Separations in Query Complexity Based on Pointer Functions

Alexander Belov CWI

Joint work with: Andris Ambainis, Kaspars Balodis,

Troy Lee, Miklos Santha, and Juris Smotrovs

Introduction
Computation Models
Separations
A Previous Result
Our Main Results
Göös-Pitassi-Watson
Our Modifications
R_1 versus R_0

 R_0 versus D

Conclusion

Introduction

- Deterministic (Decision Tree)
- Randomized (Probability distribution on decision trees)

- 2 or $\frac{8}{3}$ **Expected** number of queries on input: $\frac{8}{3}$
- Worst input in total:

Introduction **Computation Models Separations** A Previous Result **Our Main Results** Göös-Pitassi-Watson **Our Modifications** R_1 versus R_0

- R_0 versus D
- Conclusion

- Deterministic (Decision Tree) D:
- R: Randomized (Probability distribution on decision trees)
 - R_0 : Zero-error (Las Vegas)
 - always outputs a correct output
 - R_1 : **One-sided error**
 - always rejects a negative input
 - accepts a positive input with probability $\geq \frac{1}{2}$ (or vice versa)
 - R_2 : Bounded-error (Monte Carlo)
 - rejects a negative input with probability $\geq \frac{2}{3}$ accepts a positive input with probability $\geq \frac{2}{3}$

Introduction

- **Computation Models**
- Separations
- A Previous Result
- Our Main Results
- Göös-Pitassi-Watson
- Our Modifications
- R_1 versus R_0
- R_0 versus D
- Conclusion

- *D*: Deterministic (Decision Tree)
- R: Randomized (Probability distribution on decision trees)
 - R_0 : Zero-error (Las Vegas)
 - R_1 : One-sided error
 - R_2 : Bounded-error (Monte Carlo)
- Q: Quantum bounded-error
 - Q_E : Quantum exact

Introduction	
Computation Models	
Separations	
A Previous Result	
Our Main Results)
Göös-Pitassi-Watson	
Our Modifications	
R_1 versus R_0	
R_0 versus D	
Conclusion	

Easy for **partial** functions

IntroductionComputation ModelsSeparationsA Previous ResultOur Main ResultsGöös-Pitassi-WatsonOur Modifications R_1 versus R_0 R_0 versus DConclusion

Easy for **partial** functions

Example: Deutsch-Jozsa problem (almost)

Reject iff all input variables are zeroes

Accept iff exactly half of the variables are ones

Introduction Computation Models Separations A Previous Result Our Main Results Göös-Pitassi-Watson Our Modifications R₁ versus R₀ R₀ versus D Conclusion

Easy for **partial** functions

Example: Deutsch-Jozsa problem (almost)

Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

Accept iff exactly half of the variables are ones

 $R_1 = 1$

Introduction Computation Models Separations A Previous Result Our Main Results Göös-Pitassi-Watson Our Modifications R₁ versus R₀ R₀ versus D Conclusion

Easy for **partial** functions

Example: Deutsch-Jozsa problem (almost)

Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

Accept iff exactly half of the variables are ones

$$R_1 = 1, \quad Q_E = 1,$$

Easy for **partial** functions

Example: Deutsch-Jozsa problem (almost)

Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

Accept iff exactly half of the variables are ones

$$R_1 = 1, \quad Q_E = 1, \qquad R_0 = n/2 + 1$$

A Previous Result

A Previous Result

We have [Snir'85, Saks & Wigderson'86]:

$$R_0 = R_1 = R_2 = O(n^{0.7537...}), \qquad D = n$$

Our Main Results

I	n	tr	n	d	11	C	ti	\cap	n	
ł		u	U	u	u	U	u	U		

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

```
R_1 versus R_0
```

 R_0 versus D

Conclusion

It is known [Nisan'89]

$$D = O(R_1^2)$$

We get functions with:

$$D = \widetilde{\Theta}(R_0^2)$$

Our Main Results

Introduction	It is known []
Computation Models	
Separations	
A Previous Result	- 0 0
Our Main Results	
Göös-Pitassi-Watson	We get funct
Our Modifications	
$\underline{R_1}$ versus R_0	D
R_0 versus D	
Conclusion	R ₁ R ₀
A Previous Result Our Main Results <u>Göös-Pitassi-Watson</u> Our Modifications R_1 versus R_0 R_0 versus D Conclusion	We get fund

