, Aurko Roy ( Georgia Tech )Strong reductions for extended formulations
Semidefinite & Matrix Methods in Optimization & Communication Singapore Feb 2, 2016 14

/ 41



Slack matrix

Definition
The (C,S)-approximate slack matrix of an optimization problem P is
the IS × S matrix MP,C,S(I, s) := valI(s)− C(I).

For a sound instance I ∈ IS, the entry corresponding to solution s
measures the “slack” from C(I).

– Nonnegative factorization of size r : MP,C,S =
∑r

i=1 Mi , Mi ≥ 0
and rk Mi = 1

– PSD factorization of size r : MP,C,S(I, s) = Tr[AIBs], AI ,Bs ∈ Sr
+

– Nonnegative rank, rk+ MP,C,S: min size of nonnegative
factorization of MP,C,S

– PSD rank, rkpsd MP,C,S: min size of psd factorization of MP,C,S
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Why should we care?

Because of the following well known theorem due to Yannakakis
(1988):

Theorem
Let P = (S, I, val) be an optimization problem with completeness
guarantee C and soundness guarantee S.Then

fcLP (P,C,S) = rk+ MP,C,S,
fcSDP (P,C,S) = rkpsd MP,C,S.

Common strategy to bound the formulation complexity is to bound the
corresponding ranks by

– Rectangle covering arguments
– Common information
– (Quantum) Communication complexity
– ...
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Reductions v1.0

Definition (Braun et al. (2015))
A reduction from (P1,C1,S1) to (P2,C2,S2) consists of two maps ∗
from IS1

1 → IS2
2 and ∗ : S1 → S2 such that

valI1(s1) = valI∗1 (s∗1) + µ(I1),

C1(I1) ≤ C2(I∗1) + µ(I1)

– Note the affine relationship between the objective values of the
two problems.
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Reductions with “distortion”

Definition
A reduction from P1 to P2 consists of

– Two maps from ∗ : I1 → I2 and ∗ : S1 → S2

– Two nonnegative I1 × S1 matrices M1 and M2

such that

valI1(s1)− C1(I1) =
(

valI∗1 (s∗1)− C2(I∗1)
)

M1(I1, s1) + M2(I1, s1)

and OPT
(
I∗1
)
≥ S2(I∗1) whenever OPT (I1) ≥ S1(I1).

The matrices M1 and M2

– encode additional “computation” in the reduction
– can be an arbitrary function of the solutions and instances
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The price of distortion

Since there are no free lunches...

Theorem
Let (P1,C1,S1) and (P2,C2,S2) be two problems with a reduction from
P1 to P2. Then

fcLP(P1) ≤ rk+(M2) + rk+(M1) + rk+(M1) · fcLP(P2) + O(1),

fcSDP(P1) ≤ rkpsd(M2) + rkpsd(M1) + rkpsd(M1) · fcSDP(P2) + O(1),

where M1 and M2 are the matrices in the reduction.

– Clearly the matrices M1 and M2 should have low complexity to
obtain useful reductions.
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Proof Sketch

Reformulate the reduction relationship in terms of matrices:

MP1,C1,S1 =
(
FIMP2,C2,S2FS

)
◦M1 + M2

– FI is a I1 × I2 matrix, encoding ∗ : I1 → I2

– FS is a S2 × S1 matrix, encoding ∗ : S1 → S2

Further simplify the matrix relationship:

MP1,C1,S1 =
(

FIM̃P2,C2,S2FS
)
◦M1 + diag(FIa) ·M1 + M2

where MP2,C2,S2 = M̃P2,C2,S2 + a1 (incurs the O(1) factors) and use the
identities

– rk+(A ◦ B) ≤ (rk+ A) · (rk+ B )
– rk+(ABC) ≤ rk+ B
– rk+(A + B) ≤ rk+ A + rk+ B
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Fractional optimization problems

– An optimization problem where the objective valI is of the form
valnI / valdI .

– Efficient LP based algorithms are used to find an optimal value of
a linear combination of valnI and valdI .

