Separations in Query Complexity using Cheat Sheets

Scott Aaronson, Shalev Ben-David, Robin Kothari

Query Complexity

- Fix a Boolean function $f : \{0,1\}^n \rightarrow \{0,1\}$
- How many queries to an unknown binary string x do we need in order to compute f(x)?
 - D(f) = deterministic queries
 - R(f) = randomized queries (with bounded error)
 - Q(f) = quantum queries (with bounded error)

Gap Between D and R

- f(x) = 1 if x has 2/3 or more 1s
- f(x) = 0 if x has 1/3 or less 1s
- We assume that x satisfies one of the above conditions
- R(f)=1, D(f) ≈ n

Gap Between R and Q

- Simon's problem [Simon '94]:
 - Suppose x consists of 2^m blocks of m bits
 - The position of a block is an m-bit index
 - Assume there's a hidden m-bit string s such that two blocks are equal iff the xor of their positions is s
 - Goal: find the first bit of s
- Quantum query complexity: O(log² n)
- Randomized query complexity: $\Omega^{\sim}(\sqrt{n})$

Gap Between R and Q

- Forrelation [Aaronson, Ambainis 2014]
 - Split x into two parts, each containing 2^m blocks of m bits
 - Interpret this as two functions from {0,1}^m to {0,1}^m
 - Assume that the first function is either highly correlated with the Fourier transform of the second, or else has near-zero correlation
 - Goal: determine which is the case
- Quantum Query Complexity: 1
- Randomized Query Complexity: Ω(Vn/log n)

Gap between R and Q

- k-fold Forrelation:
 - Quantum Query Complexity O(k)
 - Conjectured to have randomized query complexity Ω(n^{1-1/k})
- If so, this is the optimal separation
- $k = \log n$ gives $O(\log n)$ vs. $\Omega(n)$

What about total functions?

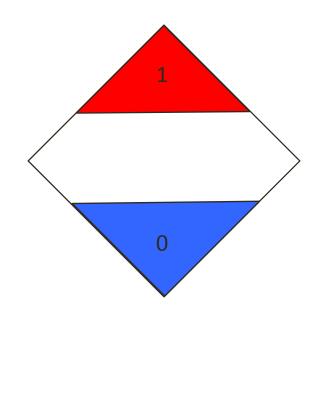
• [BBCMdW '98]:

 $D(f) = O(R(f)^3)$ $D(f) = O(Q(f)^6)$

• So none of these constructions can work for total functions!

What about total functions?

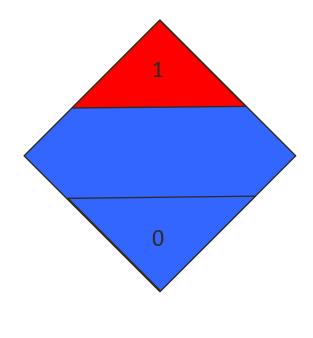
- Saks, Wigderson '86:
 - And-Or tree of depth log n
 - Deterministic query complexity Ω(n)
 - Randomized query complexity Θ(n^{0.753})
- Grover '96:
 - OR
 - Randomized query complexity Ω(n)
 - Quantum query complexity $\Theta(\sqrt{n})$


Separations in 2015

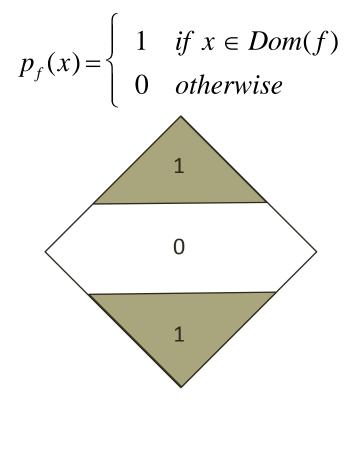
- April 4 (Göös, Pitassi, Watson):
 - Introduced the idea of pointer functions
 - Quadratic separation between D(f) and deg(f)
- June 16 (Ambainis, Balodis, Belovs, Lee, Santha, Smotrovs):
 - Quadratic separation between D(f) and R(f)
 - Power 4 separation between D(f) and Q(f)
 - Many other separations, involving $R_0(f)$ and $Q_E(f)$
- June 26 (B.):
 - Power 2.5 separation between R(f) and Q(f)
 - Introduced cheat sheets
- Nov 5 (Aaronson, B., Kothari):
 - Used cheat sheets to reprove many of the other separations
 - Power 4-o(1) separation between Q(f) and approximate degree

Cheat Sheets

Turning partial functions total


- Given a partial function f that has a good separation, how can we turn it total?
- For concreteness, set f to be f(x) = 1 if x is 2/3 ones, 0 if x is 2/3 0s ("two-thirds")

Turning partial functions total


• Attempt:

$$f'(x) = \begin{cases} f(x) & \text{if } x \in Dom(f) \\ 0 & \text{otherwise} \end{cases}$$

Turning partial functions total

• The problem is that the *promise* is difficult for a randomized algorithm to calculate

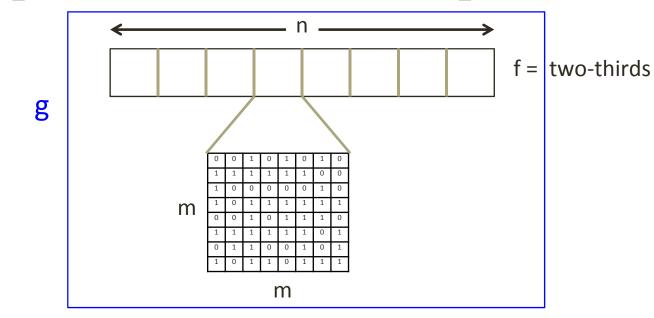
- Change the function so that it is easy to certify if an input satisfies the promise
- Also, make it easy to certify whether f(x) is 0 or 1
- But make sure not to decrease D(f)!
- Idea: Compose with AND-OR

