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— a general algorithmic paradigm
— efficient in theory and practice
— large body of approximation algorithms

Gabor Braun, Sebastian Pokutta, Aurko Roy Strong reductions for extended formulations B




How powerful are Linear and Semidefinite Programs?

Linear Programming (LP)

— a general algorithmic paradigm
— efficient in theory and practice
— large body of approximation algorithms

Semidefinite programming (SDP):

— generalizes linear programming

— also efficient in theory

— covers much of tractable convex optimization
— better approximations for hard problems!
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Approximation algorithms using LPs and SDPs

VERTEXCOVER LP
SETCOVER LP
FACILITYLOCATION LP
MAXCUT SDP
SPARSESTCUT SDP

MAXCSP Sum-of-squares (SDP)

Unique Games Conjecture = SDP is optimal algorithm for MAXCSPs
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The state of lowerbounds
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The state of lowerbounds

— Earliest lowerbound was on the size of a symmetric LP for
TRAVELINGSALESMAN and MATCHING due to Yannakakis (1991).
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The state of lowerbounds

— Earliest lowerbound was on the size of a symmetric LP for
TRAVELINGSALESMAN and MATCHING due to Yannakakis (1991).

— Many lowerbounds have focused on specific LP and SDP
relaxations, like the Sherali-Adams and Lasserre/SoS hierarchies.

— We know due to Chan et al. (2013) and Lee et al. (2014) that the
Sherali-Adams and Lasserre hierarchies are optimal for CSPs.

— However the picture isn’'t so clear for other classes of problems...
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A different recipe for lowerbounds

Can we use already known hardness results?
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A different recipe for lowerbounds

Can we use already known hardness results?

— Schoenebeck (2008) and Charikar et al. (2009) show
lowerbounds for LP and SDP hierarchies for certain CSPs.

— Together with Chan et al. (2013) and Lee et al. (2014) we get
unconditional LP and SDP hardness statements for some CSP
problems.
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— Together with Chan et al. (2013) and Lee et al. (2014) we get
unconditional LP and SDP hardness statements for some CSP
problems.

— Can we come up with a notion of approximation preserving
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— Braun et al. (2015) came up with the notion of affine reductions to
show for example a % — ¢ LP inapproximability for VERTEXCOVER
by reducing from MAXCUT.
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A different recipe for lowerbounds

Can we use already known hardness results?

— Schoenebeck (2008) and Charikar et al. (2009) show
lowerbounds for LP and SDP hierarchies for certain CSPs.

— Together with Chan et al. (2013) and Lee et al. (2014) we get
unconditional LP and SDP hardness statements for some CSP
problems.

— Can we come up with a notion of approximation preserving
reductions as in complexity theory to harness these results for
other problems?

— Braun et al. (2015) came up with the notion of affine reductions to
show for example a % — ¢ LP inapproximability for VERTEXCOVER
by reducing from MAXCUT.

— Bazzi et al. (2015) improved this to 2 — ¢ by reducing from
1F-CSP, together with intermediate Sherali-Adams reductions to
show hardness of 1F-CSP.
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Our contribution

— Generalize the reductions from Braun et al. (2015) to drop the
dependency on affineness.
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Our contribution

— Generalize the reductions from Braun et al. (2015) to drop the
dependency on affineness.

— Generalize the reductions to fractional optimization problems such
as e.g., SPARSESTCUT.
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Our contribution

— Generalize the reductions from Braun et al. (2015) to drop the
dependency on affineness.

— Generalize the reductions to fractional optimization problems such
as e.g., SPARSESTCUT.

— Use this to prove new LP and SDP hardness results as well as
some old ones.
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Summary of Results

Problem Factor  Source Paradigm
MAXCUT 2 +e  MAx-3-XOR/0 SDP
SPARSESTCUT, 2—¢ MAXCuT LP
tw(supply) = O(1)
SPARSESTCUT, B —e  MaxCur SDP
tw(supply) = O(1)
BALANCEDSEPARATOR, w(1) UNIQUEGAMES LP
tw(demand) = O(1)
1 Lasserre
INDEPENDENTSET w(n'=°) MAX-k-CSP
O(n®) rounds

MATCHING, 3-regular 14+¢/n* MATCHING LP
1F-CSP

w(1) UNIQUEGAMES LP
Q-#-CSP
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Some comments
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Some comments

— The best known algorithmic hardness of MAXCUT is % +e
(assuming P # NP).
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— Inapproximability of 1F-CSP proves a 2 — ¢ inapproximability for
VERTEXCOVER.
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— Lasserre relaxations are suboptimal for INDEPENDENTSET: there
is an LP of linear size with a 2,/n approximation factor.
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Some comments

— The best known algorithmic hardness of MAXCUT is % +e
(assuming P # NP).