Example
The SPARSESTCUT problem of

– c : E(Kn)→ R≥0, called the capacity function
– d : E(Kn)→ R≥0 called the demand function

The objective function for a cut s is to minimize
∑

i∈s,j /∈s c(i,j)∑
i∈s,j /∈s d(i,j) .
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LP formulation for a fractional problem

A linear program Ax ≤ b with x ∈ Rr s.t.:
Feasible solutions as vectors xs ∈ Rr for every s ∈ S satisfying

Axs ≤ b for all s ∈ S,

Instances as a pair of affine functions wn
I ,w

d
I : Rr → R for all I ∈ IS

satisfying

wn
I (xs) = valnI(s)

wd
I (xs) = valdI(s)

Achieving (C,S) approximation guarantee If I ∈ IS

Ax ≤ b ⇒

{
wd
I (x) ≥ 0

wn
I (x) ≥ C(I)wd

I (x)
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Example of an LP formulation for a fractional problem

Example
A common LP relaxation for the SPARSESTCUT problem with capacity
function c and demand function d is the following

min
∑
i,j

c(i , j)xij s.t.

∑
i,j

d(i , j)xij ≥ α
∑
i,j

d(i , j)

1 ≥ xij ≥ 0

– This is the LP used by Gupta et al. (2013); the value of α is found
by binary search.
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Slack matrix for fractional optimization problems

Definition
The (C,S)-approximate slack matrix for a fractional optimization
problem P is the 2IS × S matrix of the form

MP,C,S =

[
M(d)
P,C,S

M(n)
P,C,S

]

where M(d)
P,C,S,M

(n)
P,C,S are nonnegative IS × S matrices with entries

M(d)
P,C,S(I, s) := valdI(s)

M(n)
P,C,S(I, s) := valnI(s)− C(I) valdI(s).
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Reductions between fractional problems

Definition
A reduction from P1 to P2 consists of

– Two maps ∗ : I1 → I2 and ∗ : S1 → S2

– Four nonnegative I1 × S1 matrices M(n)
1 ,M(d)

1 ,M(n)
2 ,M(d)

2

such that

M(n)
P1,C1,S1

(I1,S1) = M(n)
P2,C2,S2

(I∗1 ,S∗1)M(n)
1 (I1, s1) + M(n)

2 (I1, s1),

valdI1
(s1) = valdI∗1 (s∗1)M(d)

1 (I1,S1) + M(d)
2 (I2,S2),

OPT (I1) ≥ S1(I1)⇒ OPT (I∗1) ≥ S2(I∗1)

– As before, the matrices M(n)
1 ,M(d)

1 ,M(n)
2 ,M(d)

2 encode additional
“computation” in the reduction.
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Price of distortion - Part II

Theorem
Let P1,C1,S1) and P2,C2,S2) be two fractional problems with a
reduction from P1 to P2. Then

fcLP(P1) ≤ rkLP

[
M(n)

2
M(d)

2

]
+ rkLP

[
M(n)

1
M(d)

1

]
+ rk+

[
M(n)

1
M(d)

1

]
· fcLP(P2),

fcSDP(P1) ≤ rkSDP

[
M(n)

2
M(d)

2

]
+ rkSDP

[
M(n)

1
M(d)

1

]
+ rkpsd

[
M(n)

1
M(d)

1

]
· fcSDP(P2),

where M(n)
1 ,M(d)

2 ,M(n)
2 ,M(d)

2 are the matrices in the reduction.
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From Sherali-Adams to general LP reductions

Definition
A one-free bit CSP (1F-CSP) is a CSP where every clause has
exactly two satisfying assignments over its free variables.