0	0	1	0	1	0	1	0
1	1	1	1	1	1	0	0
1	0	1	0	0	0	1	0
1	0	1	1	1	1	1	1
0	0	1	0	1	1	1	0
1	1	1	1	1	1	0	1
0	1	1	0	0	1	0	1
1	0	1	1	0	1	1	1

- Change the function so that it is easy to certify if an input satisfies the promise
- Also, make it easy to certify whether f(x) is 0 or 1
- But make sure not to decrease D(f)!
- Idea: Compose with AND-OR

0	0	1	0	1	0	1	0
1	1	1	1	1	1	0	0
1	0	1	0	0	0	1	0
1	0	1	1	1	1	1	1
0	0	1	0	1	1	1	0
1	1	1	1	1	1	0	1
0	1	1	0	0	1	0	1
1	0	1	1	0	1	1	1

- Change the function so that it is easy to certify if an input satisfies the promise
- Also, make it easy to certify whether f(x) is 0 or 1
- But make sure not to decrease D(f)!
- Idea: Compose with AND-OR


0	0	1	0	1	0	1	0
1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0
1	0	1	1	1	1	1	1
0	0	1	0	1	1	1	0
1	1	1	1	1	1	0	1
0	1	1	0	0	1	0	1
1	0	1	1	0	1	1	1

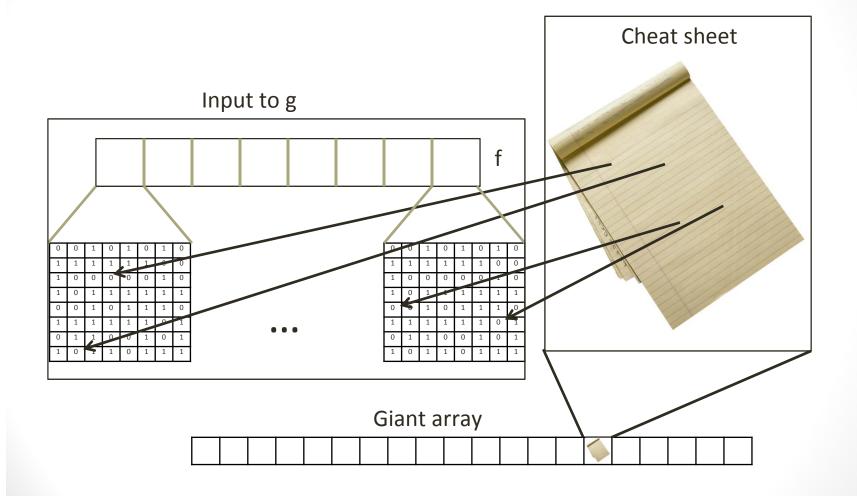
- Change the function so that it is easy to certify if an input satisfies the promise
- Also, make it easy to certify whether f(x) is 0 or 1
- But make sure not to decrease D(f)!

Idea: Compose with AND-OR

-						-	
0	0	1	0	1	0	1	0
1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0
1	0	1	1	1	1	1	1
0	0	1	0	1	1	1	0
1	1	1	1	1	1	0	1
0	1	1	0	0	1	0	1
1	0	1	1	0	1	1	1

Properties of the composition

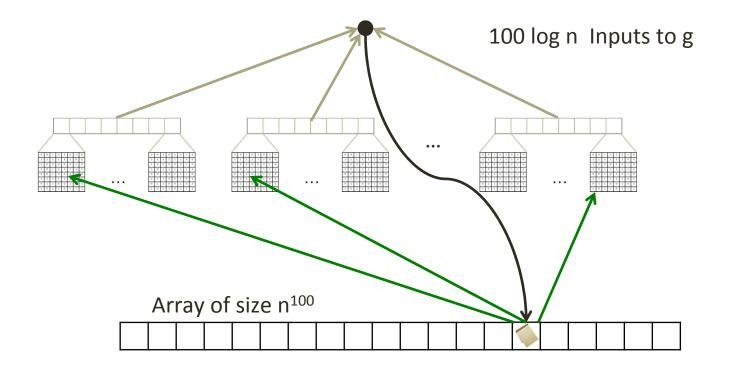
• $D(AND-OR) = m^2$, $R(AND-OR) = \Omega(m^2)$


• $D(g) = nm^2$, $R(g) = O(m^2)$

- An input x can be certified to be in the promise of g by certifying all the AND-OR copies (using nm bits)
- This also certifies whether g(x) is 0 or 1
- But g is still not a total function!

<u>Step 2</u>: hide a cheat sheet

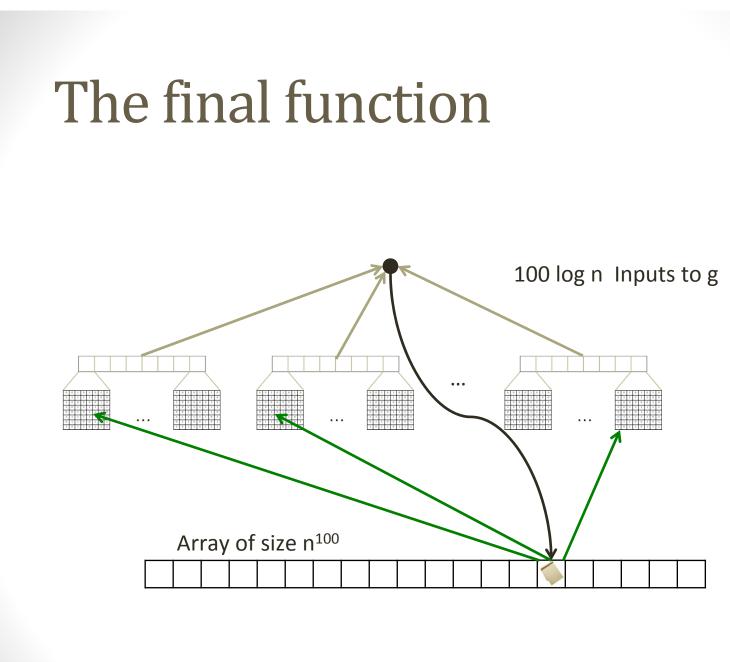
- So far:
 - D(g) large
 - R(g) small
 - For every input x in the promise of g, there is a small cheat sheet that tells us everything about it
- Next step:
- change g so it contains the cheat sheet inside it
- Make sure only a randomized algorithm will be able to find the cheat sheet


