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Elecironic Colloquium on Computational Complexily, Report No. 30 {2015)

Deterministic Communication vs. Partition Number

Mika Goos Toniann Pitassi Thomas Watson

Department of Computer Science. University of Toronto

April 1, 2015

Abstract

We show that deterministic communication complexity can be superlogarithmic in the
partition number of the associated communication matrix. We also obtain near-optimal deter-
ministic lower bounds for the Clique vs. Independent Set problem. which in particular vields
new lower bounds for the log-rank conjecture. All these results follow from a simple adaptation
of a communication-to-query simulation theorem of Raz and McKenzie (Combinatorica 1999)
together with lower bounds for the analogous query complexity questions.
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Pointers

Alphabet:  {0,1} x ([n] x [m]U{L})
Not Boolean, but we can encode using O(log(n + m)) bits.

Accept iff

]
]
L]

There is a (unique) all-1 column b;
in b, there is a unique element  with non-zero pointer;

following the pointers from r, we traverse through exactly

one zero in each column but b.
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Conclusion . \.1 .

Accept Iff
B There is a (unique) all-1 column b;

B in ), there is a unigue element r with non-zero pointers;

B for each j # b, following a path 7'(7) from r gives a zero in the
Jth column.

B Some additional information is contained in the leaves (to be
defined).
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B Add a back pointer to each variable.

B Accept iff
[]

0 exactly m /2 of the leaves back point to the root 7.
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State of the Art E )/
Partial Separation . /
Definition E

Totalisation

Check Column .
Upper Bound E
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Yo
.
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.
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.
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ST A column is good if it contains a leaf back pointing to the root of a
Ity versus 1 : legitimate tree.

Conclusion

B A positive input contains exactly 1 /2 good columns.
B A negative input contains no good columns.

A total function looks like a partial function.
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Check Column: Informal

N
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Introduction E o - v\

GOos-Pitassi-Watson . /
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\

Our Modifications E \2 * 2 hg o o

Y-

Rq versus Rq

State of the Art Deterministic subroutine

(o

N
I
N
YA Yo
(5. G O, G DY N G, G DS, G . N OS5 N K. §
AN .

Partial Separation .
Definiion : Given a column ¢ € |m], accept iff it
Totalisation . .
IS good. i s
Check Column

Upper Bound
Lower Bound

Summary

R versus D :  On each step we either

Conclusion

B climinate a column: it is not the all-1 column: or
B ecliminate an element in column c: it is not a leaf of the tree.
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Rq versus R . B \.1 5
State of the Art . Deterministic subroutine / 1
Partial Separation E ( 1 h
Definiton :  Given a column ¢ € |m|, accept iff it =
Totalisation . . 1 .

IS good. i o
Check Column 1

Upper Bound

Summary

[]

Rq versus D

Conclusion

1 0O O

B Verify the only non-eliminated column.

Lower Bound : W While there is > 2 non-eliminated columns:

Let a be a non-eliminated element in c. If none, reject.
Let  be the back pointer of a, and b be the column of 7.
Let 7 be a non-eliminated column # .

If the path 7°(7) from - ends in a zero in column 7,
eliminate column 7.

Otherwise , eliminate element a.
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Upper Bound

Introduction : L D\ >.1 :
G0Oos-Pitassi-Watson : / \ 1 /
Our Modifications : ) 1%' 1 l
Rq versus Rq § V ( 1
State of the Art : % —
Partial Separation E / s 1 =/
Definition E \.1 y
Totalisation . (a4 )
Check Column § >~ 1 =
Upper Bound E i 1 o
Lower Bound E
Summary ] . .
- B B On each iteration of the loop, either an element or a column
Q Vversus
o gets eliminated. At most n + m iterations.

Complexity: O(n + m).
Sticking into Deutsch-Jozsa, get /7, and () g upper bound of

~

O(n +m).
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Lower Bound

(Negative) input with exactly one
zero in each column.

B An £,y algorithm can reject
only if it has found m /2 ze-
roes.

Requires ()(nm) queries.
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Ry versus Ry B Upper bound for /77 and (5 is 5(” +m).

State of the Art

raiasemaion - B Lower bound for a R algorithm is Q(nm).

Definition

Totalisation . Taking n = m, we get a quadratic separation between 7; and Ry,
Check Column .
as well as between () and R,

Upper Bound

Lower Bound

S © NB. The previous separation was [Ambainis’12];
Rq versus D ;

| ; 0.8675...
Conclusion § QE — O(RO )
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B Back pointers are to columns.

B Accept iff
[]

[0 all the leaves back point to the all-1 column b.
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Lower Bound

1.
>°1 .<>A \\
Adversary Method. 1 Ao . ) 2
Let n = 2m. A
If the kth element is queried in a column: 1
B If k£ <m,return ) >-1-<
m Otherwise, return @ with back >.1 y
pointer to column & — m. 1 \ ) )

At the end, the column contains m (1) and 1 @ with back pointers

toallcolumns 1,2....,m.

B The algorithm does not know the value of the function until it
has queried > m elements in each of m columns.

Lower bound: 2(m?).

32/39



Upper Bound: Informal

Introduction

GOos-Pitassi-Watson

Our Modifications

Rq versus Rq

Rq versus D

Definition

Lower Bound
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Summary

Conclusion

B Each column contains a back pointer to the all-1 column,
BUT which one is the right one—?

We try each back pointer by quering few elements in the column,
and proceed to a one where no zeroes were found.

B Even if this is not the all-1 column,
we can arrange that it contains fewer zeroes whp. 33/39
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Definition
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Algorithm

Let ¢ be the first column, and k£ < n.

B While £ > 1,

O Letc <ProcessColumn(c, k), and k < k/2.

ProcessColumn(column ¢, integer k)

Query all elements in column c.

If there are no zeroes, verify column c.

If there are more then k zeroes, query all nm variables, and
output the value of the function.

For each zero a:
[ Let ) be the back pointer of a.

0 Query O(n/k) elements in column j. (Probability < ( .

nm)

2
that no zero found if there are > % /2 of them).
[0 If no zero was found, return .

Reject
34 /39
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B Lower bound for a D algorithm is Q(m?).
B Upper bound for a 17 algorithm is O(n + m).

Rq versus Rq

Rq versus D

fvath We get a quadratic separation between Xy and D.
Upper Bound

Summary

Conclusion B Also, upper bound for a () algorithm is 5(\/71 -+ m).

We get a quartic separation between () and D.

NB. Previous separation was quadratic: Grover’s search.
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We have resolved Ry <+ Rpand R < D.

Rq versus Rq

Rq versus D

Can we resolve Ry <+ D too? N
Known: Ry = Q(D'?3) and Ry = O(DY?).

Conclusion

Results

Open Problems

B Can we overcome the “certificate complexity barrier’?
Obtain a function with Ry = o(C')?

B The same about () <> D N
Known: Q = Q(DY%) and Q = O(D'Y*).

B and g < D? N
Known: Qg = Q(D'?3) and Qr = O(D'?).
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