
1 / 39

Separations in Query Complexity

Based on Pointer Functions

Alexander Belov
CWI

Joint work with: Andris Ambainis, Kaspars Balodis,

Troy Lee, Miklos Santha, and Juris Smotrovs



Introduction

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

2 / 39



Computation Models

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

3 / 39

D: Deterministic (Decision Tree)

nnn
nnn

nnn
nnn

nn

0
��
��
��
�

??
??

??
?

0
��
��
�

1

22
22

2
x3

x2
PPP

PPP
PPP

PPP
PP

1
??

??
??

?

��
��
��
�

0
��
��
�

1

22
22

2
x3

x2

x1

Complexity
• on input: Number of queries (length of the path) 2 or 3
• in total: Worst input (depth of the tree) 3



Computation Models

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

4 / 39

D: Deterministic (Decision Tree)
R: Randomized (Probability distribution on decision trees)

nnn
nnn

nnn
nnn

nn

0
��
��
��
�

??
??

??
?

0
��
��
�

1

22
22

2
xc

xb
PPP

PPP
PPP

PPP
PP

1
??

??
??

?

��
��
��
�

0
��
��
�

1

22
22

2
xc

xb

xa

Complexity
• on input: Expected number of queries 2 or 8

3

• in total: Worst input 8
3



Computation Models

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

5 / 39

D: Deterministic (Decision Tree)
R: Randomized (Probability distribution on decision trees)

R0: Zero-error (Las Vegas)

� always outputs a correct output

R1: One-sided error

� always rejects a negative input
� accepts a positive input with probability ≥ 1

2

(or vice versa)

R2: Bounded-error (Monte Carlo)

� rejects a negative input with probability≥ 2
3

� accepts a positive input with probability ≥ 2
3



Computation Models

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

6 / 39

D: Deterministic (Decision Tree)
R: Randomized (Probability distribution on decision trees)

R0: Zero-error (Las Vegas)
R1: One-sided error
R2: Bounded-error (Monte Carlo)

Q: Quantum bounded-error

QE : Quantum exact



Separations

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

7 / 39

Easy for partial functions



Separations

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

7 / 39

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0



Separations

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

7 / 39

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0

R1 = 1



Separations

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

7 / 39

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0

R1 = 1, QE = 1,



Separations

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

7 / 39

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0

R1 = 1, QE = 1, R0 = n/2 + 1

0 0 0 0



Separations

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

7 / 39

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0

R1 = 1, QE = 1, R0 = n/2 + 1

0 0 0 0

Total Functions — ???



A Previous Result

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

8 / 39

Iterated NAND: record-holder for R0, R1, R2 versus D

NAND

NAND
nnn

nnn
nnn

nn

NAND
��
��
�

x1
��
��
�

x2

//
//
/

NAND

??
??

?

x3
��
��
�

x4

//
//
/

NAND
PPP

PPP
PPP

PP

NAND
��
��
�

x4
��
��
�

x5

//
//
/

NAND

??
??

?

x7
��
��
�

x8

//
//
/



A Previous Result

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

8 / 39

Iterated NAND: record-holder for R0, R1, R2 versus D

NAND

NAND
nnn

nnn
nnn

nn

NAND
��
��
�

x1
��
��
�

x2

//
//
/

NAND

??
??

?

x3
��
��
�

x4

//
//
/

NAND
PPP

PPP
PPP

PP

NAND
��
��
�

x4
��
��
�

x5

//
//
/

NAND

??
??