<u>Step 2</u>: hide a cheat sheet

<u>Step 3</u>: find the cheat sheet

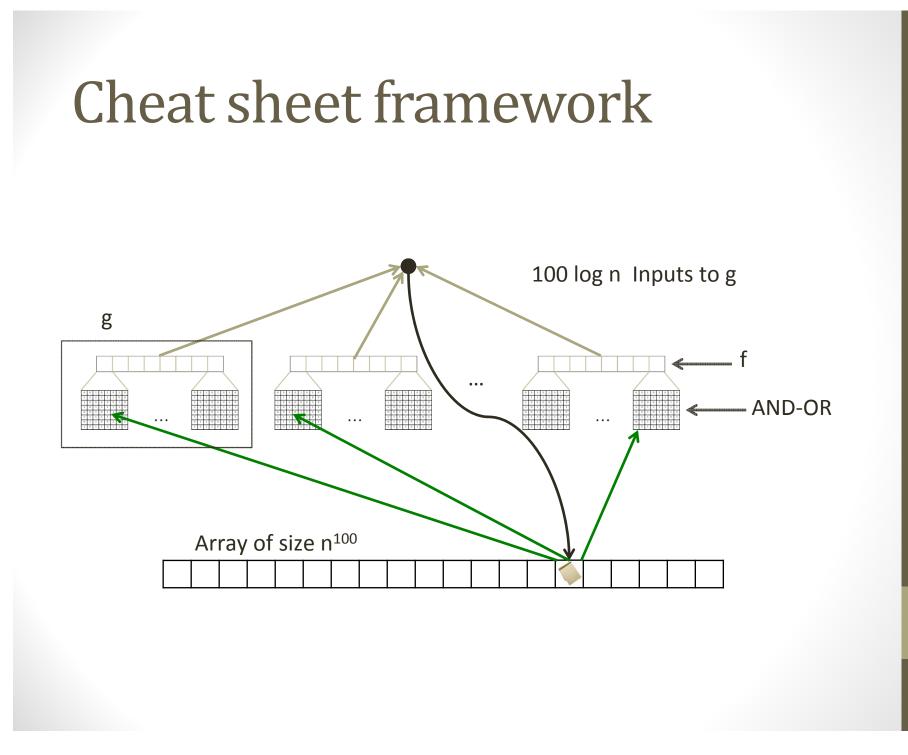
- We want to let a randomized algorithm find the cheat sheet
- We want a deterministic algorithm to NOT find it
- What can a randomized algorithm do that a deterministic one can't?
- Solve g!
- Idea: let g(x) describe where the cheat sheet is
- **Problem**: g(x) is only one bit
- Solution: use 100 log n copies of g to describe a position in an array of size n¹⁰⁰

