
Separations	in	Query	
Complexity	using	
Cheat	Sheets
Scott Aaronson, Shalev Ben-David, Robin Kothari

Query	Complexity
• Fix a Boolean function f : {0,1}n {0,1}

• How many queries to an unknown binary string x do we need
in order to compute f(x)?
• D(f) = deterministic queries

• R(f) = randomized queries (with bounded error)

• Q(f) = quantum queries (with bounded error)

Gap	Between	D	and	R
• f(x) = 1 if x has 2/3 or more 1s

• f(x) = 0 if x has 1/3 or less 1s

• We assume that x satisfies one of the above conditions

• R(f)=1, D(f) ≈ n

Gap	Between	R	and	Q
• Simon’s problem [Simon ‘94]:

• Suppose x consists of 2m blocks of m bits

• The position of a block is an m-bit index

• Assume there’s a hidden m-bit string s such that two blocks are
equal iff the xor of their positions is s

• Goal: find the first bit of s

• Quantum query complexity: O(log2 n)

• Randomized query complexity: Ω~(√n)

Gap	Between	R	and	Q
• Forrelation [Aaronson, Ambainis 2014]

• Split x into two parts, each containing 2m blocks of m bits

• Interpret this as two functions from {0,1}m to {0,1}m

• Assume that the first function is either highly correlated with the
Fourier transform of the second, or else has near-zero correlation

• Goal: determine which is the case

• Quantum Query Complexity: 1

• Randomized Query Complexity: Ω(√n/log n)

Gap	between	R	and	Q
• k-fold Forrelation:

• Quantum Query Complexity O(k)

• Conjectured to have randomized query complexity Ω(n1-1/k)

• If so, this is the optimal separation

• k = log n gives O(log n) vs. Ω(n)

What	about	total	functions?
• [BBCMdW ’98]:

D(f) = O(R(f)3)

D(f) = O(Q(f)6)

• So none of these constructions can work for total functions!

What	about	total	functions?
• Saks, Wigderson ’86:

• And-Or tree of depth log n

• Deterministic query complexity Ω(n)

• Randomized query complexity Θ(n0.753)

• Grover ‘96:
• OR

• Randomized query complexity Ω(n)

• Quantum query complexity Θ(√n)

Separations	in	2015
• April 4 (Göös, Pitassi, Watson):

• Introduced the idea of pointer functions

• Quadratic separation between D(f) and deg(f)

• June 16 (Ambainis, Balodis, Belovs, Lee, Santha, Smotrovs):
• Quadratic separation between D(f) and R(f)

• Power 4 separation between D(f) and Q(f)

• Many other separations, involving R0(f) and QE(f)

• June 26 (B.):
• Power 2.5 separation between R(f) and Q(f)

• Introduced cheat sheets

• Nov 5 (Aaronson, B., Kothari):
• Used cheat sheets to reprove many of the other separations

• Power 4-o(1) separation between Q(f) and approximate degree

Cheat	Sheets

Turning	partial	functions	total
• Given a partial function f that has a good separation, how can

we turn it total?

• For concreteness, set f to be f(x) = 1 if x is 2/3 ones, 0 if x is
2/3 0s (“two-thirds”)

1

0

Turning	partial	functions	total
• Attempt:

1

0

f '(x) 
f (x) if x  Dom(f)
0 otherwise







Turning	partial	functions	total
• The problem is that the promise is difficult for a randomized

algorithm to calculate

pf (x) 
1 if x  Dom(f)
0 otherwise







1

1

0

Cheat	sheet	step	1:	Make	
things	easy	to	certify
• Change the function so that it is easy to certify if an input

satisfies the promise

• Also, make it easy to certify whether f(x) is 0 or 1

• But make sure not to decrease D(f)!

• Idea: Compose with AND-OR 0 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0

1 0 1 0 0 0 1 0

1 0 1 1 1 1 1 1

0 0 1 0 1 1 1 0

1 1 1 1 1 1 0 1

0 1 1 0 0 1 0 1

1 0 1 1 0 1 1 1

Cheat	sheet	step	1:	Make	
things	easy	to	certify
• Change the function so that it is easy to certify if an input

satisfies the promise

• Also, make it easy to certify whether f(x) is 0 or 1

• But make sure not to decrease D(f)!