— Inapproximability of 1F-CSP proves a 2 — ¢ inapproximability for
VERTEXCOVER.

— Inapproximability of Q-#-CSP proves a Q — ¢ inapproximability for
Q-regular hypergraph cover.

— Lasserre relaxations are suboptimal for INDEPENDENTSET: there
is an LP of linear size with a 2,/n approximation factor.

— LPs on bounded treewidth graphs is easy: we show the existence
of uniform LPs of size O(n¥) for MATCHING, INDEPENDENTSET,
VERTEXCOVER, MAXCUT and UNIQUEGAMES on graphs of
treewidth k.
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An abstract view of optimization problems

Definition (Optimization problem)
An optimization problem P = (S, J, val) consists of

— aset J of instances,
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An abstract view of optimization problems

Definition (Optimization problem)
An optimization problem P = (S, J, val) consists of

— a set J of instances,
— a set S of feasible solutions,
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An abstract view of optimization problems

Definition (Optimization problem)
An optimization problem P = (S, J, val) consists of

— aset J of instances,
— a set S of feasible solutions,
— and a real valued objective val: 7 x S — R.
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An abstract view of optimization problems

Definition (Optimization problem)
An optimization problem P = (S, J, val) consists of

— aset J of instances,
— a set S of feasible solutions,
— and a real valued objective val: 7 x S — R.

— valz(s): quality of a solution s € S w.r.tinstance Z € J
— OPT (Z) := minvalz(s)
seS
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Example: VERTEXCOVER

Given a graph G, the minimization problem VERTEXCOVER consists of
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Example: VERTEXCOVER

Given a graph G, the minimization problem VERTEXCOVER consists of
Instances all induced subgraphs H of G;
Feasible solutions all vertex covers X of G;
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Example: VERTEXCOVER

Given a graph G, the minimization problem VERTEXCOVER consists of
Instances all induced subgraphs H of G;

Feasible solutions all vertex covers X of G;
Measure valy(X) := | X N V(H)|.
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(C, S)-approximations of optimization problems

How to measure the quality of approximations to a problem
P =(S,7,val)?
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(C, S)-approximations of optimization problems

How to measure the quality of approximations to a problem
P =(S,7,val)?

— C:7J — R, called the completeness guarantee

— §:7 — R, called the soundness guarantee

— OPT (Z) > S(Z) = optimum over the LP or SDP relaxation is
bounded below by C(Z).

- 35:={T|Z < 3,0PT(Z) > S(Z)} is the set of sound instances.
— Approximation ratio: C/S
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(C, S)-approximate LP formulation

A linear program Ax < b with x € R’ s.t.

Feasible solutions vectors x5 € R” for every s € S satisfying

Ax® < b,
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(C, S)-approximate LP formulation

A linear program Ax < b with x € R’ s.t.

Feasible solutions vectors x5 € R” for every s € S satisfying
Ax® < b,
Instances as affine functions wz: R” — R for all Z € 35 s.t.

wz(x®) = valz(s),
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(C, S)-approximate LP formulation

A linear program Ax < b with x € R’ s.t.

Feasible solutions vectors x5 € R” for every s € S satisfying
Ax® < b,
Instances as affine functions wy: R” — R for all Z € 3 s.t.
wz(x®) = valz(s),
Achieving (C, S) guarantee

7 € 3% = min{wz(x) | Ax < b} > C(Z)

Gabor Braun, Sebastian Pokutta, Aurko Roy Strong reductions for extended formulations B




(C, S)-approximate LP formulation

A linear program Ax < b with x € R’ s.t.

Feasible solutions vectors x5 € R” for every s € S satisfying
Ax® < b,
Instances as affine functions wy: R” — R for all Z € 3 s.t.
wz(x®) = valz(s),
Achieving (C, S) guarantee
7 € 3% = min{wz(x) | Ax < b} > C(Z)

— Size of the formulation: number of inequalities in Ax < b

— LP formulation complexity, fc p(P, C, S): min size of all
formulations.
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(C, S)-approximate SDP formulation

Semidefinite program {X € S, | A(X) = b} and:
Feasible solutions as vectors X¢ € S'_ for all s € S satisfying

A(XS) = b,
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(C, S)-approximate SDP formulation

Semidefinite program {X € S, | A(X) = b} and:
Feasible solutions as vectors X¢ € S'_ for all s € S satisfying

A(XS) = b,

Instances as nonnegative affine functions wz: S" — RforallZ € J
satisfying

wz(X®) = valz(s),
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(C, S)-approximate SDP formulation

Semidefinite program {X € S, | A(X) = b} and:
Feasible solutions as vectors X¢ € S'_ for all s € S satisfying