?

x7
��
��
�

x8

//
//
/

We have [Snir’85, Saks & Wigderson’86]:

R0 = R1 = R2 = O(n0.7537...), D = n



Our Main Results

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

9 / 39

It is known [Nisan’89]
D = O(R2

1)

We get functions with:

D = Θ̃(R2
0) R0 = Θ̃(R2

1)

R1 R0 D R1 R0 D



Our Main Results

Introduction

Computation Models

Separations

A Previous Result

Our Main Results

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

9 / 39

It is known [Nisan’89]
D = O(R2

1)

We get functions with:

D = Θ̃(R2
0) R0 = Θ̃(R2

1)

R1 R0 D R1 R0 D

The last one also saturates [Kulkarni & Tal’13, Midrijānis’05]

R0 = Õ(R2
2)



Göös-Pitassi-Watson

Introduction

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Features

Our Modifications

R1 versus R0

R0 versus D

Conclusion

10 / 39



Paper

Introduction

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Features

Our Modifications

R1 versus R0

R0 versus D

Conclusion

11 / 39



Goal

Introduction

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Features

Our Modifications

R1 versus R0

R0 versus D

Conclusion

12 / 39

� Clique vs. Independent Set in communication complexity

� Reduce to a problem in query complexity: Find a function that

� has large deterministic complexity
� has small unambiguous 1-certificates

There exists a number of 1-certificates such that each
positive input satisfies exactly one of them.



D versus 1-certificates

Introduction

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Features

Our Modifications

R1 versus R0

R0 versus D

Conclusion

13 / 39

Function on nm Boolean variables

� Accept iff there exists a unique all-1 column

0

1

1

1

1

1

0 01

1

1

0

0 0

0 }
}

n

m

� D = nm
� short 1-certificates (n+m− 1), BUT not unambiguous.



D versus 1-certificates

Introduction

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Features

Our Modifications

R1 versus R0

R0 versus D

Conclusion

13 / 39

Function on nm Boolean variables

� Accept iff there exists a unique all-1 column

0

1

1

1

1

1

0 01

1

1

0

0 0

0 }
}

n

m

� D = nm
� short 1-certificates (n+m− 1), BUT not unambiguous.

Should specify which zero to take in each column



Pointers

Introduction

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Features

Our Modifications

R1 versus R0

R0 versus D

Conclusion

14 / 39

1

1 0

00

1

1

1

1

1

1

00

0

0

� Alphabet: {0, 1} × ([n]× [m] ∪ {⊥})
Not Boolean, but we can encode using O(log(n+m)) bits.

� Accept iff
� There is a (unique) all-1 column b;
� in b, there is a unique element r with non-zero pointer;
� following the pointers from r, we traverse through exactly

one zero in each column but b.



Pointers

Introduction

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Features

Our Modifications

R1 versus R0

R0 versus D

Conclusion

15 / 39

1

1 0

00

1

1

1

1

1

1

00

0

0

� Still have D = nm
� short unambigous 1-certificates (n+m− 1)



Features

Introduction

Göös-Pitassi-Watson

Paper

Goal

D versus 1-certificates

Pointers

Features

Our Modifications

R1 versus R0

R0 versus D

Conclusion

16 / 39

Highly elusive
(flexible)

Still traversable
(if know where to start).



Our Modifications

Introduction

Göös-Pitassi-Watson

Our Modifications

Binary Tree

Definition (base)

R1 versus R0

R0 versus D

Conclusion

17 / 39



Binary Tree

Introduction

Göös-Pitassi-Watson

Our Modifications

Binary Tree

Definition (base)

R1 versus R0

R0 versus D

Conclusion

18 / 39

Instead of a list

0

00
1

0

0
0

0

we use a balanced binary tree

1

0 0 0 0 0 0 0

� More elusive
� Random access



Definition (base)

Introduction

Göös-Pitassi-Watson

Our Modifications

Binary Tree

Definition (base)

R1 versus R0

R0 versus D

Conclusion

19 / 39

00

0 1

1

0

1

1

1

1

1

1

0

0

0

Accept iff
� There is a (unique) all-1 column b;
� in b, there is a unique element r with non-zero pointers;
� for each j 6= b, following a path T (j) from r gives a zero in the

jth column.
� Some additional information is contained in the leaves (to be

defined).



R1 versus R0

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Partial Separation

Definition

Totalisation

Check Column

Upper Bound

Lower Bound

Summary

R0 versus D

Conclusion

20 / 39



State of the Art

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Partial Separation

Definition

Totalisation

Check Column

Upper Bound

Lower Bound

Summary

R0 versus D

Conclusion

21 / 39

� NO separation was known even between R2 and R0.

