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Query	Complexity
• Fix a Boolean function f : {0,1}n {0,1}

• How many queries to an unknown binary string x do we need 
in order to compute f(x)?
• D(f)  =  deterministic queries

• R(f)  =  randomized queries (with bounded error)

• Q(f) = quantum queries (with bounded error)



Gap	Between	D	and	R
• f(x) = 1 if x has 2/3 or more 1s

• f(x) = 0 if x has 1/3 or less 1s

• We assume that x satisfies one of the above conditions

• R(f)=1,   D(f) ≈ n



Gap	Between	R	and	Q
• Simon’s problem [Simon ‘94]:

• Suppose x consists of 2m blocks of m bits

• The position of a block is an m-bit index

• Assume there’s a hidden m-bit string s such that two blocks are 
equal iff the xor of their positions is s

• Goal: find the first bit of s

• Quantum query complexity: O(log2 n)

• Randomized query complexity: Ω~(√n)



Gap	Between	R	and	Q
• Forrelation [Aaronson, Ambainis 2014]

• Split x into two parts, each containing 2m blocks of m bits

• Interpret this as two functions from {0,1}m to {0,1}m

• Assume that the first function is either highly correlated with the 
Fourier transform of the second, or else has near-zero correlation

• Goal: determine which is the case

• Quantum Query Complexity: 1

• Randomized Query Complexity: Ω(√n/log n)



Gap	between	R	and	Q
• k-fold Forrelation:

• Quantum Query Complexity O(k)

• Conjectured to have randomized query complexity Ω(n1-1/k)

• If so, this is the optimal separation

• k = log n  gives O(log n) vs. Ω(n)



What	about	total	functions?
• [BBCMdW ’98]:

D(f) = O(R(f)3)

D(f) = O(Q(f)6)

• So none of these constructions can work for total functions!



What	about	total	functions?
• Saks, Wigderson ’86:

• And-Or tree of depth log n

• Deterministic query complexity Ω(n)

• Randomized query complexity Θ(n0.753)

• Grover ‘96:
• OR

• Randomized query complexity Ω(n)

• Quantum query complexity Θ(√n)



Separations	in	2015
• April 4 (Göös, Pitassi, Watson):

• Introduced the idea of pointer functions

• Quadratic separation between D(f) and deg(f)

• June 16 (Ambainis, Balodis, Belovs, Lee, Santha, Smotrovs):
• Quadratic separation between D(f) and R(f)

• Power 4 separation between D(f) and Q(f)

• Many other separations, involving R0(f) and QE(f)

• June 26 (B.):
• Power 2.5 separation between R(f) and Q(f)

• Introduced cheat sheets

• Nov 5 (Aaronson, B., Kothari):
• Used cheat sheets to reprove many of the other separations

• Power 4-o(1) separation between Q(f) and approximate degree



Cheat	Sheets



Turning	partial	functions	total
• Given a partial function f that has a good separation, how can 

we turn it total?

• For concreteness, set f to be f(x) = 1 if x is 2/3 ones, 0 if x is 
2/3 0s  (“two-thirds”)

1

0



Turning	partial	functions	total
• Attempt: 

1

0

f '(x) 
f (x) if x  Dom( f )
0 otherwise









Turning	partial	functions	total
• The problem is that the promise is difficult for a randomized 

algorithm to calculate

pf (x) 
1 if x  Dom( f )
0 otherwise







1

1

0



Cheat	sheet	step	1:	Make	
things	easy	to	certify
• Change the function so that it is easy to certify if an input 

satisfies the promise

• Also, make it easy to certify whether f(x) is 0 or 1

• But make sure not to decrease D(f)!

• Idea: Compose with AND-OR 0 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0

1 0 1 0 0 0 1 0

1 0 1 1 1 1 1 1

0 0 1 0 1 1 1 0

1 1 1 1 1 1 0 1

0 1 1 0 0 1 0 1

1 0 1 1 0 1 1 1
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Properties	of	the	composition

• D(AND-OR) = m2,           R(AND-OR) = Ω(m2)

• D(g) = nm2,                     R(g) = O(m2)

• An input x can be certified to be in the promise of g by 
certifying all the AND-OR copies (using nm bits)

• This also certifies whether g(x) is 0 or 1

• But g is still not a total function!

0 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0

1 0 0 0 0 0 1 0

1 0 1 1 1 1 1 1

0 0 1 0 1 1 1 0

1 1 1 1 1 1 0 1

0 1 1 0 0 1 0 1

1 0 1 1 0 1 1 1

m

m

f =  two-thirds

n

g



Step	2:	hide	a	cheat	sheet
• So far:

• D(g) large

• R(g) small

• For every input x in the promise of g, there is a small cheat sheet 
that tells us everything about it

• Next step: 

• change g so it contains the cheat sheet inside it

• Make sure only a randomized algorithm will be able to find 
the cheat sheet



Step	2:	hide	a	cheat	sheet

Giant array

0 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0

1 0 0 0 0 0 1 0

1 0 1 1 1 1 1 1

0 0 1 0 1 1 1 0

1 1 1 1 1 1 0 1

0 1 1 0 0 1 0 1

1 0 1 1 0 1 1 1

0 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0

1 0 0 0 0 0 1 0

1 0 1 1 1 1 1 1

0 0 1 0 1 1 1 0

1 1 1 1 1 1 0 1

0 1 1 0 0 1 0 1

1 0 1 1 0 1 1 1

Cheat sheet

Input to g

…

f



Step	3:	find	the	cheat	sheet
• We want to let a randomized algorithm find the cheat sheet

• We want a deterministic algorithm to NOT find it

• What can a randomized algorithm do that a deterministic one 
can’t?

• Solve g!