A(X®) = b,

Instances as nonnegative affine functions wz: S" — RforallZ € J
satisfying

wz(X®) = valz(s),
Achieving (C, S)-approximation guarantee :

7 € 35 = min {wz(X) | A(X) = b} > C(7)
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(C, S)-approximate SDP formulation

Semidefinite program {X € S, | A(X) = b} and:
Feasible solutions as vectors X¢ € S'_ for all s € S satisfying

A(X®) = b,

Instances as nonnegative affine functions wz: S" — RforallZ € J
satisfying

wz(X®) = valz(s),
Achieving (C, S)-approximation guarantee :
7 € 35 = min {wz(X) | A(X) = b} > C(7)

— Size of the formulation: r

— SDP formulation complexity, fcspp(P,C, S): min size of all
formulations.
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Example of an LP formulation

Recall the following LP for the VERTEXCOVER problem:

min Zx,- s.t.
i

xi+x =1 Vi j} € E(G)
1 ZX,'ZO
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Example of an LP formulation

Recall the following LP for the VERTEXCOVER problem:

min Zx,- s.t.
i

xi+x =1 Vi j} € E(G)
1 ZX,'ZO

— Every vertex cover X of G — 1x of the LP

— Every instance H (induced subgraph of G) corresponds to the
affine function (14, .)

— C/S = } for this LP
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Slack matrix

Definition

The (C, S)-approximate slack matrix of an optimization problem P is
the 35 x S matrix Mp ¢ 5(Z, s) = valz(s) — C(Z).
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Slack matrix

Definition

The (C, S)-approximate slack matrix of an optimization problem P is
the 35 x S matrix Mp ¢ 5(Z, s) = valz(s) — C(Z).

For a sound instance Z € 75, the entry corresponding to solution s
measures the “slack” from C(Z).
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Slack matrix

Definition

The (C, S)-approximate slack matrix of an optimization problem P is
the 35 x S matrix Mp ¢ s(Z, s) = valz(s) — C(Z).

For a sound instance Z € 75, the entry corresponding to solution s
measures the “slack” from C(Z).

— Nonnegative factorization of size r: Mp ¢ s = i M, M; >0
and rk M; =1

— PSD factorization of size r: My ¢ s(Z, s) = Tr[AzBs], Az, Bs € S,
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Slack matrix

Definition

The (C, S)-approximate slack matrix of an optimization problem P is
the 35 x S matrix Mp ¢ s(Z, s) = valz(s) — C(Z).

For a sound instance Z € 75, the entry corresponding to solution s
measures the “slack” from C(Z).

— Nonnegative factorization of size r: Mp ¢ s = i M, M; >0
and rk M; =1

— PSD factorization of size r: My ¢ s(Z, s) = Tr[AzBs], Az, Bs € S,

— Nonnegative rank, rk, My ¢ s: min size of nonnegative
factorization of Mp ¢ s

— PSD rank, rkysq Mp ¢ s: min size of psd factorization of Mp ¢ s
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Why should we care?

Because of the following well known theorem due to Yannakakis
(1988):

Let P = (S,J,val) be an optimization problem with completeness
guarantee C and soundness guarantee S.Then

fclp (P, C, S) = rky Mp ¢ s,
fcspp (P, C, S) = rkpsd Mp ¢ s-
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Why should we care?

Because of the following well known theorem due to Yannakakis
(1988):

Let P = (S,J,val) be an optimization problem with completeness
guarantee C and soundness guarantee S.Then

fclp (P, C, S) = rky Mp ¢ s,
fcspp (P, C, S) = rkpsd Mp ¢ s-

Common strategy to bound the formulation complexity is to bound the
corresponding ranks by

— Rectangle covering arguments
— Common information
— (Quantum) Communication complexity
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Reductions v1.0

Definition (Braun et al. (2015))

A reduction from (Py, C1, S1) to (P2, Co, Sp) consists of two maps
from 3131 — 3;32 and * : S — S, such that

valz, (s1) = valz;(s7) + u(Zh),
Ci(Zh) < Ca(Z7) + p(Zh)
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Reductions v1.0

Definition (Braun et al. (2015))

A reduction from (Py, C1, S1) to (P2, Co, Sp) consists of two maps
from 3131 — 3;32 and * : S — S, such that

valz, (s1) = valz;(s7) + u(Zh),
Ci(Zh) < Ca(Z7) + p(Zh)

— Note the affine relationship between the objective values of the
two problems.
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Reductions with “distortion”

A reduction from P4 to P> consists of

— Two maps from x: 31 — Joand *: S§ — S»

— Two nonnegative J; x Sq matrices M; and M,
such that

valz, (s1) — Ci(Z1) = (valzr(s;*) - cg(z;*)) My (T, 81) + Mo(Z1, 51)

and OPT (Z7) > Sy(Z7) whenever OPT (Zy) > Si(Zy).
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Reductions with “distortion”

A reduction from P4 to P> consists of
— Two maps from x: 31 — Joand *: S§ — S»
— Two nonnegative J; x Sq matrices M; and M,
such that

valz, (s1) — Ci(Z1) = (valzr(s;*) - 02(11*)) My (T, 81) + Mo(Z1, 51)

and OPT (Z7) > Sy(Z7) whenever OPT (Zy) > Si(Zy).