(Iterated functions are not of much help here.)



Partial Separation

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Partial Separation

Definition

Totalisation

Check Column

Upper Bound

Lower Bound

Summary

R0 versus D

Conclusion

22 / 39

Recall the separation for a partial function

� Reject iff all input variables are zeroes

0 0 0 0 0 0 0 0

� Accept iff exactly half of the variables are ones

110 110 0 0



Definition

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Partial Separation

Definition

Totalisation

Check Column

Upper Bound

Lower Bound

Summary

R0 versus D

Conclusion

23 / 39

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

� Add a back pointer to each variable.
� Accept iff

� . . .
� exactly m/2 of the leaves back point to the root r.



Totalisation

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Partial Separation

Definition

Totalisation

Check Column

Upper Bound

Lower Bound

Summary

R0 versus D

Conclusion

24 / 39

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

A column is good if it contains a leaf back pointing to the root of a
legitimate tree.

� A positive input contains exactly m/2 good columns.
� A negative input contains no good columns.

A total function looks like a partial function.



Check Column: Informal

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Partial Separation

Definition

Totalisation

Check Column

Upper Bound

Lower Bound

Summary

R0 versus D

Conclusion

25 / 39

Deterministic subroutine

Given a column c ∈ [m], accept iff it
is good.

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

On each step we either

� eliminate a column: it is not the all-1 column; or
� eliminate an element in column c: it is not a leaf of the tree.



Check Column: Formal

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Partial Separation

Definition

Totalisation

Check Column

Upper Bound

Lower Bound

Summary

R0 versus D

Conclusion

26 / 39

Deterministic subroutine

Given a column c ∈ [m], accept iff it
is good.

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

� While there is ≥ 2 non-eliminated columns:

� Let a be a non-eliminated element in c. If none, reject .
� Let r be the back pointer of a, and b be the column of r.
� Let j be a non-eliminated column 6= b.
� If the path T (j) from r ends in a zero in column j,

eliminate column j.
Otherwise , eliminate element a.

� Verify the only non-eliminated column.



Upper Bound

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Partial Separation

Definition

Totalisation

Check Column

Upper Bound

Lower Bound

Summary

R0 versus D

Conclusion

27 / 39

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

� On each iteration of the loop, either an element or a column
gets eliminated. At most n+m iterations.
Complexity: Õ(n+m).

Sticking into Deutsch-Jozsa, get R1 and QE upper bound of

Õ(n+m).



Lower Bound

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Partial Separation

Definition

Totalisation

Check Column

Upper Bound

Lower Bound

Summary

R0 versus D

Conclusion

28 / 39

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1 1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

00

0

0

0

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1 1

1

1

1 1

(Negative) input with exactly one
zero in each column.

� An R0 algorithm can reject
only if it has found m/2 ze-
roes.

Requires Ω(nm) queries.

1

11

1

1

1

1

1 1 1

1

1

1

1

1 1

1

1

1

0

1

0

0

1

11

1

1

1

1

1

1

=⇒
1

1

1 1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0



Summary

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

State of the Art

Partial Separation

Definition

Totalisation

Check Column

Upper Bound

Lower Bound

Summary

R0 versus D

Conclusion

29 / 39

� Upper bound for R1 and QE is Õ(n+m).
� Lower bound for a R0 algorithm is Ω(nm).

Taking n = m, we get a quadratic separation between R1 and R0,
as well as between QE and R0

NB. The previous separation was [Ambainis’12]:

QE = O(R0.8675...
0 )



R0 versus D

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Definition

Lower Bound

Upper Bound

Summary

Conclusion

30 / 39



Definition

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Definition

Lower Bound

Upper Bound

Summary

Conclusion

31 / 39

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

� Back pointers are to columns.
� Accept iff

� . . .
� all the leaves back point to the all-1 column b.



