
1 / 39

Separations in Query Complexity

Based on Pointer Functions

Alexander Belov
CWI

Joint work with: Andris Ambainis, Kaspars Balodis,

Troy Lee, Miklos Santha, and Juris Smotrovs



Introduction

Introduction

Computation Models

Separations

A Previous Result

Our Main Results
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D: Deterministic (Decision Tree)
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Complexity
• on input: Number of queries (length of the path) 2 or 3
• in total: Worst input (depth of the tree) 3
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D: Deterministic (Decision Tree)
R: Randomized (Probability distribution on decision trees)
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Complexity
• on input: Expected number of queries 2 or 8

3

• in total: Worst input 8
3
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D: Deterministic (Decision Tree)
R: Randomized (Probability distribution on decision trees)

R0: Zero-error (Las Vegas)

� always outputs a correct output

R1: One-sided error

� always rejects a negative input
� accepts a positive input with probability ≥ 1

2

(or vice versa)

R2: Bounded-error (Monte Carlo)

� rejects a negative input with probability≥ 2
3

� accepts a positive input with probability ≥ 2
3
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D: Deterministic (Decision Tree)
R: Randomized (Probability distribution on decision trees)

R0: Zero-error (Las Vegas)
R1: One-sided error
R2: Bounded-error (Monte Carlo)

Q: Quantum bounded-error

QE : Quantum exact
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Easy for partial functions



Separations

Introduction

Computation Models

Separations

A Previous Result

Our Main Results
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Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0
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Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0

R1 = 1
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Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0

R1 = 1, QE = 1,
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Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0

R1 = 1, QE = 1, R0 = n/2 + 1

0 0 0 0
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Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0

R1 = 1, QE = 1, R0 = n/2 + 1

0 0 0 0

Total Functions — ???
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Iterated NAND: record-holder for R0, R1, R2 versus D
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Iterated NAND: record-holder for R0, R1, R2 versus D
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We have [Snir’85, Saks & Wigderson’86]:

R0 = R1 = R2 = O(n0.7537...), D = n
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It is known [Nisan’89]
D = O(R2

1)

We get functions with:

D = Θ̃(R2
0) R0 = Θ̃(R2

1)

R1 R0 D R1 R0 D
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It is known [Nisan’89]
D = O(R2

1)

We get functions with:

D = Θ̃(R2
0) R0 = Θ̃(R2

1)

R1 R0 D R1 R0 D

The last one also saturates [Kulkarni & Tal’13, Midrijānis’05]

R0 = Õ(R2
2)
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� Clique vs. Independent Set in communication complexity

� Reduce to a problem in query complexity: Find a function that

� has large deterministic complexity
� has small unambiguous 1-certificates

There exists a number of 1-certificates such that each
positive input satisfies exactly one of them.



D versus 1-certificates

Introduction
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Function on nm Boolean variables

� Accept iff there exists a unique all-1 column
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� D = nm
� short 1-certificates (n+m− 1), BUT not unambiguous.
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Function on nm Boolean variables

� Accept iff there exists a unique all-1 column
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n

m

� D = nm
� short 1-certificates (n+m− 1), BUT not unambiguous.

Should specify which zero to take in each column
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� Alphabet: {0, 1} × ([n]× [m] ∪ {⊥})
Not Boolean, but we can encode using O(log(n+m)) bits.

� Accept iff
� There is a (unique) all-1 column b;
� in b, there is a unique element r with non-zero pointer;
� following the pointers from r, we traverse through exactly

one zero in each column but b.
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� Still have D = nm
� short unambigous 1-certificates (n+m− 1)
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Highly elusive
(flexible)

Still traversable
(if know where to start).
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Instead of a list

0

00
1

0

0
0

0

we use a balanced binary tree

1

0 0 0 0 0 0 0

� More elusive
� Random access
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Accept iff
� There is a (unique) all-1 column b;
� in b, there is a unique element r with non-zero pointers;
� for each j 6= b, following a path T (j) from r gives a zero in the

jth column.
� Some additional information is contained in the leaves (to be

defined).
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� NO separation was known even between R2 and R0.

(Iterated functions are not of much help here.)
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Recall the separation for a partial function

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0
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� Add a back pointer to each variable.
� Accept iff

� . . .
� exactly m/2 of the leaves back point to the root r.
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A column is good if it contains a leaf back pointing to the root of a
legitimate tree.