The matrices My and M»
— encode additional “computation” in the reduction
— can be an arbitrary function of the solutions and instances
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The price of distortion

Since there are no free lunches...

Let (P1, Cy,S1) and (P2, Co, So) be two problems with a reduction from
Py to P>. Then

feLp(P1) < rky (Mz) + rky (M) + rk (My) - fop(P2) + O(1),
fcspp(P1) < rkpsd(Mz) + rkpsd (M) + rkpsa(My) - fespp(P2) + O(1),

where My and M, are the matrices in the reduction.
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The price of distortion

Since there are no free lunches...

Let (P1, Cy,S1) and (P2, Co, So) be two problems with a reduction from
Py to P>. Then

feLp(P1) < rky (Mz) + rky (M) + rk (My) - fop(P2) + O(1),
fcspp(P1) < rkpsd(Mz) + rkpsd (M) + rkpsa(My) - fespp(P2) + O(1),

where My and M, are the matrices in the reduction.

— Clearly the matrices M; and M, should have low complexity to
obtain useful reductions.
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Proof Sketch

Reformulate the reduction relationship in terms of matrices:

Mp, ¢, s, = (FsMp, ¢, s,Fs) o My + M
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Proof Sketch

Reformulate the reduction relationship in terms of matrices:

Mp, ¢, s, = (FsMp, ¢, s,Fs) o My + M

— F5is aJy x Jo matrix, encoding x : J1 — Jo
— Fsis a S, x 8§ matrix, encoding * : S§ — So
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Proof Sketch

Reformulate the reduction relationship in terms of matrices:

Mp, ¢c,.s, = (FsMp, ¢, s,Fs) o My + M,

— F5is aJy x Jo matrix, encoding x : J1 — Jo
— Fsis a S, x 8§ matrix, encoding * : S§ — So

Further simplify the matrix relationship:
Mp, c..s, = (FJ/T/’PZ,CZ,SZFS> o My + diag(F3a) - My + My

where Mp, ¢, s, = Mp, c,.s, + al (incurs the O(1) factors) and use the
identities

— ki (Ao B) < (rky A) - (rky B)

- rky(ABC) <rk, B

—rky(A+B)<rki A+rk; B
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Fractional optimization problems

— An optimization problem where the objective valz is of the form
val? /vald.

— Efficient LP based algorithms are used to find an optimal value of
a linear combination of val? and val?.
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Fractional optimization problems

— An optimization problem where the objective valz is of the form
val? /vald.

— Efficient LP based algorithms are used to find an optimal value of
a linear combination of val? and val?.

The SPARSESTCUT problem of
— ¢ : E(Kn) — Rxq, called the capacity function
— d: E(Kn) — Rxq called the demand function

The objective function for a cut s is to minimize Ziesijgs )
Yics,jgs A())
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LP formulation for a fractional problem

A linear program Ax < b with x € R" s.t.:
Feasible solutions as vectors x° € R" for every s € S satisfying

Ax* <b foralls e S,
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LP formulation for a fractional problem

A linear program Ax < b with x € R" s.t.:
Feasible solutions as vectors x° € R" for every s € S satisfying

Ax* <b foralls e S,

Instances as a pair of affine functions w2, wg; R —» Rforall Z € 35
satisfying

wh(x°) = valf(s)

wd(x°) = vald(s)
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LP formulation for a fractional problem

A linear program Ax < b with x € R" s.t.:
Feasible solutions as vectors x° € R" for every s € S satisfying

Ax* <b foralls e S,

Instances as a pair of affine functions w2, wg; R —» Rforall Z € 35
satisfying

wh(x°) = valf(s)

wf(x°) = valg(s)

Achieving (C, S) approximation guarantee If Z € J°
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Example of an LP formulation for a fractional problem

A common LP relaxation for the SPARSESTCUT problem with capacity
function ¢ and demand function d is the following

mlnz L)X st
Zd i, j)Xj > aZd(//

1>x;>0
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Example of an LP formulation for a fractional problem

A common LP relaxation for the SPARSESTCUT problem with capacity
function ¢ and demand function d is the following

mlnz L)X st
Zd i, j)Xj > aZd(//

1>x;>0

— This is the LP used by Gupta et al. (2013); the value of « is found
by binary search.
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Slack matrix for fractional optimization problems