Nisan'89]

$$D = O(R_1^2)$$

The last one also saturates [Kulkarni & Tal'13, Midrijānis'05]

$$R_0 = \widetilde{O}(R_2^2)$$

Introduction
Göös-Pitassi-Watson
Paper
Goal

D versus 1-certificates

Pointers

Features

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Göös-Pitassi-Watson

Paper

Goa

Introduction	•
Göös-Pitassi-Watson	•
Paper	•
Goal	•
D versus 1-certificates	•
Pointers	•
Features	•
Our Modifications	•
R_1 versus R_0	•
R_0 versus D	•
Conclusion	•

Clique vs. Independent Set in communication complexity

- Reduce to a problem in query complexity: Find a function that
- □ has large deterministic complexity
- □ has small unambiguous 1-certificates

There exists a number of 1-certificates such that each positive input satisfies exactly one of them.

D versus 1-certificates

Introduction Göös-Pitassi-Watson Paper Goal D versus 1-certificates Pointers Features Our Modifications R₁ versus R₀ R₀ versus D Conclusion

Function on nm Boolean variables

Accept iff there exists a unique all-1 column

D = nm
 short 1-certificates (n + m - 1), BUT not unambiguous.

D versus 1-certificates

Introduction Göös-Pitassi-Watson Paper Goal D versus 1-certificates Pointers Features Our Modifications <u>R_1 versus R_0</u> <u>R_0 versus D</u> Conclusion

Function on nm Boolean variables

Accept iff there exists a unique all-1 column

D = nm

short 1-certificates (n + m - 1), **BUT not** unambiguous. Should specify which zero to take in each column

Pointers

Alphabet: $\{0,1\} \times ([n] \times [m] \cup \{\bot\})$ Not Boolean, but we can encode using $O(\log(n+m))$ bits.

Accept iff

- \Box There is a (unique) all-1 column *b*;
- \Box in *b*, there is a unique element *r* with non-zero pointer;
- □ following the pointers from r, we traverse through exactly one zero in each column but b.

Pointers

Still have D = nm

short unambigous 1-certificates (n + m - 1)

Features

Introduction Göös-Pitassi-Watson Paper Goal D versus 1-certificates Pointers

Features

Our Modifications

 R_1 versus R_0

 R_0 versus D

Conclusion

Highly elusive (flexible)

Still traversable (if know where to start).

Göös-Pitassi-Watson
0005-1 118531-11815011
Our Modifications
Binary Tree
Definition (base)
R_1 versus R_0

 R_0 versus D

Conclusion

Our Modifications

Binary Tree

Introduction Göös-Pitassi-Watson Our Modifications Binary Tree Definition (base)	Instead of a list
<u>R₁ versus R₀</u> <u>R₀ versus D</u> <u>Conclusion</u>	we use a balanced binary tree
	More elusiveRandom access

Definition (base)

Introduction		
Goos-Pitassi-Watson		
Our Modifications		
Binary Tree		
Definition (base)		
D. Voroug D.		
n_1 versus n_0		
R_0 versus D		

Accept iff

- There is a (unique) all-1 column b;
- in b, there is a unique element r with non-zero pointers;
- for each $j \neq b$, following a path T(j) from r gives a zero in the jth column.
- Some additional information is contained in the leaves (to be defined).