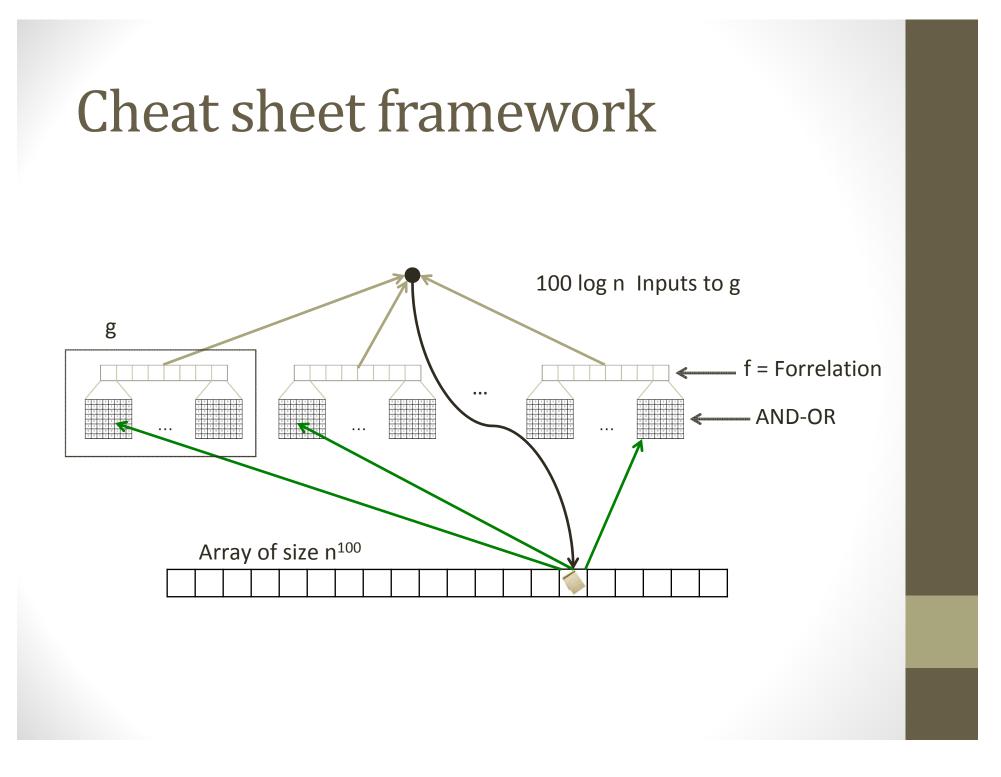
<u>Step 3</u>: Find the cheat sheet

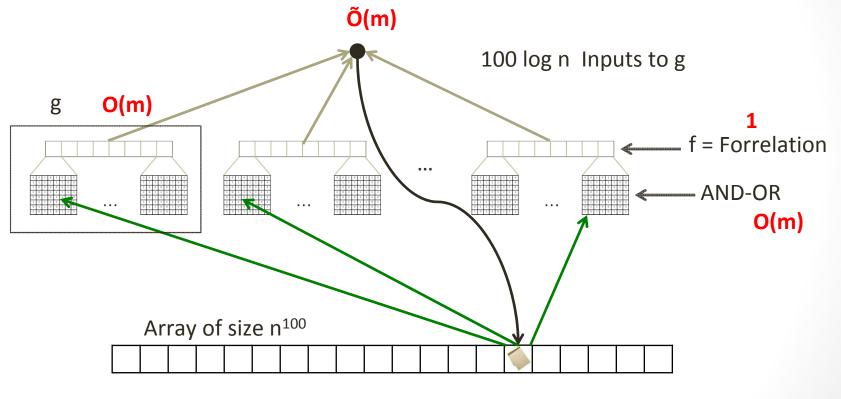


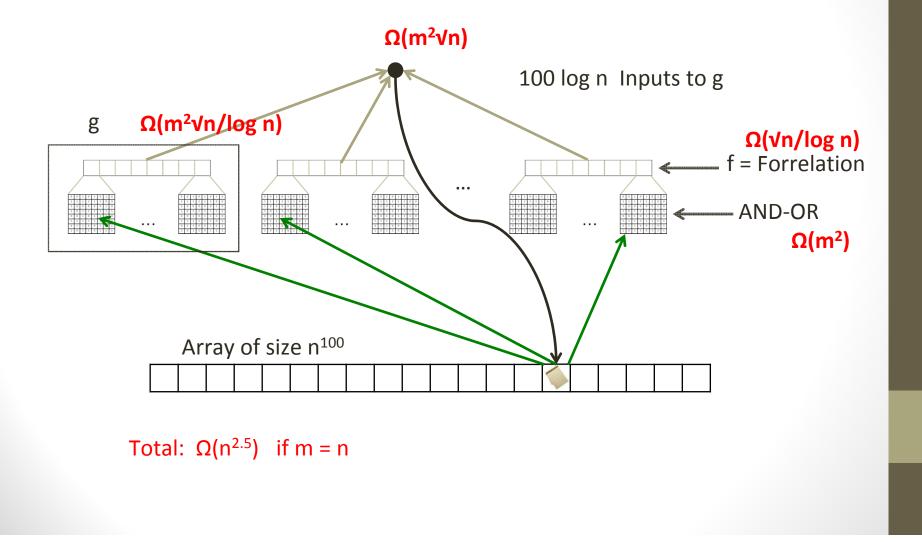
The final function

- Let g_{cs} be defined by
 - $g_{cs}(x) = 1$ if x has a valid cheat sheet in the right spot of the array
 - g_{cs}(x) = 0 otherwise
- Then g_{cs} is a total function!
- R(g_{cs}) = ?
- Need to compute g 100 log n times
 - Each takes O(m²)
- Need to check that the cheat sheet is valid
 - There are nm pointers per copy of g, times 100 log n copies
 - Each takes O(log nm) queries to read, so Õ(nm)
- Total is nm + m² (times log factors)

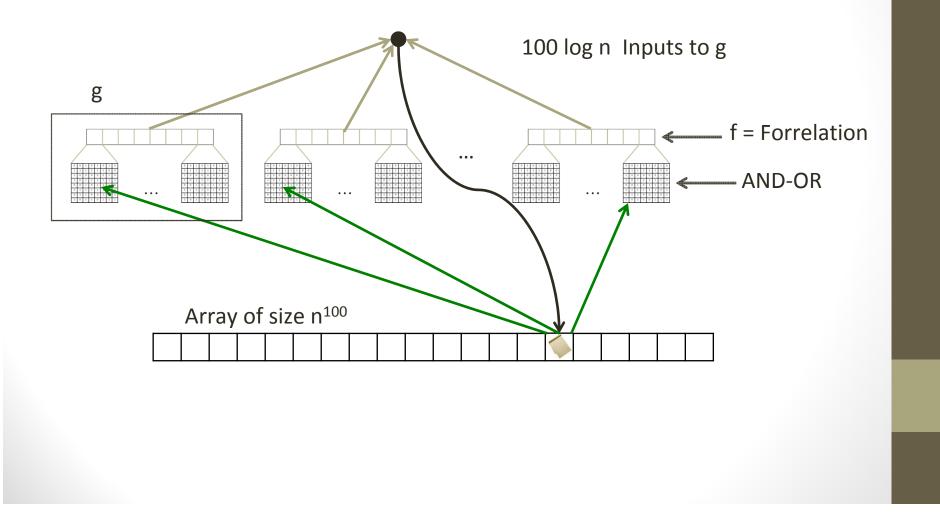

The final function


- Let g_{cs} be defined by
 - $g_{cs}(x) = 1$ if x has a valid cheat sheet in the right spot of the array
 - g_{cs}(x) = 0 otherwise
- Then g_{cs} is a total function!
- D(g_{CS}) = ?
- Blindly searching the array is hopeless
- Must compute g at least once
- $D(g_{CS}) = \Omega(nm^2)$
- Setting m=n gives $D(g_{CS}) \approx n^3$, $R(g_{CS}) \approx n^2$


A Super-Grover Speedup



How many quantum queries?



Verifying certificate for g: **n** queries to read input to f, plus **VmVn** to Grover search over n certificates of size m looking for an error Total: $\tilde{O}(n + m + \sqrt{mVn}) = \tilde{O}(n)$ if m = n

How many random queries?

Conclusion: power 2.5 speedup

Summary

- Power 2.5 separation between randomized and quantum query complexity
- Becomes power 3 separation if we can show a log n vs. n separation in the promise setting
- Best known upper bound is 6

Communication Complexity?