The (C, S)-approximate slack matrix for a fractional optimization
problem P is the 23° x S matrix of the form

(d)

Mp cs = [M{))CS]
g} n
MP,C,S

where M7(,d)C - M7(,”)C s are nonnegative 35 x S matrices with entries

d
M7(>73373(I, s) == vald(s)

M7(>7)(373(I’ s) .= val(s) — C(Z)vald(s).
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Reductions between fractional problems

A reduction from P; to P, consists of

— Twomaps *:J;1 — Joand x : S; — So

— Four nonnegative J; x Sy matrices M1(”), Mfd), Mé"), Méd)
such that

M7(3,17)701,S1 (I1 , Sy ) = M’SQCz,Sz (IT7 S%k)M‘En)(I'l ) S1 ) + Mé”)(:& » 1 )’

valf, (s1) = vald. (s))MV(Z1, S1) + My (2, Sp),
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Reductions between fractional problems

A reduction from P; to P, consists of

— Twomaps *:J;1 — Joand x : S; — So

— Four nonnegative J; x Sy matrices M1(”), Mfd), Mé"), Méd)
such that

M7(3,17)701,S1 (I1 , Sy ) = M'g;)702,32 (IT7 S%k)M‘En)(I'l ) S1 ) + Mé”)(:& » 1 )’

valf, (s1) = vald. (s))MV(Z1, S1) + My (2, Sp),

— As before, the matrices M\, M M{™ | ML encode additional
“computation” in the reduction.
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Price of distortion - Part Il

Let Py, Cy,S1) and P», Co, Sy) be two fractional problems with a
reduction from Py to P>. Then

M(”) M(”) M1(”)
feLp(Py) < rkip [Mzd) + rkpp [M:(d) + ks M -feLp(P2),

(m)

M. (n)
fespp(P1) < rkspp |, 2a)
M;

M ()
+ rk 1
SoP [M@

M
+ Kpsd [ }d)] -fesop(P2),
M

where M\"), M ME™ MS?) are the matrices in the reduction.
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From Sherali-Adams to general LP reductions

Definition

A one-free bit CSP (1F-CSP) is a CSP where every clause has
exactly two satisfying assignments over its free variables.
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From Sherali-Adams to general LP reductions

A one-free bit CSP (1F-CSP) is a CSP where every clause has
exactly two satisfying assignments over its free variables.

Theorem

With small numbers n, e, > 0 positive integers t, q, A we have for any
0 < ¢ < 1 and n large enough

fcLp(UNIQUEGAMESA (N, ), 1 — ¢, 8) — nAlght! <
feLp(1F-CSP, (1 —&)(1 — ), n)
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Definition (UNIQUEGAMESA(N, qQ))
Let n, g and A be positive integer parameters. The maximization
problem UNIQUEGAMESA (N, q) consists of
instances All edge-weighted A-regular bipartite graphs (G, w) with
partite sets {0} x [n] and {1} x [n] with every edge {/,}
labeled with a permutation ; ;: [q] — [q] such that
Tjj = 7TJTI-1.
feasible solutions All functions s: {0,1} x [n] — [q] called labelings of
the vertices.
measure The weighted fraction of correctly labeled edges, i.e.,
edges {/,j} with s(i) = m; j(s(j)):

> {ijreE@ WU(iL))

vl () e _SO=0)
(@m(S) 2 ijyeea Wi, J)
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Reducing UNIQUEGAMES to 1F-CSP

Gabor Braun, Sebastian Pokutta, Aurko Roy Strong reductions for extended formulations B




Reducing UNIQUEGAMES to 1F-CSP

— The variables of the 1F-CSP problem are (v, z) for v € V(G) and
ze{-1,1}9.
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Reducing UNIQUEGAMES to 1F-CSP

— The variables of the 1F-CSP problem are (v, z) for v € V(G) and
ze{-1,1}9.
— Letv € V(G) and uy, ..., u; adjacent to v.

Gabor Braun, Sebastian Pokutta, Aurko Roy Strong reductions for extended formulations B




Reducing UNIQUEGAMES to 1F-CSP

— The variables of the 1F-CSP problem are (v, z) for v € V(G) and
ze{-1,1}9.

— Letv € V(G) and uy, ..., u; adjacent to v.

— There is a clause C(v, uy,...,u, x,S) forany x € {—1,1}9 and
S C [q] of size q(1 — ¢) that is an “approximate local test” of a
correct labeling.
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Reducing UNIQUEGAMES to 1F-CSP

— The variables of the 1F-CSP problem are (v, z) for v € V(G) and

ze{-1,1}9.
— Letv € V(G) and uy, ..., u; adjacent to v.
— There is a clause C(v, uy,...,u, x,S) forany x € {—1,1}9 and

S C [q] of size q(1 — ¢) that is an “approximate local test” of a
correct labeling.