Introduction
Göös-Pitassi-Watson
Our Modifications
R_1 versus R_0
State of the Art
Partial Separation
Definition
Totalisation
Check Column
Upper Bound
Lower Bound
Summary
R_0 versus D

Conclusion

R_1 versus R_0

State of the Art

Introduction	
Göös-Pitassi-Watson	
Our Modifications	
R_1 versus R_0	
State of the Art	
Partial Separation	
Definition	
Totalisation	
Check Column	NO separation was known even between R_2 and R_0 .
Upper Bound	
Lower Bound	
Summary	(Iterated functions are not of much help here.)
R_0 versus D	
Conclusion	

Partial Separation

Introduction	
Göös-Pitassi-Watson	
Our Modifications	
R_1 versus R_0	
State of the Art	Recall the separation for a partial function
Partial Separation	
Definition	Reject iff all input variables are zeroes
Totalisation	
Check Column	
Upper Bound	
Lower Bound	Accept iff evently helf of the veriebles are ence
Summary	Accept in exactly nall of the variables are ones
R_0 versus D	
Conclusion	

Definition

- Add a back pointer to each variable.
- Accept iff

 - \square exactly m/2 of the leaves back point to the root r.

Totalisation

Introduction Göös-Pitassi-Watson **Our Modifications** R_1 versus R_0 State of the Art **Partial Separation** Definition **Totalisation** Check Column Upper Bound Lower Bound Summary R_0 versus DConclusion

A column is good if it contains a leaf back pointing to the root of a legitimate tree.

- A positive input contains exactly m/2 good columns.
- A negative input contains no good columns.

A total function looks like a partial function.

Check Column: Informal

eliminate an element in column c: it is not a leaf of the tree.

0

Check Column: Formal

Conclusion

Deterministic subroutine

```
Given a column c \in |m|, accept iff it
```


- While there is ≥ 2 non-eliminated columns:
 - Let a be a non-eliminated element in c. If none, **reject**.
 - Let r be the back pointer of a, and b be the column of r.
 - Let j be a non-eliminated column $\neq b$.
- If the path T(j) from r ends in a zero in column j, eliminate column j.

Otherwise, eliminate element *a*.

Verify the only non-eliminated column.

Upper Bound

Introduction Göös-Pitassi-Watson **Our Modifications** R_1 versus R_0 State of the Art **Partial Separation** Definition **Totalisation** Check Column Upper Bound Lower Bound Summary R_0 versus DConclusion

On each iteration of the loop, either an element or a column gets eliminated. At most n + m iterations. Complexity: $\widetilde{O}(n + m)$.

Sticking into Deutsch-Jozsa, get R_1 and Q_E upper bound of

$$\widetilde{O}(n+m)$$

Lower Bound

Introduction
Göös-Pitassi-Watson
Our Modifications
R_1 versus R_0
State of the Art
Partial Separation
Definition
Totalisation
Check Column
Upper Bound
Lower Bound
Summary
R_0 versus D
Conclusion

(Negative) input with exactly one zero in each column.

An R_0 algorithm can reject only if it has found m/2 zeroes.

Requires $\Omega(nm)$ queries.

28 / 39

Summary

Introduction
Göös-Pitassi-Watson
Our Modifications
R_1 versus R_0
State of the Art
Partial Separation
Definition
Totalisation
Check Column
Upper Bound
Lower Bound
Summary
R_0 versus D
Conclusion

Upper bound for R_1 and Q_E is $\widetilde{O}(n+m)$.

Lower bound for a R_0 algorithm is $\Omega(nm)$.

Taking n = m, we get a quadratic separation between R_1 and R_0 , as well as between Q_E and R_0

NB. The previous separation was [Ambainis'12]:

 $Q_E = O(R_0^{0.8675...})$

Introduction
Göös-Pitassi-Watson
Our Modifications
R_1 versus R_0
R_0 versus D
Definition
Lower Bound
Upper Bound
Summary
Conclusion

R_0 versus D

Definition

- Back pointers are to columns.
- Accept iff
 - □ ...
 - \Box all the leaves back point to the all-1 column *b*.

Lower Bound

Conclusion

Adversary Method.

Let n = 2m.

If the kth element is queried in a column:

- I If $k \leq m$, return !.
- Otherwise, return \bigcirc with back pointer to column k m.