- We want to lift this to communication complexity
- We could use a measure that
 - Lower-bounds R(f)
 - Give a good lower bound for forrelation (or Simon's)
 - Composes (with AND-OR)
 - Is preserved under addition of cheat sheets
 - Lifts to communication lower bound
- Alternatively, lift to communication complexity before adding cheat sheets
- Prove a lower bound on R for cheat sheet functions in communication complexity

More Complexity Measures

	D	R_0	R	C	RC	bs	Q_E	deg	Q	$\widetilde{\mathrm{deg}}$
D	4	2, 2	2*, 3	2, 2	2*, 3	2*, 3	2, 3	2, 3	4*, 6	4*, 6
D		$[ABB^+15]$	$[ABB^+15]$	ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GPW15]	[ABB+15]	[ABB+15]
R_0	1, 1		2, 2	2, 2	2*, 3	2*, 3	2, 3	2, 3	3, 6	4*, 6
140	\oplus		$[ABB^+15]$	ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GJPW15]	$[ABB^+15]$	$[ABB^+15]$
R	1, 1	1, 1		2, 2	2*, 3	2*, 3	1.5, 3	2, 3	2.5, 6	4*, 6
10	\oplus	\oplus		ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GJPW15]	Th. 1	$[ABB^+15]$
C	1, 1	1, 1	1, 2		2, 2	2, 2	1.1527, 3	$\log_3 6, 3$	2, 4	2, 4
C	0	\oplus	\oplus		[GSS13]	[GSS13]	[Amb13]	[NW95]	^	^
RC	1, 1	1, 1	1, 1	1, 1		1.5, 2	1.1527, 3	$\log_3 6, 3$	2, 2	2, 2
ne	Ð	Ð	\oplus	\oplus		[GSS13]	[Amb13]	[NW95]	^	^
bs	1, 1	1, 1	1, 1	1, 1	1, 1		1.1527, 3	$\log_3 6, 3$	2, 2	2, 2
00	Ð	\oplus	\oplus	\oplus	\oplus		[Amb13]	[NW95]	^	^
Q_E	1, 1	1.3267, 2	1.3267, 3	2, 2	2*, 3	2*, 3		2, 3	2, 6	4*, 6
SE.	\oplus	⊼-tree	⊼-tree	ΛοV	ΛοV	ΛοV		Th. 4	^	Th. 2
deg	1, 1	1.3267, 2	1.3267, 3	2, 2	2*, 3	2*, 3	1, 1		2, 6	2, 6
ucg	\oplus	⊼-tree	⊼-tree	ΛοV	ΛοV	ΛοV	\oplus		Λ	Λ
Q	1, 1	1, 1	1, 1	2, 2	2*, 3	2*, 3	1, 1	2, 3		4*, 6
4	\oplus	\oplus	\oplus	Th. 3	Th. 3	Th. 3	\oplus	Th. 4		Th. 2
$\tilde{1}$	1, 1	1, 1	1, 1	7/6, 2	7/6, 3	7/6, 3	1, 1	1, 1	1, 1	
$\widetilde{\operatorname{deg}}$	\oplus	\oplus	\oplus	$\land \circ ED$	$\land \circ ED$	$\land \circ ED$	\oplus	\oplus	\oplus	

New separations

Separations we reprove

More Complexity Measures

	D	R_0	R	C	RC	bs	Q_E	deg	Q	$\widetilde{\mathrm{deg}}$
D		2, 2	2*, 3	2, 2	2*, 3	2*, 3	2, 3	2, 3	4*, 6	4*, 6
D		$[ABB^+15]$	$[ABB^+15]$	ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GPW15]	$[ABB^+15]$	$[ABB^+15]$
R_0	1, 1		2, 2	2, 2	2*, 3	2*, 3	2, 3	2, 3	3, 6	4*, 6
140	\oplus		$[ABB^+15]$	ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GJPW15]	$[\mathrm{ABB^+15}]$	[ABB+15]
R	1, 1	1, 1		2, 2	2*, 3	2*, 3	1.5, 3	2, 3	2.5, 6	4*, 6
n	\oplus	\oplus		ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GJPW15]	Th. 1	[ABB+15]
C	1, 1	1, 1	1, 2		2, 2	2, 2	1.1527, 3	$\log_3 6, 3$	2, 4	2, 4
Č	\oplus	\oplus	\oplus		[GSS13]	[GSS13]	[Amb13]	[NW95]	^	Λ
RC	1, 1	1, 1	1, 1	1, 1		1.5, 2	1.1527, 3	$\log_3 6, 3$	2, 2	2, 2
ne	\oplus	\oplus	\oplus	\oplus		[GSS13]	[Amb13]	[NW95]	^	Λ
bs	1, 1	1, 1	1, 1	1, 1	1, 1		1.1527, 3	$\log_3 6, 3$	2, 2	2, 2
05	\oplus	\oplus	\oplus	\oplus	\oplus		[Amb13]	[NW95]	^	Λ
Q_E	1, 1	1.3267, 2	1.3267, 3	2, 2	2*, 3	2*, 3		2, 3	2, 6	4*, 6
4E	\oplus	⊼-tree	⊼-tree	ΛοV	ΛοV	ΛοV		Th. 4	Λ	Th. 2
deg	1, 1	1.3267, 2	1.3267, 3	2, 2	2*, 3	2*, 3	1, 1		2, 6	2, 6
ueg	\oplus	⊼-tree	⊼-tree	ΛοV	ΛοV	ΛοV	\oplus		٨	Λ
Q	1, 1	1, 1	1, 1	2, 2	2*, 3	2*, 3	1, 1	2, 3		4*, 6
4	\oplus	\oplus	\oplus	Th. 3	Th. 3	Th. 3	\oplus	Th. 4		Th. 2
	1, 1	1, 1	1, 1	7/6, 2	7/6, 3	7/6, 3	1, 1	1, 1	1, 1	
$\widetilde{\mathrm{deg}}$	\oplus	\oplus	\oplus	$\land \circ ED$	$\land \circ ED$	$\land \circ ED$	\oplus	\oplus	\oplus	

New separations

Separations we reprove

Approximate Degree

- Lower bound for Q
- Previous separation: 1.3 (Ambainis 2003)
- This work: 4 o(1)
- Most complicated function used in query complexity
 - At the time, at least...