Lower Bound

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Definition

Lower Bound

Upper Bound

Summary

Conclusion

32 / 39

Adversary Method.
Let n = 2m.
If the kth element is queried in a column:

� If k ≤ m, return 1 .
� Otherwise, return 0 with back

pointer to column k −m.

0

1

1

1

1

1

1

1

1 0

0

At the end, the column contains m 1 and m 0 with back pointers
to all columns 1, 2, . . . ,m.

� The algorithm does not know the value of the function until it
has queried > m elements in each of m columns.

Lower bound: Ω(m2).



Upper Bound: Informal

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Definition

Lower Bound

Upper Bound

Summary

Conclusion

33 / 39

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

� Each column contains a back pointer to the all-1 column.
BUT which one is the right one—?

We try each back pointer by quering few elements in the column,
and proceed to a one where no zeroes were found.

� Even if this is not the all-1 column,
we can arrange that it contains fewer zeroes whp.



Upper Bound: Formal

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Definition

Lower Bound

Upper Bound

Summary

Conclusion

34 / 39

Algorithm

� Let c be the first column, and k ← n.
� While k > 1,

� Let c←ProcessColumn(c, k), and k ← k/2.

ProcessColumn(column c, integer k)
� Query all elements in column c.
� If there are no zeroes, verify column c.
� If there are more then k zeroes, query all nm variables, and

output the value of the function.
� For each zero a:

� Let j be the back pointer of a.
� Query Õ(n/k) elements in column j. (Probability < 1

(nm)2

that no zero found if there are > k/2 of them).
� If no zero was found, return j.

� Reject



Summary

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Definition

Lower Bound

Upper Bound

Summary

Conclusion

35 / 39

Take n = 2m.

� Lower bound for a D algorithm is Ω(m2).

� Upper bound for a R0 algorithm is Õ(n+m).

We get a quadratic separation between R0 and D.



Summary

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Definition

Lower Bound

Upper Bound

Summary

Conclusion

35 / 39

Take n = 2m.

� Lower bound for a D algorithm is Ω(m2).

� Upper bound for a R0 algorithm is Õ(n+m).

We get a quadratic separation between R0 and D.

� Also, upper bound for a Q algorithm is Õ(
√
n+m).

We get a quartic separation between Q and D.

NB. Previous separation was quadratic: Grover’s search.



Conclusion

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

Results

Open Problems

36 / 39



Results

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

Results

Open Problems

37 / 39

R1 = Õ(R
1/2
0 )

QE = Õ(R
1/2
0 )

R0 = Õ(D1/2)

Q = Õ(D1/4)

Q = Õ(R
1/3
0 )

QE = Õ(R
2/3
2 )

d̃eg = Õ(R
1/4
2 )



Open Problems

Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

Results

Open Problems

38 / 39

We have resolved R2 ↔ R0 and R1 ↔ D.

Can we resolve R2 ↔ D too?
Known: R2 = Ω(D1/3) and R2 = Õ(D1/2).

� Can we overcome the “certificate complexity barrier”?
Obtain a function with R2 = o(C)?

� The same about Q↔ D
Known: Q = Ω(D1/6) and Q = Õ(D1/4).

� and QE ↔ D?
Known: QE = Ω(D1/3) and QE = Õ(D1/2).



Introduction

Göös-Pitassi-Watson

Our Modifications

R1 versus R0

R0 versus D

Conclusion

Results

Open Problems

39 / 39

Any questions?


	Introduction
	Computation Models
	Separations
	A Previous Result
	Our Main Results

	Göös-Pitassi-Watson
	Paper
	Goal
	D versus 1-certificates
	Pointers
	Features

	Our Modifications
	Binary Tree
	Definition (base)

	R1 versus R0[width=4cm]fight01.eps
	State of the Art
	Partial Separation
	Definition
	Totalisation
	Check Column: Informal
	Upper Bound
	Lower Bound
	Summary

	R0 versus D[width=6cm]fight02.eps
	Definition
	Lower Bound
	Upper Bound: Informal
	Summary

	Conclusion
	Results
	Open Problems