— Feasible solutions are translated via the long code of the labeling
S, i.e. s*((v,2)) = Zg(v)-
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Reducing UNIQUEGAMES to 1F-CSP

— The variables of the 1F-CSP problem are (v, z) for v € V(G) and
ze{-1,1}9.
— Letv € V(G) and uy, ..., u; adjacent to v.

— There is a clause C(v, uy,...,u, x,S) forany x € {—1,1}9 and
S C [q] of size q(1 — ¢) that is an “approximate local test” of a
correct labeling.

— Feasible solutions are translated via the long code of the labeling
S, i.e. s*((v,2)) = Zg(v)-
— Define the matrix

w((G,w,7),8) =Exs[C(V,u1,...,u,X,S)[s]] -

(1—¢ (Zx[s = Ty, s(u,))]t+1)

,,,,,,

ie[t]
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Reducing UNIQUEGAMES to 1F-CSP

— It turns out that the matrix M5 in the reduction is
Mo((G,w, ), 8) = g5y E [Mv,uy,...u((G. W, 7), 8)]
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Reducing UNIQUEGAMES to 1F-CSP

— It turns out that the matrix M5 in the reduction is
Mo((G,w, ), 8) = g5y E [Mv,uy,...u((G. W, 7), 8)]

— We show that it has nonnegative rank at most nAlgt! by
“unrolling” the expectation.
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Reducing UNIQUEGAMES to 1F-CSP

— It turns out that the matrix M5 in the reduction is
Mo((G,w, ), 8) = g5y E [Mv,uy,...u((G. W, 7), 8)]

— We show that it has nonnegative rank at most nAlgt! by
“unrolling” the expectation.

— Note that we do not have to argue about Sherali-Adams solutions
as in Bazzi et al. (2015); this is a simple LP reduction in our
framework.
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Reducing UNIQUEGAMES to 1F-CSP

— It turns out that the matrix M5 in the reduction is
Mo((G,w, ), 8) = g5y E [Mv,uy,...u((G. W, 7), 8)]

— We show that it has nonnegative rank at most nAlgt! by
“unrolling” the expectation.

— Note that we do not have to argue about Sherali-Adams solutions
as in Bazzi et al. (2015); this is a simple LP reduction in our
framework.

— The base LP hardness of UNIQUEGAMES is due to Charikar et al.
(2009) and Chan et al. (2013).
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Reducing UNIQUEGAMES to Q-#-CSP

Definition

A not equal CSP (Q-#-CSP for short) is a CSP with value set Zq, the
additive group of integers modulo Q, where every clause has the form
/\f-‘:1 X; # a; for some constants a;.
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Reducing UNIQUEGAMES to Q-#-CSP

A not equal CSP (Q-#-CSP for short) is a CSP with value set Zq, the
additive group of integers modulo Q, where every clause has the form

AL, x; # a; for some constants a;.

v

With small numbers n,e,5 > 0 positive integers t, q, A, we have for
any 0 < ¢ <1 and n large enough

fcLp(UNIQUEGAMESA(N, @), 1 — ¢, 8) — nAlgHt! <
feLp(Q-#-CSP, (1 —)(1 —1/9)(1 — (1), n)
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Reducing UNIQUEGAMES to Q-#-CSP

A not equal CSP (Q-#-CSP for short) is a CSP with value set Zq, the
additive group of integers modulo Q, where every clause has the form

AL, x; # a; for some constants a;.

v

With small numbers n,e,5 > 0 positive integers t, q, A, we have for
any 0 < ¢ <1 and n large enough

fcLp(UNIQUEGAMESA(N, @), 1 — ¢, 8) — nAlgHt! <
feLp(Q-#-CSP, (1 —)(1 —1/9)(1 — (1), n)

— Proof idea is similar to 1F-CSP.
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Matching over 3-regular graphs has no small LP

Forany n and 0 < ¢ < 1, there exists a 3-regular graph D, with
2n(2n — 1) vertices, so that any LP approximating MATCHING(Dz,,)

within 1 — ¢/ |V(Dzy)| has 22VIV(P2n)) jnequalities.
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Matching over 3-regular graphs has no small LP

Forany n and 0 < ¢ < 1, there exists a 3-regular graph D, with
2n(2n — 1) vertices, so that any LP approximating MATCHING(Dz,,)

within 1 — ¢/ |V(Dzy)| has 22VIV(P2n)) jnequalities.

Proof Idea.

— Reduce from MATCHING(K>,) by replacing every vertex by
(2n— 1)-cycles

— Connect corresponding vertices to each other

— Lift perfect matchings in the “obvious” way

Gabor Braun, Sebastian Pokutta, Aurko Roy Strong reductions for extended formulations B




3-regular matchings continued

Figure : The graph Dy, for n = 2 in the reduction to 3-regular Matching.