• Idea: Compose with AND-OR 0 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0

1 0 1 0 0 0 1 0

1 0 1 1 1 1 1 1

0 0 1 0 1 1 1 0

1 1 1 1 1 1 0 1

0 1 1 0 0 1 0 1

1 0 1 1 0 1 1 1

Cheat	sheet	step	1:	Make	
things	easy	to	certify
• Change the function so that it is easy to certify if an input

satisfies the promise

• Also, make it easy to certify whether f(x) is 0 or 1

• But make sure not to decrease D(f)!

• Idea: Compose with AND-OR 0 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0

1 0 0 0 0 0 1 0

1 0 1 1 1 1 1 1

0 0 1 0 1 1 1 0

1 1 1 1 1 1 0 1

0 1 1 0 0 1 0 1

1 0 1 1 0 1 1 1

Cheat	sheet	step	1:	Make	
things	easy	to	certify
• Change the function so that it is easy to certify if an input

satisfies the promise

• Also, make it easy to certify whether f(x) is 0 or 1

• But make sure not to decrease D(f)!

• Idea: Compose with AND-OR 0 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0

1 0 0 0 0 0 1 0

1 0 1 1 1 1 1 1

0 0 1 0 1 1 1 0

1 1 1 1 1 1 0 1

0 1 1 0 0 1 0 1

1 0 1 1 0 1 1 1

0 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0

1 0 0 0 0 0 1 0

1 0 1 1 1 1 1 1

0 0 1 0 1 1 1 0

1 1 1 1 1 1 0 1

0 1 1 0 0 1 0 1

1 0 1 1 0 1 1 1

Properties	of	the	composition

• D(AND-OR) = m2, R(AND-OR) = Ω(m2)

• D(g) = nm2, R(g) = O(m2)

• An input x can be certified to be in the promise of g by
certifying all the AND-OR copies (using nm bits)

• This also certifies whether g(x) is 0 or 1

• But g is still not a total function!

0 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0

1 0 0 0 0 0 1 0

1 0 1 1 1 1 1 1

0 0 1 0 1 1 1 0

1 1 1 1 1 1 0 1

0 1 1 0 0 1 0 1

1 0 1 1 0 1 1 1

m

m

f = two-thirds

n

g

Step	2:	hide	a	cheat	sheet
• So far:

• D(g) large

• R(g) small

• For every input x in the promise of g, there is a small cheat sheet
that tells us everything about it

• Next step:

• change g so it contains the cheat sheet inside it

• Make sure only a randomized algorithm will be able to find
the cheat sheet

Step	2:	hide	a	cheat	sheet

Giant array

0 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0

1 0 0 0 0 0 1 0

1 0 1 1 1 1 1 1

0 0 1 0 1 1 1 0

1 1 1 1 1 1 0 1

0 1 1 0 0 1 0 1

1 0 1 1 0 1 1 1

0 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0

1 0 0 0 0 0 1 0

1 0 1 1 1 1 1 1

0 0 1 0 1 1 1 0

1 1 1 1 1 1 0 1

0 1 1 0 0 1 0 1

1 0 1 1 0 1 1 1

Cheat sheet

Input to g

…

f

Step	3:	find	the	cheat	sheet
• We want to let a randomized algorithm find the cheat sheet

• We want a deterministic algorithm to NOT find it

• What can a randomized algorithm do that a deterministic one
can’t?

• Solve g!

• Idea: let g(x) describe where the cheat sheet is

• Problem: g(x) is only one bit

• Solution: use 100 log n copies of g to describe a position in
an array of size n100

Step	3:	Find	the	cheat	sheet

Array of size n100

100 log n Inputs to g

…

The	final	function
• Let gCS be defined by

• gCS(x) = 1 if x has a valid cheat sheet in the right spot of the array

• gCS(x) = 0 otherwise

• Then gCS is a total function!

• R(gCS) = ?

• Need to compute g 100 log n times
• Each takes O(m2)

• Need to check that the cheat sheet is valid
• There are nm pointers per copy of g, times 100 log n copies

• Each takes O(log nm) queries to read, so Õ(nm)

• Total is nm + m2 (times log factors)

The	final	function
• Let gCS be defined by

• gCS(x) = 1 if x has a valid cheat sheet in the right spot of the array

• gCS(x) = 0 otherwise

• Then gCS is a total function!

• D(gCS) = ?

• Blindly searching the array is hopeless

• Must compute g at least once

• D(gCS) = Ω(nm2)

• Setting m=n gives D(gCS) ≈ n3, R(gCS) ≈ n2

The	final	function

Array of size n100

100 log n Inputs to g

…

A	Super‐Grover	Speedup

Cheat	sheet	framework

100 log n Inputs to g

Array of size n100

…

g

f

AND-OR

Cheat	sheet	framework

Array of size n100

100 log n Inputs to g

…

g

f = Forrelation

AND-OR

How	many	quantum	queries?