• Idea: let g(x) describe where the cheat sheet is

• Problem: g(x) is only one bit

• Solution: use  100 log n  copies of g to describe a position in 
an array of size n100



Step	3:	Find	the	cheat	sheet

Array of size n100

100 log n  Inputs to g

…



The	final	function
• Let gCS be defined by

• gCS(x) = 1  if x has a valid cheat sheet in the right spot of the array

• gCS(x) = 0  otherwise

• Then gCS is a total function!

• R(gCS) = ?

• Need to compute g  100 log n times
• Each takes O(m2)

• Need to check that the cheat sheet is valid
• There are nm pointers per copy of g, times  100 log n  copies

• Each takes O(log nm) queries to read, so Õ(nm)

• Total is nm + m2 (times log factors)



The	final	function
• Let gCS be defined by

• gCS(x) = 1  if x has a valid cheat sheet in the right spot of the array

• gCS(x) = 0  otherwise

• Then gCS is a total function!

• D(gCS) = ?

• Blindly searching the array is hopeless

• Must compute g at least once

• D(gCS) = Ω(nm2)

• Setting m=n gives D(gCS) ≈ n3, R(gCS) ≈ n2



The	final	function

Array of size n100

100 log n  Inputs to g

…



A	Super‐Grover	Speedup



Cheat	sheet	framework

100 log n  Inputs to g

Array of size n100

…

g

f

AND-OR



Cheat	sheet	framework

Array of size n100

100 log n  Inputs to g

…

g

f = Forrelation

AND-OR



How	many	quantum	queries?

Array of size n100

100 log n  Inputs to g

…

g

f = Forrelation

AND-OR

1

O(m)

Verifying certificate for g:  n queries to read input to f, plus √m√n to 
Grover search over n certificates of size m looking for an error

Õ(m)

O(m)

Total:  Õ(n + m + √m√n) = Õ(n)   if  m = n



How	many	random	queries?

Array of size n100

100 log n  Inputs to g

…

g

f = Forrelation

AND-OR

Ω(√n/log n)

Ω(m2)

Ω(m2√n)

Ω(m2√n/log n)

Total:  Ω(n2.5)   if m = n



Conclusion:	power	2.5	speedup

Array of size n100

100 log n  Inputs to g

…

g

f = Forrelation

AND-OR



Summary
• Power 2.5 separation between randomized and quantum 

query complexity

• Becomes power 3 separation if we can show a log n vs. n 
separation in the promise setting

• Best known upper bound is 6



Communication	Complexity?
• We want to lift this to communication complexity

• We could use a measure that
• Lower-bounds R(f)

• Give a good lower bound for forrelation (or Simon’s)

• Composes (with AND-OR)

• Is preserved under addition of cheat sheets

• Lifts to communication lower bound

• Alternatively, lift to communication complexity before adding 
cheat sheets

• Prove a lower bound on R for cheat sheet functions in 
communication complexity



More	Complexity	Measures

Separations we reproveNew separations
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Approximate	Degree
• Lower bound for Q

• Previous separation: 1.3  (Ambainis 2003)

• This work:  4 - o(1)

• Most complicated function used in query complexity
• At the time, at least…



Unambiguous	Certificates
• A set of unambiguous 1-certificates is a set of 1-certificates for 

f such that
• Any two of them contradict each other

• Any 1-input to f contains one of them

• Example: f = OR4

• 1___      01__      001_      0001

• Let UC(1)(f) be the size of the largest certificate in the best 
choice of unambiguous 1-certificates



Polynomials	from	UC(1)

• Let S be a set of unambiguous 1-certificates for f

• For any certificate c in S, there is a low-degree polynomial pc
for checking if the input contains the certificate
• pc(x)=1 iff x contains c

• deg(pc) = |c|

• Add up pc for all c in S to get a polynomial p

• Each 1-input contains exactly one certificate in S
• p(x) = 1  if  f(x)=1

• p(x) = 0  if  f(x)=0

• Conclusion:  deg(f) ≤ UC(1)(f)



Approximate	degree	from	UC(1)

• Let S be a set of unambiguous 1-certificates for f

• Suppose that for any certificate c in S, there is a low-degree 
polynomial pc for checking if the input contains the certificate
• pc(x) ≥ 2/3  if x contains c

• pc(x) = 0  if x does not contain c

• Add up pc for all c in S to get a polynomial p

• Each 1-input contains exactly one certificate in S
• p(x) ≥ 2/3  if  f(x)=1

• p(x) = 0      if  f(x)=0

• Conclusion:  adeg(f) ≤ Quantum complexity of checking UC(1)

certificates



Cheat	Sheets	and	UC(1)

• Observation:  UC(1)(fCS) ≈ C(f)

• The unambiguous 1-certificates will be the correct cheat sheet 
cell and all the certificates it points to

• Implication:  deg(fCS) ≤ C(f)

• So adding a cheat sheet to AND-OR gives a quadratic gap 
between deg and R

• Since certificates for AND-OR can be checked in √m quantum 
queries, this gives a power 4 separation between adeg and R

• What about Q?



k‐Sum
• Are there k elements summing to 0 mod M?

• Set k = log n

• Q ≈ n,   C(1) ≈ polylog n   (Belovs and Špalek 2013)



Block	k‐Sum
• Split input into blocks; a block is balanced if it has the same 

number of 0s and 1s

• Balanced blocks represent numbers

• If there are log n balanced blocks summing to 0 mod M and all 
other blocks have at least as many 1s as 0s, f(x) = 1

• Q is large, all certificates use almost only 1s



BKK

…

…

Q ≈ C2



RecBKK
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…
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RecBKKCS
100 log n copies

Array of size n100

…

…

… …

…
… …

…

… …

…

Q ≈ approxdeg4‐o(1)



Open	Problems
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Open	Problems



Thanks