— The base hard problem is the perfect matching problem
MATCHING(Kz,), Rothvol3 (2014).
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SDP hardness of MAXCUT

For any 6,¢ > 0 there are infinitely many n such that there is a graph G
with n vertices and

fcspp <MAXCUT(G), g &, % i 5) — gy e e ) (1)
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SDP hardness of MAXCUT

For any é,¢ > 0 there are infinitely many n such that there is a graph G
with n vertices and

fcspp <MAXCUT(G), g —¢, % + 5) — pllEgmyiteglon o) (1)

v

Proof Idea.

— Reduce from MAX-3-XOR/0, every predicate is of the form
X1 + Xi2 + X;3 (mod 2) =0

— Use the existing reduction by Trevisan et al. (2000).

— Hardness is due to Lee et al. (2014) combined with Schoenebeck
(2008)’s Lasserre inapproximability result.
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SDP hardness of MAXCUT continued

X4

Q

T\
ol

O

0

Figure : The gadget Hc for the clause C = (x; + X; + Xk = 0) in the reduction
from MAX-3-XOR/0 to MAXCUT. Solid vertices are shared by gadgets, the
empty ones are local to the gadget.
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Hardness of SPARSESTCUT

For any ¢ € (0,1) there are n.p > 0 and nspp > 0 such that for every
large enough n the following hold

log n
fcLp (SPARSESTCUT, np(1 +€),mp (2 — €)) > n9<|og|ogn)

4 1 log n
fcspp (SPARSESTCUT,nSDP (1 IF §5> , ISDP < 6 €>> > nﬂ(bg'%gn).

i
even if the supply graph has treewidth 2.
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Hardness of SPARSESTCUT

For any ¢ € (0,1) there are n.p > 0 and nspp > 0 such that for every
large enough n the following hold

log n
fcLp (SPARSESTCUT, np(1 +€),mp (2 — €)) > nQ<|OgIogn>’

logn
fcspp (SPARSESTCUT,T]SDP (1 + 455> , TISDP (}g — €>> > nQ(Iog%gn>,

even if the supply graph has treewidth 2.

Proof Idea.

— Use the reduction from MAXCUT due to Gupta et al. (2013) using
the fractional reduction framework.
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Hardness of SPARSESTCUT

For any ¢ € (0,1) there are n.p > 0 and nspp > 0 such that for every
large enough n the following hold

log n
fcLp (SPARSESTCUT, nrp(1 +¢€),np (2 — €)) > nQ<IogIogn>’

logn
fcspp (SPARSESTCUT,T]SDP (1 + 455> , TISDP (}g — €>> > nQ(Iog%gn>,

even if the supply graph has treewidth 2.

Proof Idea.

— Use the reduction from MAXCUT due to Gupta et al. (2013) using
the fractional reduction framework.

— Base LP hardness of MAXCUT is due to Chan et al. (2013).
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Lasserre is suboptimal for INDEPENDENTSET

For any small enough v > 0 there are infinitely many n, such that there
is a graph G with n vertices with the largest independent set of G
having size a(G) = O(n") but there is a Q(n")-round Lasserre solution
of size ©(n), i.e., the integrality gap is n'~7. However
fcLp(INDEPENDENTSET(G),2v/n) < 3n+1.

Gabor Braun, Sebastian Pokutta, Aurko Roy Strong reductions for extended formulations B




Lasserre is suboptimal for INDEPENDENTSET

For any small enough v > 0 there are infinitely many n, such that there
is a graph G with n vertices with the largest independent set of G
having size o(G) = O(n") but there is a Q(n")-round Lasserre solution
of size ©(n), i.e., the integrality gap is n'~7. However
fcLp(INDEPENDENTSET(G),2v/n) < 3n+1.

Proof Idea.

— Use the reduction mechanism within a Lasserre/SoS framework
by reducing MAX-k-CSP to INDEPENDENTSET.
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Lasserre is suboptimal for INDEPENDENTSET

For any small enough v > 0 there are infinitely many n, such that there
is a graph G with n vertices with the largest independent set of G
having size o(G) = O(n") but there is a Q(n")-round Lasserre solution
of size ©(n), i.e., the integrality gap is n'~7. However
fcLp(INDEPENDENTSET(G),2v/n) < 3n+1.

Proof Idea.

— Use the reduction mechanism within a Lasserre/SoS framework
by reducing MAX-k-CSP to INDEPENDENTSET.