Unambiguous Certificates

- A set of <u>unambiguous 1-certificates</u> is a set of 1-certificates for f such that
 - Any two of them contradict each other
 - Any 1-input to f contains one of them
- Example: $f = OR_4$
 - 1____ 01___ 001__ 0001
- Let UC⁽¹⁾(f) be the size of the largest certificate in the best choice of unambiguous 1-certificates

Polynomials from UC⁽¹⁾

- Let S be a set of unambiguous 1-certificates for f
- For any certificate c in S, there is a low-degree polynomial p_c for checking if the input contains the certificate
 - p_c(x)=1 iff x contains c
 - deg(p_c) = |c|
- Add up p_c for all c in S to get a polynomial p
- Each 1-input contains exactly one certificate in S
 - p(x) = 1 if f(x)=1
 - p(x) = 0 if f(x)=0
- Conclusion: $deg(f) \leq UC^{(1)}(f)$

Approximate degree from UC⁽¹⁾

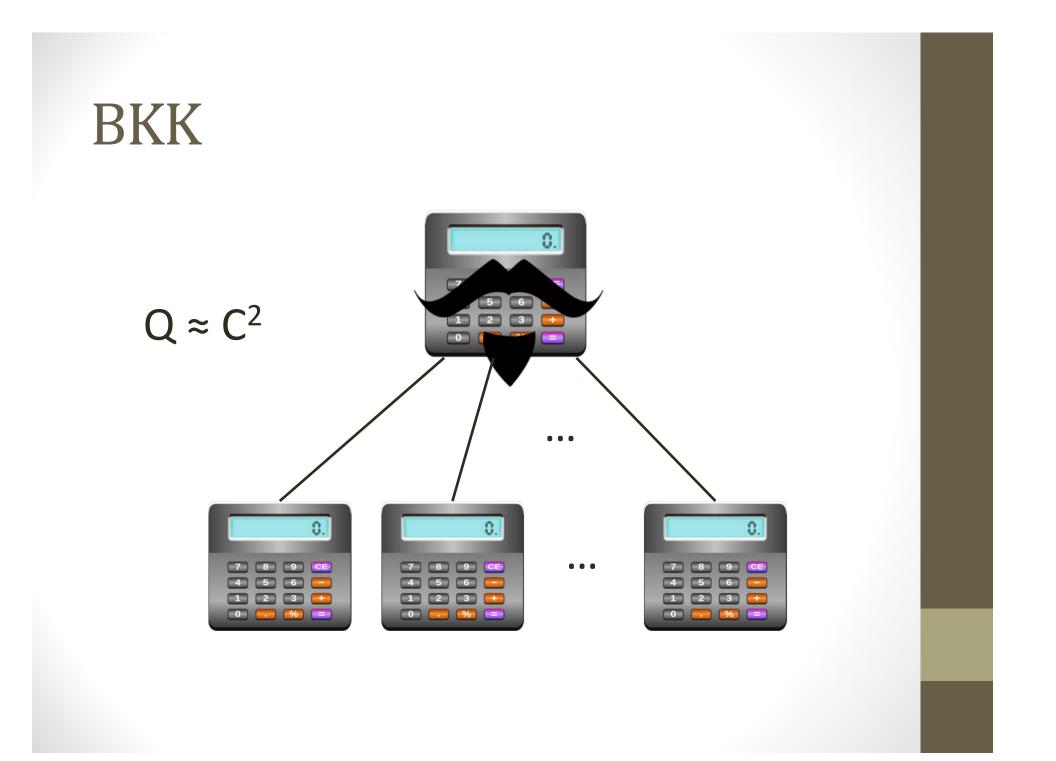
- Let S be a set of unambiguous 1-certificates for f
- Suppose that for any certificate c in S, there is a low-degree polynomial p_c for checking if the input contains the certificate
 - $p_c(x) \ge 2/3$ if x contains c
 - $p_c(x) = 0$ if x does not contain c
- Add up p_c for all c in S to get a polynomial p
- Each 1-input contains exactly one certificate in S
 - $p(x) \ge 2/3$ if f(x)=1
 - p(x) = 0 if f(x)=0
- Conclusion: adeg(f) ≤ Quantum complexity of checking UC⁽¹⁾ certificates

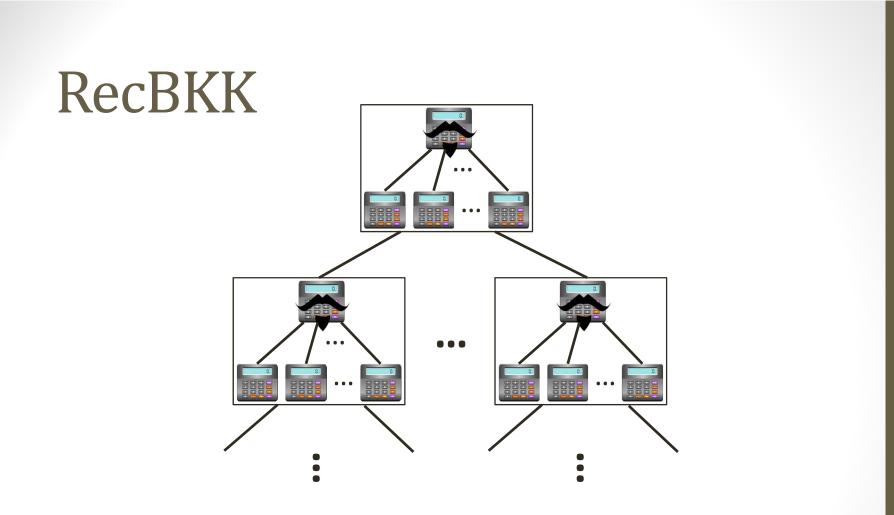
Cheat Sheets and UC⁽¹⁾

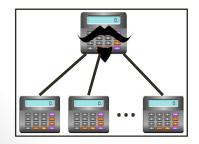
- **Observation**: $UC^{(1)}(f_{CS}) \approx C(f)$
- The unambiguous 1-certificates will be the correct cheat sheet cell and all the certificates it points to
- Implication: $deg(f_{CS}) \le C(f)$
- So adding a cheat sheet to AND-OR gives a quadratic gap between deg and R
- Since certificates for AND-OR can be checked in Vm quantum queries, this gives a power 4 separation between adeg and R

• What about Q?