At the end, the column contains m 1 and m with back pointers to all columns $1, 2, \ldots, m$.

The algorithm does not know the value of the function until it has queried > m elements in each of m columns.

Lower bound: $\Omega(m^2)$.

Upper Bound: Informal

Each column contains a back pointer to the all-1 column. BUT which one is the right one—?

We try each back pointer by quering few elements in the column, and proceed to a one where no zeroes were found.

Even if this is not the all-1 column,

we can arrange that it contains fewer zeroes whp.

Upper Bound: Formal

Göös-Pitassi-Watson

Introduction

Our Modifications

 R_1 versus R_0

 R_0 versus D

Definition

Lower Bound

Upper Bound

Summary

Conclusion

Algorithm

```
Let c be the first column, and k \leftarrow n.
```

```
\Box Let c \leftarrow \mathsf{ProcessColumn}(c, k), and k \leftarrow k/2.
```

ProcessColumn(column *c*, integer *k*)

- Query all elements in column *c*.
- If there are no zeroes, verify column c.
- I If there are more then k zeroes, query all nm variables, and output the value of the function.
- **For** each zero *a*:
 - \Box Let *j* be the back pointer of *a*.
 - Query O(n/k) elements in column j. (Probability $< \frac{1}{(nm)^2}$ that no zero found if there are > k/2 of them).
 - \Box If no zero was found, return *j*.
- Reject

Summary

Introduction
Göös-Pitassi-Watson
Our Modifications
R_1 versus R_0
R_0 versus D
Definition
Lower Bound
Upper Bound
Summary
Conclusion

Take n = 2m.

- Lower bound for a D algorithm is $\Omega(m^2).$
- Upper bound for a R_0 algorithm is O(n+m).

We get a quadratic separation between R_0 and D.

Summary

Introduction Göös-Pitassi-Watson Our Modifications R₁ versus R₀ R₀ versus D Definition Lower Bound Upper Bound Summary

Conclusion

Take n = 2m.

- Lower bound for a D algorithm is $\Omega(m^2).$
- Upper bound for a R_0 algorithm is $\widetilde{O}(n+m)$.

We get a quadratic separation between R_0 and D.

Also, upper bound for a Q algorithm is $O(\sqrt{n+m})$. We get a quartic separation between Q and D.

NB. Previous separation was quadratic: Grover's search.

Conclusion

Results

Introduction
Goos-Pitassi-watson
Our Modifications
R_1 versus R_0
R_0 versus D
Conclusion
Results

Open Problems

$$R_1 = \widetilde{O}(R_0^{1/2})$$
$$Q_E = \widetilde{O}(R_0^{1/2})$$
$$R_0 = \widetilde{O}(D^{1/2})$$
$$Q = \widetilde{O}(D^{1/4})$$

$$Q = \widetilde{O}(R_0^{1/3})$$
$$Q_E = \widetilde{O}(R_2^{2/3})$$
$$\widetilde{\deg} = \widetilde{O}(R_2^{1/4})$$

Open Problems

ntroduction	•
Göös-Pitassi-Watson	
Our Modifications	
R_1 versus R_0	
R_0 versus D	
Conclusion	
Results	
Open Problems	•
	•
	•

We have resolved $R_2 \leftrightarrow R_0$ and $R_1 \leftrightarrow D$. Can we resolve $R_2 \leftrightarrow D$ too? Known: $R_2 = \Omega(D^{1/3})$ and $R_2 = \widetilde{O}(D^{1/2})$.

- Can we overcome the "certificate complexity barrier"? Obtain a function with $R_2 = o(C)$?
- The same about Q \leftarrow D
 Known: Q = \Omega(D^{1/6}) and Q = \Omega(D^{1/4}).
 and Q_E \leftarrow D?
 Known: Q_E = \Omega(D^{1/3}) and Q_E = \Omega(D^{1/2}).

Introduction
Göös-Pitassi-Watson
Our Modifications
R_1 versus R_0
R_0 versus D
Conclusion
Results
Open Problems

Any questions?