— The reduction is a simple conflict graph over the partial
assignments.
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Lasserre is suboptimal for INDEPENDENTSET

For any small enough v > 0 there are infinitely many n, such that there
is a graph G with n vertices with the largest independent set of G
having size o(G) = O(n") but there is a Q(n")-round Lasserre solution
of size ©(n), i.e., the integrality gap is n'~7. However
fcLp(INDEPENDENTSET(G),2v/n) < 3n+1.

Proof Idea.

— Use the reduction mechanism within a Lasserre/SoS framework
by reducing MAX-k-CSP to INDEPENDENTSET.

— The reduction is a simple conflict graph over the partial
assignments.

— The SoS/Lasserre integrality gap for MAX-k-CSP is due to
Bhaskara et al. (2012).
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BALANCEDSEPARATOR cannot be approximated to any
constant factor by a LP

Definition

The BALANCEDSEPARATOR is similar to the SPARSESTCUT cut
problem. There are two functions ¢ : E(K,) — R>( (capacity) and

d: E(Kn) = R>o (demand). Goal is to minimize the capacity of all cuts
that are “balanced", i.e. cut atleast } of total demand.
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BALANCEDSEPARATOR cannot be approximated to any
constant factor by a LP

Definition

The BALANCEDSEPARATOR is similar to the SPARSESTCUT cut
problem. There are two functions ¢ : E(K,) — R>( (capacity) and

d: E(Kn) = R>o (demand). Goal is to minimize the capacity of all cuts
that are “balanced", i.e. cut atleast } of total demand.

Theorem

For any constant ¢y > 1 there is another constant c. > 1 such that for
all n there is a demand function d: E(K,) — R>q satisfying

tw([n]y) < ¢» so that BALANCEDSEPARATOR(n, d) is LP-hard with an
inapproximability factor of ¢y.

| \

.
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BALANCEDSEPARATOR cannot be approximated to any
constant factor by a LP

Definition

The BALANCEDSEPARATOR is similar to the SPARSESTCUT cut
problem. There are two functions ¢ : E(K,) — R>( (capacity) and

d: E(Kn) = R>o (demand). Goal is to minimize the capacity of all cuts
that are “balanced", i.e. cut atleast } of total demand.

Theorem

For any constant ¢y > 1 there is another constant c. > 1 such that for
all n there is a demand function d: E(K,) — R>q satisfying

tw([n]y) < ¢» so that BALANCEDSEPARATOR(n, d) is LP-hard with an
inapproximability factor of c;.

| \

.

— Reduce from UNIQUEGAMES using the long code test of Khot and
Vishnoi (2015).
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Bounded treewidth graphs are LP-easy

Recall the definition of treewidth:

A tree decomposition of a graph G is a tree T together with a vertex
set of G called bag B; C V(G) for every node t of T, satisfying the
following conditions:
- V(G) = Uev(r) Bt
— For every adjacent vertices u, v of G there is a bag B; containing
both v and v
— For all nodes ty, t, t of T with t lying between t; and & (i.e., tis on
the unique path connecting # and ;) we have By, N By, C B;

The width of the tree decomposition is max;cy(ry|Bt| — 1. The
treewidth tw(G) of G is the minimum width of its tree decompositions.

v
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Small uniform LPs for bounded treewidth problems

— For a class of problems we call admissible, there is an LP of size
O(n*) if the underlying graph has treewidth k.
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Small uniform LPs for bounded treewidth problems

— For a class of problems we call admissible, there is an LP of size
O(n*) if the underlying graph has treewidth k.

— Admissible problems are those that allow local partial solutions to
be patched together in a global way in a precise manner.
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Small uniform LPs for bounded treewidth problems

— For a class of problems we call admissible, there is an LP of size
O(n*) if the underlying graph has treewidth k.

— Admissible problems are those that allow local partial solutions to
be patched together in a global way in a precise manner.

— The LP is similar to the Sherali-Adams hierarchy, and is equivalent
if the problem is a CSP.
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Small uniform LPs for bounded treewidth problems

— For a class of problems we call admissible, there is an LP of size
O(n*) if the underlying graph has treewidth k.

— Admissible problems are those that allow local partial solutions to
be patched together in a global way in a precise manner.

— The LP is similar to the Sherali-Adams hierarchy, and is equivalent
if the problem is a CSP.

— MATCHING, VERTEXCOVER, INDEPENDENTSET and CSPs such as
MAXCUT and UNIQUEGAMES are admissible problems.
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Open Questions

— Can one use this non-affine reduction framework to show LP/SDP
hardness results for more problems?
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Open Questions

— Can one use this non-affine reduction framework to show LP/SDP
hardness results for more problems?

— Is this the right generalization of approximation preserving
reductions, or can this be generalized further?
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Open Questions

— Can one use this non-affine reduction framework to show LP/SDP
hardness results for more problems?

— Is this the right generalization of approximation preserving
reductions, or can this be generalized further?

Thank you for listening!
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