Array of size n100

100 log n Inputs to g

…

g

f = Forrelation

AND-OR

1

O(m)

Verifying certificate for g: n queries to read input to f, plus √m√n to
Grover search over n certificates of size m looking for an error

Õ(m)

O(m)

Total: Õ(n + m + √m√n) = Õ(n) if m = n

How	many	random	queries?

Array of size n100

100 log n Inputs to g

…

g

f = Forrelation

AND-OR

Ω(√n/log n)

Ω(m2)

Ω(m2√n)

Ω(m2√n/log n)

Total: Ω(n2.5) if m = n

Conclusion:	power	2.5	speedup

Array of size n100

100 log n Inputs to g

…

g

f = Forrelation

AND-OR

Summary
• Power 2.5 separation between randomized and quantum

query complexity

• Becomes power 3 separation if we can show a log n vs. n
separation in the promise setting

• Best known upper bound is 6

Communication	Complexity?
• We want to lift this to communication complexity

• We could use a measure that
• Lower-bounds R(f)

• Give a good lower bound for forrelation (or Simon’s)

• Composes (with AND-OR)

• Is preserved under addition of cheat sheets

• Lifts to communication lower bound

• Alternatively, lift to communication complexity before adding
cheat sheets

• Prove a lower bound on R for cheat sheet functions in
communication complexity

More	Complexity	Measures

Separations we reproveNew separations

More	Complexity	Measures

Separations we reproveNew separations

Approximate	Degree
• Lower bound for Q

• Previous separation: 1.3 (Ambainis 2003)

• This work: 4 - o(1)

• Most complicated function used in query complexity
• At the time, at least…

Unambiguous	Certificates
• A set of unambiguous 1-certificates is a set of 1-certificates for

f such that
• Any two of them contradict each other

• Any 1-input to f contains one of them

• Example: f = OR4

• 1___ 01__ 001_ 0001

• Let UC(1)(f) be the size of the largest certificate in the best
choice of unambiguous 1-certificates

Polynomials	from	UC(1)

• Let S be a set of unambiguous 1-certificates for f

• For any certificate c in S, there is a low-degree polynomial pc
for checking if the input contains the certificate
• pc(x)=1 iff x contains c

• deg(pc) = |c|

• Add up pc for all c in S to get a polynomial p

• Each 1-input contains exactly one certificate in S
• p(x) = 1 if f(x)=1

• p(x) = 0 if f(x)=0

• Conclusion: deg(f) ≤ UC(1)(f)

Approximate	degree	from	UC(1)

• Let S be a set of unambiguous 1-certificates for f

• Suppose that for any certificate c in S, there is a low-degree
polynomial pc for checking if the input contains the certificate
• pc(x) ≥ 2/3 if x contains c

• pc(x) = 0 if x does not contain c

• Add up pc for all c in S to get a polynomial p

• Each 1-input contains exactly one certificate in S
• p(x) ≥ 2/3 if f(x)=1

• p(x) = 0 if f(x)=0

• Conclusion: adeg(f) ≤ Quantum complexity of checking UC(1)

certificates

Cheat	Sheets	and	UC(1)

• Observation: UC(1)(fCS) ≈ C(f)

• The unambiguous 1-certificates will be the correct cheat sheet
cell and all the certificates it points to

• Implication: deg(fCS) ≤ C(f)

• So adding a cheat sheet to AND-OR gives a quadratic gap
between deg and R

• Since certificates for AND-OR can be checked in √m quantum
queries, this gives a power 4 separation between adeg and R

• What about Q?

k‐Sum
• Are there k elements summing to 0 mod M?

• Set k = log n

• Q ≈ n, C(1) ≈ polylog n (Belovs and Špalek 2013)

Block	k‐Sum
• Split input into blocks; a block is balanced if it has the same

number of 0s and 1s

• Balanced blocks represent numbers

• If there are log n balanced blocks summing to 0 mod M and all
other blocks have at least as many 1s as 0s, f(x) = 1

• Q is large, all certificates use almost only 1s

BKK

…

…

Q ≈ C2

RecBKK
…

…

…
…

…

…

…
… …

…
… …

RecBKKCS
100 log n copies

Array of size n100

…

…

… …

…
… …

…

… …

…

Q ≈ approxdeg4‐o(1)

Open	Problems

Open	Problems

Open	Problems

Thanks