Theorem
With small numbers η, ε, δ > 0 positive integers t, q, ∆ we have for any
0 < ζ < 1 and n large enough

fcLP(UNIQUEGAMES∆(n,q),1− ζ, δ)− n∆tqt+1 ≤
fcLP(1F-CSP, (1− ε)(1− ζt), η)
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Definition (UNIQUEGAMES∆(n,q))
Let n, q and ∆ be positive integer parameters. The maximization
problem UNIQUEGAMES∆(n,q) consists of

instances All edge-weighted ∆-regular bipartite graphs (G,w) with
partite sets {0} × [n] and {1} × [n] with every edge {i , j}
labeled with a permutation πi,j : [q]→ [q] such that
πi,j = π−1

j,i .
feasible solutions All functions s : {0,1} × [n]→ [q] called labelings of

the vertices.
measure The weighted fraction of correctly labeled edges, i.e.,

edges {i , j} with s(i) = πi,j(s(j)):

val(G,w)(s) :=

∑
{i,j}∈E(G)

s(i)=πi,j (s(j))

w(i , j)∑
{i,j}∈E(G) w(i , j)
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Reducing UNIQUEGAMES to 1F-CSP

– The variables of the 1F-CSP problem are 〈v , z〉 for v ∈ V (G) and
z ∈ {−1,1}q.

– Let v ∈ V (G) and u1, . . . ,ut adjacent to v .
– There is a clause C(v ,u1, . . . ,ut , x ,S) for any x ∈ {−1,1}q and

S ⊆ [q] of size q(1− ε) that is an “approximate local test” of a
correct labeling.

– Feasible solutions are translated via the long code of the labeling
s, i.e. s∗(〈v , z〉) := zs(v).

– Define the matrix

Mv ,u1,...,ut ((G,w , π), s) := Ex,S [C(v ,u1, . . . ,ut ,x,S)[s∗]]−

(1− ε)

∑
i∈[t]

χ[s(v) = πv ,ui (s(ui))]− t + 1


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Reducing UNIQUEGAMES to 1F-CSP

– It turns out that the matrix M2 in the reduction is
M2((G,w , π), s) = 1

t(1−ε) E [Mv,u1,...,ut((G,w , π), s)]

– We show that it has nonnegative rank at most n∆tqt+1 by
“unrolling” the expectation.

– Note that we do not have to argue about Sherali-Adams solutions
as in Bazzi et al. (2015); this is a simple LP reduction in our
framework.

– The base LP hardness of UNIQUEGAMES is due to Charikar et al.
(2009) and Chan et al. (2013).
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Reducing UNIQUEGAMES to Q- 6=-CSP

Definition
A not equal CSP (Q- 6=-CSP for short) is a CSP with value set ZQ, the
additive group of integers modulo Q, where every clause has the form∧k

i=1 xi 6= ai for some constants ai .

Theorem
With small numbers η, ε, δ > 0 positive integers t, q, ∆, we have for
any 0 < ζ < 1 and n large enough

fcLP(UNIQUEGAMES∆(n,q),1− ζ, δ)− n∆tqt+1 ≤
fcLP(Q- 6=-CSP, (1− ε)(1− 1/q)(1− ζt), η)

– Proof idea is similar to 1F-CSP.
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Matching over 3-regular graphs has no small LP

Theorem
For any n and 0 ≤ ε < 1, there exists a 3-regular graph D2n with
2n(2n − 1) vertices, so that any LP approximating MATCHING(D2n)

within 1− ε/ |V (D2n)| has 2Ω(
√
|V (D2n)|) inequalities.

Proof Idea.
– Reduce from MATCHING(K2n) by replacing every vertex by

(2n − 1)-cycles
– Connect corresponding vertices to each other
– Lift perfect matchings in the “obvious” way
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3-regular matchings continued

Figure : The graph D2n for n = 2 in the reduction to 3-regular Matching.

– The base hard problem is the perfect matching problem
MATCHING(K2n), Rothvoß (2014).
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SDP hardness of MAXCUT

Theorem
For any δ, ε > 0 there are infinitely many n such that there is a graph G
with n vertices and

fcSDP

(
MAXCUT(G),

4
5
− ε, 3

4
+ δ

)
= nΩ(log n/ log log n). (1)

Proof Idea.
– Reduce from MAX-3-XOR/0, every predicate is of the form

xi1 + xi2 + xi3 (mod 2) = 0
– Use the existing reduction by Trevisan et al. (2000).
– Hardness is due to Lee et al. (2014) combined with Schoenebeck

(2008)’s Lasserre inapproximability result.
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SDP hardness of MAXCUT continued