� A positive input contains exactly m/2 good columns.
� A negative input contains no good columns.

A total function looks like a partial function.
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Deterministic subroutine

Given a column c ∈ [m], accept iff it
is good.
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On each step we either

� eliminate a column: it is not the all-1 column; or
� eliminate an element in column c: it is not a leaf of the tree.
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Deterministic subroutine

Given a column c ∈ [m], accept iff it
is good.
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� While there is ≥ 2 non-eliminated columns:

� Let a be a non-eliminated element in c. If none, reject .
� Let r be the back pointer of a, and b be the column of r.
� Let j be a non-eliminated column 6= b.
� If the path T (j) from r ends in a zero in column j,

eliminate column j.
Otherwise , eliminate element a.

� Verify the only non-eliminated column.
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� On each iteration of the loop, either an element or a column
gets eliminated. At most n+m iterations.
Complexity: Õ(n+m).

Sticking into Deutsch-Jozsa, get R1 and QE upper bound of

Õ(n+m).
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(Negative) input with exactly one
zero in each column.

� An R0 algorithm can reject
only if it has found m/2 ze-
roes.

Requires Ω(nm) queries.
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� Upper bound for R1 and QE is Õ(n+m).
� Lower bound for a R0 algorithm is Ω(nm).

Taking n = m, we get a quadratic separation between R1 and R0,
as well as between QE and R0

NB. The previous separation was [Ambainis’12]:

QE = O(R0.8675...
0 )
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� Back pointers are to columns.
� Accept iff

� . . .
� all the leaves back point to the all-1 column b.
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Adversary Method.
Let n = 2m.
If the kth element is queried in a column:

� If k ≤ m, return 1 .
� Otherwise, return 0 with back

pointer to column k −m.

0

1

1

1

1

1

1

1

1 0

0

At the end, the column contains m 1 and m 0 with back pointers
to all columns 1, 2, . . . ,m.

� The algorithm does not know the value of the function until it
has queried > m elements in each of m columns.

Lower bound: Ω(m2).
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� Each column contains a back pointer to the all-1 column.
BUT which one is the right one—?

We try each back pointer by quering few elements in the column,
and proceed to a one where no zeroes were found.

� Even if this is not the all-1 column,
we can arrange that it contains fewer zeroes whp.
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Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Definition

Lower Bound

Upper Bound

Summary

Conclusion

34 / 39

Algorithm

� Let c be the first column, and k ← n.
� While k > 1,

� Let c←ProcessColumn(c, k), and k ← k/2.

ProcessColumn(column c, integer k)
� Query all elements in column c.
� If there are no zeroes, verify column c.
� If there are more then k zeroes, query all nm variables, and

output the value of the function.
� For each zero a:

� Let j be the back pointer of a.
� Query Õ(n/k) elements in column j. (Probability < 1

(nm)2

that no zero found if there are > k/2 of them).
� If no zero was found, return j.

� Reject
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Take n = 2m.

� Lower bound for a D algorithm is Ω(m2).

� Upper bound for a R0 algorithm is Õ(n+m).

We get a quadratic separation between R0 and D.
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Take n = 2m.

� Lower bound for a D algorithm is Ω(m2).

� Upper bound for a R0 algorithm is Õ(n+m).

We get a quadratic separation between R0 and D.

� Also, upper bound for a Q algorithm is Õ(
√
n+m).

We get a quartic separation between Q and D.

NB. Previous separation was quadratic: Grover’s search.
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R1 = Õ(R
1/2
0 )

QE = Õ(R
1/2
0 )

R0 = Õ(D1/2)

Q = Õ(D1/4)

Q = Õ(R
1/3
0 )

QE = Õ(R
2/3
2 )

d̃eg = Õ(R
1/4
2 )
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We have resolved R2 ↔ R0 and R1 ↔ D.

Can we resolve R2 ↔ D too?
Known: R2 = Ω(D1/3) and R2 = Õ(D1/2).

� Can we overcome the “certificate complexity barrier”?
Obtain a function with R2 = o(C)?

� The same about Q↔ D
Known: Q = Ω(D1/6) and Q = Õ(D1/4).

� and QE ↔ D?
Known: QE = Ω(D1/3) and QE = Õ(D1/2).
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Any questions?
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