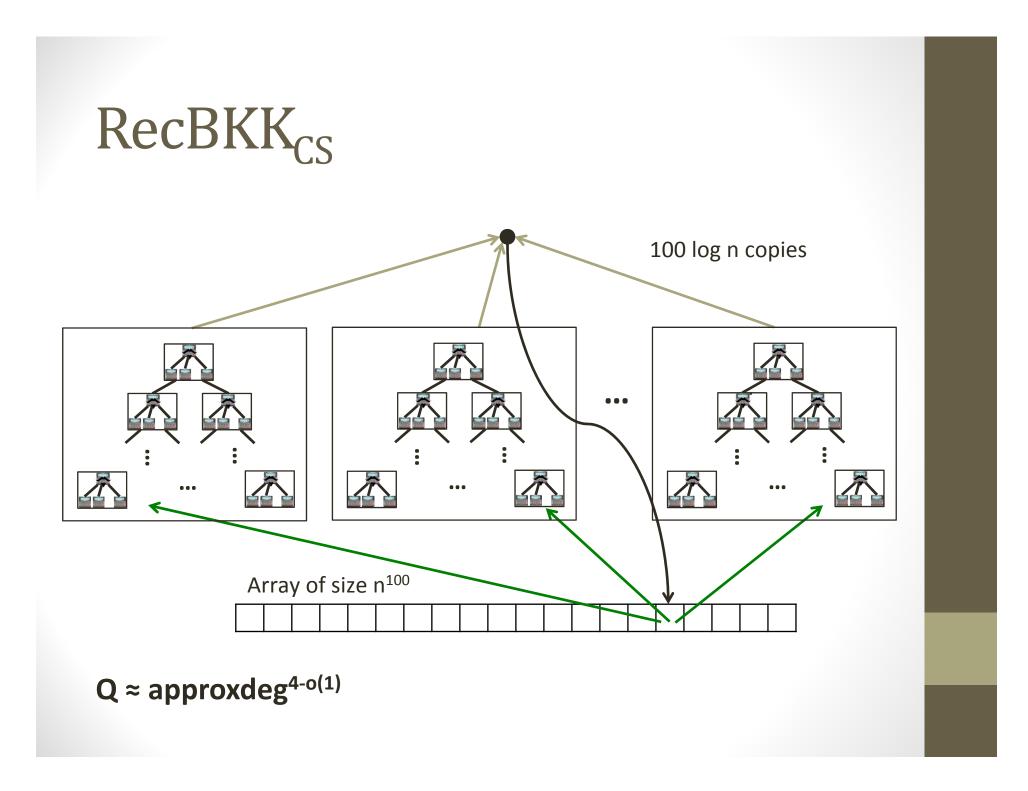
k-Sum


- Are there k elements summing to 0 mod M?
- Set k = log n
- $Q \approx n$, $C^{(1)} \approx polylog n$ (Belovs and Špalek 2013)




Block k-Sum

- Split input into blocks; a block is balanced if it has the same number of 0s and 1s
- Balanced blocks represent numbers
- If there are log n balanced blocks summing to 0 mod M and all other blocks have at least as many 1s as 0s, f(x) = 1
- Q is large, all certificates use almost only 1s



Open Problems

	D	R_0	R	C	RC	bs	Q_E	deg	Q	$\widetilde{\mathrm{deg}}$
D		2, 2	2*, 3	2, 2	2*, 3	2*, 3	2, 3	2, 3	4*, 6	4*, 6
		$[ABB^+15]$	$[ABB^+15]$	ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GPW15]	$[ABB^+15]$	$[ABB^+15]$
R_0	1, 1		2, 2	2, 2	2*, 3	2*, 3	2, 3	2, 3	3, 6	4*, 6
	\oplus		$[ABB^+15]$	ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GJPW15]	$[ABB^+15]$	$[ABB^+15]$
R	1, 1	1, 1		2, 2	2*, 3	2*, 3	1.5, 3	2, 3	2.5, 6	4*, 6
	\oplus	\oplus		ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GJPW15]	Th. 1	$[ABB^+15]$
С	1, 1	1, 1	1, 2		2, 2	2, 2	1.1527, 3	$\log_3 6, 3$	2, 4	2, 4
	\oplus	\oplus	\oplus		[GSS13]	[GSS13]	[Amb13]	[NW95]	<u>^</u>	Λ
RC	1, 1	1, 1	1, 1	1, 1		1.5, 2	1.1527, 3	$\log_3 6, 3$	2, 2	2, 2
	Ð	\oplus	\oplus	\oplus		[GSS13]	[Amb13]	[NW95]	^	Λ
bs	1, 1	1, 1	1, 1	1, 1	1, 1		1.1527, 3	$\log_3 6, 3$	2, 2	2, 2
00	\oplus	\oplus	\oplus	\oplus	\oplus		[Amb13]	[NW95]	^	Λ
Q_E	1, 1	1.3267, 2	1.3267, 3	2, 2	2*, 3	2*, 3		2, 3	2, 6	4*, 6
4L	\oplus	⊼-tree	⊼-tree	ΛοV	ΛοV	ΛοV		Th. 4	^	Th. 2
deg	1, 1	1.3267, 2	1.3267, 3	2, 2	2*, 3	2*, 3	1, 1		2, 6	2, 6
ueg	\oplus	⊼-tree	⊼-tree	ΛοV	ΛοV	ΛοV	\oplus		\wedge	Λ
\overline{Q}	1, 1	1, 1	1, 1	2, 2	2*, 3	2*, 3	1, 1	2, 3		4*, 6
	\oplus	\oplus	\oplus	Th. 3	Th. 3	Th. 3	\oplus	Th. 4		Th. 2
$\widetilde{\mathrm{deg}}$	1, 1	1, 1	1, 1	7/6, 2	7/6, 3	7/6, 3	1, 1	1, 1	1, 1	
	\oplus	\oplus	\oplus	$\wedge \circ \mathrm{Ed}$	$\wedge \circ \mathrm{Ed}$	$\wedge \circ \mathrm{Ed}$	\oplus	\oplus	\oplus	