0

xi

xj

xk

Figure : The gadget HC for the clause C = (xi + xj + xk = 0) in the reduction
from MAX-3-XOR/0 to MAXCUT. Solid vertices are shared by gadgets, the
empty ones are local to the gadget.
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Hardness of SPARSESTCUT

Theorem
For any ε ∈ (0,1) there are ηLP > 0 and ηSDP > 0 such that for every
large enough n the following hold

fcLP (SPARSESTCUT, ηLP(1 + ε), ηLP (2− ε)) ≥ nΩ
(

log n
log log n

)
,

fcSDP

(
SPARSESTCUT, ηSDP

(
1 +

4ε
5

)
, ηSDP

(
16
15
− ε
))
≥ nΩ

(
log n

log log n

)
.

even if the supply graph has treewidth 2.

Proof Idea.
– Use the reduction from MAXCUT due to Gupta et al. (2013) using

the fractional reduction framework.
– Base LP hardness of MAXCUT is due to Chan et al. (2013).
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Lasserre is suboptimal for INDEPENDENTSET

Theorem
For any small enough γ > 0 there are infinitely many n, such that there
is a graph G with n vertices with the largest independent set of G
having size α(G) = O(nγ) but there is a Ω(nγ)-round Lasserre solution
of size Θ(n), i.e., the integrality gap is n1−γ . However
fcLP(INDEPENDENTSET(G),2

√
n) ≤ 3n + 1.

Proof Idea.
– Use the reduction mechanism within a Lasserre/SoS framework

by reducing MAX-k -CSP to INDEPENDENTSET.
– The reduction is a simple conflict graph over the partial

assignments.
– The SoS/Lasserre integrality gap for MAX-k -CSP is due to

Bhaskara et al. (2012).
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BALANCEDSEPARATOR cannot be approximated to any
constant factor by a LP

Definition
The BALANCEDSEPARATOR is similar to the SPARSESTCUT cut
problem. There are two functions c : E(Kn)→ R≥0 (capacity) and
d : E(Kn)→ R≥0 (demand). Goal is to minimize the capacity of all cuts
that are “balanced“, i.e. cut atleast 1

4 of total demand.

Theorem
For any constant c1 ≥ 1 there is another constant c2 ≥ 1 such that for
all n there is a demand function d : E(Kn)→ R≥0 satisfying
tw([n]d ) ≤ c2 so that BALANCEDSEPARATOR(n, d ) is LP-hard with an
inapproximability factor of c1.

– Reduce from UNIQUEGAMES using the long code test of Khot and
Vishnoi (2015).
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Bounded treewidth graphs are LP-easy

Recall the definition of treewidth:

Definition
A tree decomposition of a graph G is a tree T together with a vertex
set of G called bag Bt ⊆ V (G) for every node t of T , satisfying the
following conditions:

– V (G) =
⋃

t∈V (T ) Bt

– For every adjacent vertices u, v of G there is a bag Bt containing
both u and v

– For all nodes t1, t2, t of T with t lying between t1 and t2 (i.e., t is on
the unique path connecting t1 and t2) we have Bt1 ∩ Bt2 ⊆ Bt

The width of the tree decomposition is maxt∈V (T ) |Bt | − 1. The
treewidth tw(G) of G is the minimum width of its tree decompositions.
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Small uniform LPs for bounded treewidth problems

– For a class of problems we call admissible, there is an LP of size
O(nk ) if the underlying graph has treewidth k .

– Admissible problems are those that allow local partial solutions to
be patched together in a global way in a precise manner.

– The LP is similar to the Sherali-Adams hierarchy, and is equivalent
if the problem is a CSP.

– MATCHING, VERTEXCOVER, INDEPENDENTSET and CSPs such as
MAXCUT and UNIQUEGAMES are admissible problems.
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– MATCHING, VERTEXCOVER, INDEPENDENTSET and CSPs such as
MAXCUT and UNIQUEGAMES are admissible problems.
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Open Questions

– Can one use this non-affine reduction framework to show LP/SDP
hardness results for more problems?

– Is this the right generalization of approximation preserving
reductions, or can this be generalized further?

Thank you for listening!
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