Open Problems

	D	R_0	R	C	RC	bs	Q_E	deg	Q	$\widetilde{\mathrm{deg}}$
D		2, 2	2*, 3	2, 2	2*, 3	2*, 3	2, 3	2, 3	4*, 6	4*, 6
		$[ABB^+15]$	$[ABB^+15]$	ΛοV	۸۰V	٨٥V	[ABB+15]	[GPW15]	$[ABB^+15]$	[ABB+15]
R_0	1, 1		2, 2	2, 2	2*, 3	2*, 3	2, 3	2, 3	3, 6	4*, 6
	\oplus		$[ABB^+15]$	ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GJPW15]	$[ABB^+15]$	$[ABB^+15]$
R	1, 1	1, 1		2, 2	2*, 3	2*, 3	1.5, 3	2, 3	2.5, 6	4*, 6
	\oplus	\oplus		ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GJPW15]	Th. 1	$[ABB^+15]$
С	1, 1	1, 1	1, 2		2, 2	2, 2	1.1527, 3	$\log_3 6, 3$	2, 4	2, 4
	Ð	\oplus	\oplus		[GSS13]	[GSS13]	[Amb13]	[NW95]	^	Λ
RC	1, 1	1, 1	1, 1	1, 1		1.5, 2	1.1527, 3	$\log_3 6, 3$	2, 2	2, 2
	\oplus	\oplus	\oplus	\oplus		[GSS13]	[Amb13]	[NW95]	^	Λ
bs	1, 1	1, 1	1, 1	1, 1	1, 1		1.1527, 3	$\log_3 6, 3$	2, 2	2, 2
	\oplus	\oplus	\oplus	\oplus	\oplus		[Amb13]	[NW95]	Λ	Λ
Q_E	1, 1	1.3267, 2	1.3267, 3	2, 2	2*, 3	2*, 3		2, 3	2, 6	4*, 6
4L	\oplus	⊼-tree	⊼-tree	۸۰V	ΛοV	ΛοV		Th. 4	Λ	Th. 2
deg	1, 1	1.3267, 2	1.3267, 3	2, 2	2*, 3	2*, 3	1, 1		2, 6	2, 6
ueg	\oplus	⊼-tree	⊼-tree	ΛοV	ΛοV	ΛοV	\oplus		\wedge	Λ
Q	1, 1	1, 1	1, 1	2, 2	2*, 3	2*, 3	1, 1	2, 3		4*, 6
	Ð	\oplus	\oplus	Th. 3	Th. 3	Th. 3	\oplus	Th. 4		Th. 2
$\widetilde{1}$	1, 1	1, 1	1, 1	7/6, 2	7/6, 3	7/6, 3	1, 1	1, 1	1, 1	
$\widetilde{\mathrm{deg}}$	\oplus	\oplus	\oplus	$\land \circ ED$	$\wedge \circ \mathrm{Ed}$	$\wedge \circ \mathrm{Ed}$	\oplus	\oplus	\oplus	

Open Problems

	D	R_0	R	C	RC	bs	Q_E	deg	Q	$\widetilde{\mathrm{deg}}$
D		2, 2	2*, 3	2, 2	2*, 3	2*, 3	2, 3	2, 3	4*, 6	4*, 6
		$[ABB^+15]$	$[ABB^+15]$	ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GPW15]	$[ABB^+15]$	$[ABB^+15]$
R_0	1, 1		2, 2	2, 2	2*, 3	2*, 3	2, 3	2, 3	3, 6	4*, 6
	\oplus		$[ABB^+15]$	ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GJPW15]	$[ABB^+15]$	$[ABB^+15]$
R	1, 1	1, 1		2, 2	2*, 3	2*, 3	1.5, 3	2, 3	2.5, 6	4*, 6
	\oplus	\oplus		ΛοV	ΛοV	ΛοV	$[ABB^+15]$	[GJPW15]	Th. 1	$[ABB^+15]$
С	1, 1	1, 1	1, 2		2, 2	2, 2	1.1527, 3	$\log_3 6, 3$	2, 4	2, 4
	\oplus	\oplus	\oplus		[GSS13]	[GSS13]	[Amb13]	[NW95]	\wedge	Λ
RC	1, 1	1, 1	1, 1	1, 1		1.5, 2	1.1527, 3	$\log_3 6, 3$	2, 2	2, 2
	Ð	\oplus	\oplus	\oplus		[GSS13]	[Amb13]	[NW95]	^	Λ
bs	1, 1	1, 1	1, 1	1, 1	1, 1		1.1527, 3	$\log_3 6, 3$	2, 2	2, 2
00	\oplus	\oplus	\oplus	\oplus	\oplus		[Amb13]	[NW95]	^	Λ
Q_E	1, 1	1.3267, 2	1.3267, 3	2, 2	2*, 3	2*, 3		2, 3	2, 6	4*, 6
4L	\oplus	⊼-tree	⊼-tree	ΛοV	ΛοV	ΛοV		Th. 4	^	Th. 2
deg	1, 1	1.3267, 2	1.3267, 3	2, 2	2*, 3	2*, 3	1, 1		2, 6	2, 6
ueg	\oplus	⊼-tree	⊼-tree	ΛοV	ΛοV	ΛοV	\oplus		\wedge	Λ
\overline{Q}	1, 1	1, 1	1, 1	2, 2	2*, 3	2*, 3	1, 1	2, 3		4*, 6
	\oplus	\oplus	\oplus	Th. 3	Th. 3	Th. 3	\oplus	Th. 4		Th. 2
$\tilde{1}$	1, 1	1, 1	1, 1	7/6, 2	7/6, 3	7/6, 3	1, 1	1, 1	1, 1	
$\widetilde{\mathrm{deg}}$	\oplus	\oplus	\oplus	$\wedge \circ \mathrm{Ed}$	$\wedge \circ \mathrm{Ed}$	$\wedge \circ \mathrm{Ed}$	\oplus	\oplus	\oplus	

Thanks